
284 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

An Integrated Radix-4 Modular Divider/Multiplier

Hardware Architecture for Cryptographic

Applications

Lo’ai Tawalbeh
1
, Yaser Jararweh

2
, and Abidalrahman Mohammad

3

1
Computer Engineering Department, Jordan University of Science and Technology, Jordan

2
Electrical and Computer Engineering Department, University of Arizona, USA

3
Engineering Mathematics and Internetworking Department, Dalhousie University, Canada

Abstract: The increasing importance of security in computers and communication systems introduces the need for several

public-key cryptosystems. The modular division and multiplication arithmetic operations in GF (p) and GF (2
n
) are

extensively used in many public key cryptosystems, such as El-Gamal cryptosystem, Elliptic Curve Cryptography (ECC), and

the Elliptic Curve Digital Signature Algorithm (ECDSA). Processing these cryptosystems involves complicated computations,

therefore, it is recommended to develop specialized hardware to speed up these computations. In this work, we propose

efficient hardware design to compute both operations (division and multiplication) in the binary extension finite filed (GF (2
n
).

The common points in both operations are utilized in our design to reduce the design area and delay. making the proposed

architecture faster than other previously proposed designs. The FPGA implementation of the proposed design shows better

results compared with other designs in this field.

Keywords: Cryptography, number theory, finite field arithmetic, hardware design, and radix-4.

Received January 5, 2010; accepted August 10, 2010

1. Introduction

Very important data is transferred every second along

wide distances. This data might be military information,

financial records, and other vital information that is

transmitted over public non-secure channels like the

internet for example. The need to secure data

transmission over channels became a priority.

 Cryptography is widely used technique to secure

data transmission. The cryptographic algorithms

provide main security services such as confidentiality,

integrity, and authentication. So, these algorithms must

be used in a certain application according to the security

service needed. The implementation of cryptographic

algorithms in hardware offers better performance when

compared with software implementations.

1.1. Cryptography

Cryptography involves the encryption process, which

refers to converting formation (plaintext) into an

unreadable format (cipher text) using a secret parameter

(key). The decryption is the reverse process.

Cryptanalysis attacks refers to the attempts of deducing

the key used in the encryption. The modern

cryptography falls into two main categories:

Symmetric-key cryptography and Public-key

cryptography (Asymmetric). In symmetric-key

cryptography both the sender and the receiver of the

message share the same key for encryption and

decryption. Data Encryption Standards (DES) and

Advance Encryption Standards (AES) are well known

examples of symmetric ciphers. Using the same key

between each sender and receiver of a message,

requires a key management process to assure assigning

each communication pair in the network a different

private key [13].

In [7], a public-key cryptography methodology was

proposed to overcome the key exchange problem in

the symmetric key cryptosystems. A pair of two

different but mathematically related keys is used: a

public key (made public for all senders), and a private

key (kept private with the receiver of the message

only).

The public key is typically used for encryption,

while the private key is used for decryption. Public-

key algorithms are often based on the computational

complexity of “difficult” problems in number theory.

For example, the Hellman [7] and El-Gamal [3]

cryptosystems are related to the discrete logarithm

problem. Recently, Elliptic Curve Cryptography [13]

technique was developed, in which security is based

on elliptic curves operation such as point addition and

point multiplication. The complexity of most public-

key algorithms is due to difficult mathematical

operations they involve, such as modular division,

multiplication, and exponentiation. As a result,

speeding up these computations directly influence the

An Integrated Radix-4 Modular Divider/Multiplier Hardware Architecture for Cryptographic Applications 285

performance of such cryptosystem and this was among

the motivations for this work.

1.2. Modular Algorithms Over GF(2
n
)

The extended Binary GCD algorithm [10] is an efficient

way to calculate modular division by intertwining the

procedure for finding the modular quotient with that for

calculating the greatest common divisor of two

polynomials in GF(2
n
). In this work, we considered

polynomial basis to represent the elements in GF(2
n
).

An efficient algorithm to compute modular

multiplication is the Montgomery Multiplication (MM)

algorithm. It has many advantages over ordinary

modular multiplication algorithms. The main advantage

is that the division step in taking the modulus is

replaced by shift operations which are easy to

implement in hardware [9, 14, 15]. The MM algorithm

has been expanded from its original form [11], which is

a fixed-precision implementation in radix-2, to a

scalable, word-based implementation on multiple

radices [15, 17].

1.3. Motivation for Radix-4

Implementing an encryption algorithm in hardware is

faster and more secure than implementing it in

software. That’s because the security of software

implementation depends on the security of the operating

system which might not be fully achieved. The

modular arithmetic operations such as division and

multiplication over finite fields GF(p) and GF(2
n
) are

heavily used in several public-key cryptographic

algorithms that are used to provide security services in

many applications. So, modular division is a complex

and necessary operation at the same time, and also it is

considered an essential operation in the Elliptic Curve

Cryptography [2, 7, 11, 15].

The importance of the modular arithmetic operations

(including division) and the need for efficient

implementation motivate the researchers to provide

hardware architecture to accelerate the huge amount of

computations required by public-key cryptographic

algorithms.

Many previous works concentrated only on radix-2

and radix-8 designs for Montgomery Multiplication and

division. A radix-4 Montgomery multiplication

algorithm was shown in [15], which involves an

encoding step for the multiples of the modulus. Other

work use multi-bit shifting which provide ability to shift

the operands K bits in each iteration [4], but this design

increases the area in tremendous percent without

providing increasing in the processing speed.

Comparing with radix-2, radix-4 design is twice faster

than radix-2 (since radix-4 algorithm scans 2 bits of the

multiplier at a time which reduces the total number of

computation cycles to half of what is needed for radix-2

[15].

2. Related Work

A high-radix Montgomery multiplication algorithm

with radix-8 Montgomery modular multiplier as an

example was proposed in [17] and an elliptic curve

hardware that uses high radix multiplier was proposed

in [5]. Compared to radix-2, the radix-8 design has less

total computational time, but on the other hand, there

was a significant increase in area and complexity. This

result reveals an expected trade-off between chip area

and computational time, and it should be considered in

any hardware implementation of Montgomery

multipliers. By increasing the radix, the multiplier

operand is scanned faster; however, the determination

of the quotient digit (qM) becomes more complex.

Simplifying the determination of qM in high-radix

modular multipliers was discussed in [8].

The multiplication algorithm can be distributed

among a ring of processors, while each processor

operates on a certain set of data, and then forwards this

data to the next processor. This was a new approach

for modular multiplication based on residue arithmetic

presented in [1]. Also, the flexibility of the design

should be taken in consideration, and the main

candidates for flexible hardware are FPGAs. It was

shown in [1] that a flexible and scalable design would

have flexibility and adaptability comparable to

conventional software and good performance because

of the hardware speed. In [12] a unified multiplier

architecture was suggested for finite fields GF(p) and

GF(2
n
). The proposed multiplier can operate in both

fields without significant increases in the design area

compared to a multiplier that works on GF(p) only. A

radix-4 Montgomery multiplication algorithm that

involves an encoding step for the multiples of the

modulus was presented in [15]. The scalable (variable-

precision) hardware design for varying operands size

that implements the algorithm uses booth encoding of

multiples to reduce the number of iterations.

On the other hand, there are many techniques to

perform modular division (X(t)/Y(t) over GF(2
n
).

Among the best techniques to compute modular

division is by using the iterative transformations of the

greatest common divisor based on euclid algorithm

[2]. The only limitation of the hardware

implementations of the algorithms that is based on the

Euclid’s algorithm is the comparison step between the

degrees of the polynomials at each iteration.

In [2], a method replacing this comparison by a

much simpler operation (counter) was proposed, which

significantly reduced the complexity of such division

algorithms. By exploiting the counter idea, many

efficient division algorithms were proposed [9, 10,

16]. The authors in [18] presented a binary shift-right

algorithm and showed that this modification leads to

better area-time complexity.

A multi bit-shift techniques are shown by Gutub

[4]. The proposed inversion algorithms work in both

286 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

finite fields and are based on montgomery inversing

algorithms. Most of the proposed designs compute the

inverse in the binary extension fields GF(2
n
) [16, 17].

On the other hand, a VLSI algorithm for modular

division in GF(p) based on the Binary GCD algorithm

was proposed in [10]. The algorithm is based on the

plus-minus algorithm, which is a modification of the

binary method for calculating the Greatest Common

Divisor (GCD).

In [14] the authors proposed a novel unified

algorithm for modular division and multiplication in

both fields (GF(p) and GF (2
n
)). The algorithm and its

proposed hardware architecture which are based on

readix-2 were among the first designs that combine both

operations in one unit with minimum area-complexity

trade-off.

3. Modular Algorithms Design in GF(2
n
)

In this section, we provide the radix-4 division and

multiplication algorithms that will be integrated in the

next section to accelerate the arithmetic operations

execution in cryptographic applications.

3.1. Modular Division Algorithms in GF(2
n
)

The modular division algorithm on this work is based

on the Extended Binary GCD algorithm [10]. The

modular division algorithm computes the modular

division in GF(2
n
) as: C(x)=A(x)/B(x) mod p(x).

Figure 1 shows the radix-4 modular division algorithm

in GF(2
n
). This algorithm was presented in [9] and it

will be used as our basic design component in the

integrated design.

Function:Modular Division in GF (2
n

) field Inputs:0 6 X < P (x), 0 6 Y <

P (x), 2
n−1

<p< 2
n

outputs:Z (x) = X (x)/Y (x) mol p(x)

Algorithm:

C=Y, U=X, D=2p, W=0, δ = 1, Sgn=0

while C ≥ 0 do

I F c0 = 0 THEN

 I F c1 = 0 T H E N C := C/4, C := RE D(C, D)

 I F Sgn = 0 T H E N δ := δ + 1

 E lseI F δ = 1 T H E N δ := δ + 1, Sgn := 0 E LS E δ := δ − 1

E lseI F Sgn = 1 T H E N C := (C ⊕ D)/4, U := RED(U, W)

I F δ = 1 T H E N Sgn := 0, E lse δ := δ − 1

Else Sgn = 1, { C := (C ⊕ D)/4, D := C/4},

{ U := RED(U, W), C := RE D(C, D)}
E lseI F Sgn = 1 T H E N

I F c1 = 0 THEN C := (C ⊕ D/2)/4, W := RED(U, W)

E lse C := (C ⊕ D ⊕ D/2)/4, W := RED(U, W)

I F δ = 1 T H E N Sgn := 0, E lse δ := δ − 1

Else

I F c1 = 0 THEN{ C := (C ⊕ D/2)/4, D := C/2},

{ W := RED(U, W), C := RE D(C, D)}
Else{ C := (C ⊕ D ⊕ D/2)/4, D := C/2},{ W := RED(U, W), C :=

RE D(C, D)}
I F δ = 1 T H E N Sgn := 1, δ := δ − 1

Return W

Figure 1. Radix-4 modular division algorithm in GF(2n) [9].

The shown radix-4 division algorithm uses a digit

size of 2. It needs a maximum of 1.2 n iterations to

compute the result, where n is the operand size. The

double shift right (»4) operator stands for the division

by the square of the polynomial root (i.e., X2).

The bits c0 and c1 are used to control of the

algorithm flow. The body of the algorithm is divided

into three main cases, with the set of three operations:

shift, shift-add, shift-add and swap. For more details

about these cases, the reader is forwarded to [9].

One important part of the algorithm is the ± counter

(Denoted delta: δ) which replaced the hard comparison

operations in the previously proposed algorithm [4, 6,

8]. The counter (δ) would never be incremented or

decremented by 1, but only by 2 since we are using

radix-4. Moreover, the counter is initialized with an

odd value, so it will never reaches zero. It is important

to take care of the counter to ensure an optimal

implementation as the counter variable is used to limit

the number of iterations and the comparisons, forcing

the swap of variables to be performed, which is

required for convergence.

3.2. Montgomery Modular Multiplication

Algorithms in GF(2
n
)

In Montgomery [11], described a modular

multiplication algorithm which proved to be very

efficient in both hardware and software

implementations. The algorithm replaces division

operations with simple shift operations which

significantly reduces the algorithm complexity. In our

work, we modify the algorithm proposed in [17] in

order to be compatible with our division algorithm.

In our case, multiplication is performed in radix-4

and over GF(2
n
): C(x)=A(x)/B(x) mod p(x). Therefore,

the LSDs (least significant digits or last two bits) of

B(x), p(x), C(x), and of the current digit of A(x) are

used in order to determine the multiple quotient (q) to

generate the partial product. The LSB of p(x) is always

1 (p is odd), then only the second least significant bit

of the modulus is included in the computations. The

complete details about the algorithm are shown in [9].

4. Radix-4 Integrated Modular

Divider/Multiplier

The extended binary GCD and Montgomery modular

multiplication algorithms can be modified and

combined based on the similar operations they have.

By exploiting these similarities we can introduce an

integrated Division/ Multiplication algorithm with

reasonable area increase. In this section, we propose a

Radix-4 Division and Multiplication (R4DM)

algorithm over GF(2
n
) and its hardware architecture.

An Integrated Radix-4 Modular Divider/Multiplier Hardware Architecture for Cryptographic Applications 287

4.1. Radix-4 Modular Division/Multiplication

Algorithm in GF(2
n
)

Figure 2 shows the proposed R4DM algorithm over

GF(2
n
). The algorithm has two modes of operation: (div

or mult). Most of the arithmetic computations in the

algorithm are common to both modes of operation. The

complete details and the proof of the R4DM are

proposed in [9].

Function: Modular Division and Multiplication in GF (2
n

) field

Inputs: 0 ≤ X < P (x), 0 ≤ Y < P (x), 2
n−1

< p < 2
n

, Op, n
Outputs: Z (x) = X (x)/Y (x) mod p(x) when Op = div, Z(x)=X(x)Y(x) mod

p(x) when Op = mult.

Algorithm:

IF Op = div THEN C=Y, U=X, D=2p, W=0, δ = 1, Sgn=0

Else C=Y, U=0, D = 2p, W=X, δ = Ceiling (n/2), Sgn=1

while[(C≥ 0 AN D Op = div)OR (δ = 0 AN D Op = mult)] do

I F c0 = 0 THEN

I F c1 = 0 T H EN C := C/4, C := RED (C,D)

I F (Sgn = 1 AN D Op = div) T H EN δ := δ + 1

ElseIF δ=1T H EN δ := δ + 1, Sgn:=0 ELSE δ:=δ− 1

ElseIF Sgn=1T H EN C:= (C⊕D)/4, U := RED(U, W)

I F δ = 1 T H EN Sgn := 0, Else δ := δ − 1

Else Sgn = 1, { C := (C ⊕ D)/4, D := C/4},

{U := RED(U, W), C := RED(C, D)}
 ElseIF ((Sgn=1 AND Op=div)OR(Op=mult)) THEN

 IF c1=0 THEN C:=(C⊕D/2)/4,W,U:=RED(U,W)

 Else C := (C ⊕ D ⊕ D/2)/4, W, U := RED(U,W)

 I F δ=1 TH EN Sgn := 0, Else δ := δ − 1

Else

I F c1 = 0 THEN{ C := (C ⊕ D/2)/4, D := C/2},

 {W := RED(U, W), C := RED(C, D)}
Else{C:=(C⊕D/2)/4, D:=C/2},{W:=RED(U,W), C:= RED(C, D)}

I F δ ≠ 1 T H EN Sgn := 1, δ := δ − 1

IF Op = div THEN Z := W Else Z := U

Return Z

Figure 2. R4DM algorithm in GF(2n) [9].

The initialization of variables depends on that

division or multiplication being performed by the

algorithm. For simplicity, the polynomials X(x), Y(x),

and p(x) are denoted as X, Y, and p, respectively, which

corresponds to the bit-vector representation of these

polynomials.

The R4DM performs n/2 iterations to compute

Montgomery Modular multiplication using an n bit

modulus p. The counter δ is initialized with value n/2,

and in each iteration it is decremented by one. The

variables used in the algorithm are initialized as: C=Y,

U=0, D=2p, W=X, δ=n/2, Sgn=1. The partial product U

is reduced mod p in each iteration. Notice that the

addition in GF(2
n
) is done without carry propagation

(bitwise XORING). The multiplication is completed

when δ=0 and the final result is (Z=U).

On the other hand, the R4DM algorithm computes

modular division when the variable Op=div. The

variables are initialized as: C=Y, U=X, D=2p, W=0,

δ=1, Sgn=0. The division is completed when C=0, and

the final result is (Z=W). Notice that the modular

reduction step is performed every iteration for both

operations. The reader is forwarded to [9] for the

complete details of the R4DM algorithm operation.

4.2. Hardware Design of The Radix-4 Modular

Divider/Multiplier in GF(2
n
)

Figure 3 shows the top level design of the R4DM that

implements the R4DM algorithm. The hardware

design has a Register File, Data path, and Control

units. The complete details about each component of

this design are presented in [9].

The register file has four registers (R1 to R4). The

computations are done in GF(2
n
), and the elements are

represented in non-redundant format (not Carry-Save

format). Each intermediate variable (C, U, D, W) is

represented only as one vector (sum), and there is no

carry vector (carry free addition in GF(2
n
)). So, each

register inside the register file stores one n-bit vector.

The register file has one input, and two output ports.

Figure 3. R4DM hardware design.

The Control block provides the register file with the

signals necessary to perform reading/writing

operations. The 3bit signal dst determines the

destination register to be written. The signals src1,

src2 (3bits each), specify the registers to be read at

output ports out1, out2, respectively.

The proposed-bit data path is simple. The main

operation that determines the critical path is the

addition, and so, the main components of the data path

are two XOR gates array adders to perform carry-free

addition in GF(2
n
) field. Also, the data path includes

shift register that is used to implement the 2bit right

shift operation (C>>2). This shift register is loaded

with the multiplier (C=Y) and shifted right by 2bit

when a control signal is asserted. The least significant

two bits of the shifted operands are used by the control

section to perform the test on least two signification

bits of C (c1 c0). Finally, the outputs of the data path

(Sum) is shifted by 2bit to the right.

The delay of the adders used to perform addition in

GF(2
n
) (XOR Gates Array) equals to the delay of one

XOR gate, which is very small delay when compared

with carry save adders that used for addition in GF(p).

The data path also is responsible for generating the

288 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

suitable multiples of the irreducible polynomial (p)

according to the two lest significant bits of U(u1, u0).

As it is clear from the algorithm, these multiplies of (p)

will be added to U, in order to keep the two lest

significant bits (u1, u0)=00 before the shifting operation

to avoid data loss. More explanations about each

component of this design are presented in [9].

5. Experimental Results

We show in this Section an estimation of the number of

iterations and the critical path delay results for the

hardware description of the algorithm.

5.1. The Number of Iterations

The Unified Modular Division (UMD) algorithm

presented in [16] computes modular division in two

different fields. The UMD works only in Radix-2 with

some exception in GF(p) which is not our concern here.

Our proposed division algorithm in section 3.1 operates

in Radix-4, and needs about 40% less iteration than

UMD when computing the inverse in GF(2
n
). And we

notice that the number of iterations for both algorithm

increase linearly with the operand size.

In [14], it stated that the inversion in GF(2
n
) takes on

average 3.3 cycles for each bit. UMD needs a maximum

of 2 iterations/bit and on average 1.5 iterations/bit to

compute the modular inverse in GF(2
n
). Our proposed

algorithm takes maximum1.2 iterations/bit, and on

average 1.14 iterations/bit to compute the modular

inverse in GF(2
n
). These results are justified by the facts

that our algorithm scans two bits in each iteration, but

UMD scans one bit in each iteration.

5.2. Synthesis Results

The hardware design of the modular divider/multiplier

that implements the R4DM algorithm was described in

VHDL and simulated in ModelSim. Then, the design

was synthesized using Xilinx ISE 10.1i to obtain area

and delay results. The target technology used was

FPGA Vertex 5 (xc5vfx30t-2ff665).

5.2.1. Area Results

Table 1 shows the area results obtained by synthesizing

the design for the R4DM algorithm in number of slices

for operand size form 16-512bits.

Table 1. The Area results of (R4DM) design in number of slices for

operand size form 16-512 bits (Vertex 5).

Operand Size (n) Area (No. of Slices)

16 216

32 328

64 552

128 1000

256 1896

512 3688

For the purpose of comparison we synthesized our

design using vertex II chip (xc2v250-6cs144), in order

to compare with the results presented in [14]. The

results are shown in Figure 4.

Figure 4. Area comparison (vertexII).

From Figure 4, we notice that the area increases

linearly as the operand size increases in both design.

The difference between the two results is due to the

fact that our R4DM design works on GF(2
n
) only

where the multiplication and addition operations are

easily implemented by simple AND, XOR operations.

On the other hand, the UDMA design works on both

fields (GF(p) and GF(2
n
)) which needs extra hardware

to perform the complex operations in GF(P).

5.2.2. Critical Path Delay Results

Table 2 shows the critical path delay (clock period) in

nano-seconds for operand size in the range: 16-

512bits. The operating frequency of the R4DM design

is the reciprocal of the clock period. Form Table 2, the

lowest clock period (11.79 ns) happened at 16bits

operand size, and so, the maximum operating

frequency is around 84.8MHz.

Table 2. The critical path delay in nano-seconds for operand sizes

16-512 bits (vertex 5).

Operand Size (n) Delay (Nano Sec)

16 11.79

32 12.58

64 14.77

128 18.24

256 19.04

512 19.32

Again, and for the purpose of comparison with

[14], we synthesized our design using vertex II

(xc2v250-6cs144). Figure 5 shows the critical path

delay comparison results. The difference between the

two results is explained by the fact of working only in

GF(2
n
) in our design. The UDMA design uses adders

to perform the addition in GF(p) which is more

complicated and has more delay than the simple

adders used in our design which are arrays of XOR

gates.

An Integrated Radix-4 Modular Divider/Multiplier Hardware Architecture for Cryptographic Applications 289

Figure 5. The critical path delay comparison (vertex II).

6. Conclusions

In this work, we proposed a radix-4 modular division

algorithm to compute modular division in GF(2
n
). The

proposed algorithm computes the division in GF(2
n
)

field in an efficient way when compared with other

algorithms. It uses counter to replace the polynomial

comparison step. The proposed algorithm was

integrated with a modified version of the Montgomery

multiplication algorithm to produce a R4DM algorithm.

The hardware design that efficiently implements the

R4DM algorithm is also proposed.

The proposed hardware design of the R4DM was

described in VHDL, and simulated using ModelSim.

The area and delay synthesis results using FPGAs

vertex 5 and vertex 2 chips are obtained and compared

with other designs. The experimental results showed

that the computation time and the area of the proposed

R4DM design is competitive with other designs.

Acknowledgements

I would like to thank Jordan University of Science and

Technology (JUST) for the continuous support for the

research.

References

[1] Bajard J., Didier L., and Kornerup P., “An RNS

Montgomery Modular Multiplication Algorithm,”

IEEE Transactions on Computers, vol. 47, no. 7,

pp.766-776, 1998.

[2] Brent R. and Kung H., “Systolic VLSI Arrays for

Polynomial GCD Computation,” IEEE

Transactions on Computers, vol. 33, no. 8, pp.

731-736, 1984.

[3] ElGamal T., “A Public Key Cryptosystem and

Signature Scheme Based on Discrete

Logarithms,” IEEE Transactions on Information

Theory, vol. 31, no. 4, pp. 469-472, 1998.

[4] Gutub A., “New Hardware Algorithms and

Designs for Montgomery Modular Inverse

Computation in Galois Fields GF(p) and GF(2
n
),”

PhD Thesis, Oregon state University, USA, 2002.

[5] Gutub A., “Fast 160-Bits GF(P) Elliptic Curve

Crypto Hardware of High-Radix Scalable

Multipliers,” The International Arab Journal of

Information Technology,” vol. 3, no. 4, pp. 342-

349, 2006.

[6] Hasan M. and Bhargava V., “Bit-Serial Systolic

Divider and Multiplier for Finite Fields GF(2
m
),”

IEEE Transaction on Computers, vol. 41, no. 8,

pp. 972-980, 1992.

[7] Hellman M. and Difie W., “New Directions in

Cryptography,” IEEE Transactions Information

Theory, vol. 22, no. 6, pp. 644-654, 1976.

[8] Itoh T. and Tsujii S., “A Fast Algorithm for

Computing Multiplicative Inverses in GF(2
m
)

using Normal Bases,” Information and

Computation, vol. 78, no. 3, pp.171-177, 1988.

[9] Jararwah Y., “A Hardware Architecture of an

Efficient Modular Division Algorithm for

Cryptographic Applications,” Master’s Thesis,

Jordan University of Science and Technology,

Jordan, 2007.

[10] Kaihara M. and Takagi N., “A VLSI Algorithm

for Modular Multiplication/Division,” in

Proceedings the IEEE 16
th
 Symposium on

Computer Arithmetic, Japan, pp. 220-227, 2003.

[11] Montgomery P., “Modular Multiplication

without Trial Division,” Mathematics of

Computation, vol. 44, no. 170, pp. 519-521,

1985.

[12] Savas E., Tenca A., and Koc C., “A Scalable and

Unified Multiplier Architecture for Finite Fields

GF(p) and GF(2
m
),” in Proceedings of

Cryptographic Hardware and Embedded

Systems, USA, pp. 281-296, 2000.

[13] Stallings W., Cryptography and Network

Security Principles and Practices, Prentice Hall,

USA, 2005.

[14] Tawalbeh L. and Tenca A., “An Algorithm and

Hardware Architecture for Integrated Modular

Division and Multiplication in GF(p) and

GF(2
n
),” in Proceedings of IEEE International

Conference on Application-Specific Systems,

Architectures, and Processors, USA, pp. 247-

257, 2004.

[15] Tawalbeh L., Tenca A., and Koc C., “A Radix-4

Scalable Design,” IEEE Potentials Magazine,

vol. 24, no. 2, pp. 16-19, 2005.

[16] Tenca A. and Tawalbeh L., “An Algorithm for

Unified Modular Division in (GF(p) and

(GF(2
n
)) Suitable for Cryptographic Hardware,”

IEE Electronics Letters, vol. 40, no. 5, pp. 304-

306, 2004.

[17] Tenca A., Todorov G., and Koc C., “High-

Radix Design of a Scalable Modular Multiplier,”

in Proceedings of Cryptographic Hardware and

Embedded Systems, pp.189-206, 2001.

[18] Hsing-Wu C., Ming-Wu C., Shieh M., and

Hwang Y., “High-Speed, Low Complexity

290 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

Systolic Designs of Novel Iterative Division

Algorithms in GF(2
m
),” IEEE Transactions on

Computers, vol. 53, no. 3, pp. 375-380, 2004.

Lo'ai Ali Tawalbeh is an assistant

professor of Computer Engineering

at Jordan University of Science and

Technology (JUST), and a part time

professor at the New York institute

of Technology (NYIT)-Jordan’s

campus. He received his BS in

Electrical and Computer Engineering from Jordan

University of Science and Technology in June of 2000.

Then he worked as a research and development

engineer in a leading company, and then as a Teaching

Assistant in JUST before he joined the graduate

program at Oregon State University (OSU) in

September 2001. He received his MS degree in

electrical and computer engineering from Oregon State

University in October 2002, and his PhD MSc. He

research interests include network and computer

security. Intrusion detection and computer forensics.

Hardware implementations for cryptography, and

cryptographic co-processor design using scalable

modules, Elliptic Curve Cryptography, network

security and embedded systems, FPGA design, VLSI

design, computer architecture and finite field arithmetic

algorithms. Dr. Lo’ai has many journal publications

and conference proceedings in the above research

topics. He received many grants and research awards.

Yaser Jararweh received his Bsc

and Msc from Jordan University of

Science and Technology, Jordan in

2005, and 2007 respectively. He is

now a PhD student at the

Department of Electrical and

Computer Engineering, The

University of Arizona, USA. His research interest are in

Power and Performance Management of Large-scale

Data Centers.

Abidalrahman Mohammad is

currently a PhD candidate in

Engineering Mathematics and

Internetworking Department at

Dalhousie University MSc. His

main research concern is to develop

high throughput security protocols

and cryptographic algorithms for bandwidth-intensive

multimedia applications, as well as, energy efficient

and low-power architectures such as wireless sensor

networks. He received both his BSc and MSc Degrees

in computer engineering under the supervision of Dr.

Loai Tawalbeh, from Jordan University of Science

and Technology in February, 2006 and July, 2007

respectively.

