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Abstract: Sentence boundary identification is a preliminary step for preparing a text document for Natural Language 

Processing tasks, e.g., machine translation, POS tagging, text summarization and etc. We present a hybrid approach for Urdu 

sentence boundary disambiguation comprising of unigram statistical model and rule based algorithm.  After implementing this 

approach,  we obtained 99.48% precision, 86.35% recall and 92.45% F1-Measure while keeping training and testing data 

different from each other, and with same training and testing data, we obtained  99.36% precision, 96.45% recall and 97.89% 

F1-Measure.  
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1. Introduction 

Sentence boundary detection is a preliminary task for 
numerous NLP applications, e.g., information retrieval, 
information extraction, part of speech tagging, machine 
translation, chunking, parsing, and text summarization. 
All these tasks require their input text to be alienated 
into sentences for further processing. But it is difficult 
to properly alienate text into sentences, as there are 
numerous ambiguity issues as Urdu script is derived 
from Persian and Arabic [7].  

Sentence terminating punctuations, e.g., ‘.’, ‘?’, and 
‘!’ often appear inside the sentence, e.g., period can 
appear inside the sentence, such as, part of 
abbreviation, decimal between numbers and line 
breaker. So it is nontrivial to decide about a punctuation 
that either it is a sentence marker or not and it becomes 
more complex in the languages like Urdu where there is 
no discrimination between upper and lower case 
characters. Consider the given examples: 


	�� ����ے� �����ں �	ں   ۔ �	�دوی�۔ ای�۔ اے۔  
                                                          ۔#ہ� �!� � ہ�ئ 

                                   #�ے ای'� 	�ں ��ے؟! $ہ	ں

�                                      "�,�ے+�$ےدو۔"(ےہ�،ا

  -�#�4	�م 	�ا! -�	ں +(�ر1 -ے-�#	0 $ے ی- �'ٹ�ـ,� 

  9گ $ے #ہ� �ے ���7ں � ا�(� �6	ٹ �	ں �ے �	�۔ ۔ ۔ ۔ ۔

Obviously in above cases it is difficult for machine 
to isolate the punctuations behaving like sentence 
marker. In this paper a hybrid technique is presented 
that combines the unigram statistical model and the 
algorithm comprising of rules. Unigram model has been 
trained over tagged data. After testing, this model 
shows very low precision and high error rate, as all the 

periods are tagged as sentence markers. To improve 
precision, some rules are formulated. These rules are 
based on the tag of the word preceding the punctuation 
mark that is contestant of being a sentence marker. 
After implementing these rules we got significant 
improvement in our results. This work has shown 
99.36% precision, 96.45% recall, and 97.89% F1-
measure while keeping the same training and testing 
data, whereas 99.48% precision, 86.35% recall, and 
92.45% F1-Measure on keeping training and testing 
data different from each other. 

The paper is organized as follows, section 2 
describes the related work, section 3 describes 
proposed strategy, results and discussions are given in 
section 4, and section 5 gives conclusion of the work.  

 

2. Related Work 

2.1. Sentence Splitting Techniques Used for 

Various Languages of the World Except 

Urdu 

The task of sentence boundary disambiguation is 
performed for numerous languages. Although few of 
them are Arabic script languages, written from right to 
left, but still no work has been found for Urdu 
sentence boundary disambiguation. 

Various techniques have been used for different 
languages, e.g., rule based techniques, collocation 
identification [5, 6] verb and inflection detection [9], 
machine learning techniques, regular expressions [16], 
heuristic rules, artificial neural network models [15], 
part of speech tagging [8] and maximum entropy [11].  

In [12] Reynar and Ratnaparkhi used maximum 
entropy approach for sentence boundary detection in 
raw text. They trained their system on wall street 
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journal and brown corpora and achieved 98.0% and 
98.5% accuracy respectively. In Bondec [17] rule based 
approach, maximum entropy and HMM were used. 
Wall Street Journal was taken as training and testing 
corpus. All three techniques worked independent of 
each other and gave 16.25%, 10.00%, and 1.99% error 
rate respectively.  In [1] maximum entropy along with 
set of rules was used. It worked on Wall Street Journal, 
Brown, and GENIA corpora and obtained 98.8%, 
96.2%, and 98.2% accuracy respectively. This system 
was also trained for tagged data but improvement was 
negligible. In [4] syllabication information and 
phonetic rules were used for Turkish sentence boundary 
disambiguation and got 96.02% accuracy. In [10] 
Palmer and Hearts used feed forward neural network. 
This network worked on tagged corpora along with 
probabilistic POS information and produced 98.5% 
accuracy for English text. In [13] for Persian, Kurdish 
and Arabic texts finite state model was used to 
disambiguate the sentence marker punctuations from 
the punctuations used in dates, numbers, acronyms and 
abbreviations. In [12] rules were formulated regarding 
the position of period, verb, and proper noun in the 
sentence. Capitalization was also considered while 
developing these rules. On 2435 sentences it gave about 
79.5% recall. [10] Was based on rules. These rules 
were based on the location of period in the text and on 
the type of its preceding punctuation and following 
punctuation. As well as these rules were based on the 
length of period’s preceding and following words also. 
Text was divided in to tokens and candidate 
punctuations were identified. These rules produced 
99.4% accuracy for Greek text containing 8736 number 
of sentences.  

 

2.2. Sentence Splitting Techniques for Urdu 

Language 

Unluckily till now no efforts have been found for Urdu 
sentence boundary identification. This work is equally 
important for Urdu text processing but efforts are 
missing for it. Urdu is a bi-directional language and it 
uses Arabic orthography Unicode standards. All 
currently available operating systems do not provide 
support for such languages. Urdu language processing 
also needs bi-directional text supporting IDE and text 
editors. Moreover there are programming language 
limitations as many programming languages do not 
have any support for Unicode text processing [14]. 
There are limitations of training and testing data also. 
Till now comprehensive tagged and plain corpora for 
Urdu language are not seen. 

 

3. Proposed Approach 

A hybrid approach is presented for identifying sentence 
boundaries in Urdu text. This approach combines 
unigram statistical model [2, 3] and the rule based 

algorithm. Tagged data has been used to train unigram 
model. This trained model has been used to identify 
word boundaries in test data. Once the test data is 
tagged it is seen that every ‘ـ’ has been tagged as 
sentence boundary, neglecting that either it is a 
boundary marker or not (It happened because our 
training corpus contains a very small amount of data. 
Urdu language processing is in early stages and till 
now no such corpus has been developed having size 
like Brown or Wall Street Journal). Thus unigram 
model produced very low precision. To solve the 
problem of low precision in test data we have 
formulated some rules. These rules are based on the 
tag assigned to the word preceding the period or any 
other punctuation behaving like a sentence boundary. 
The algorithm has been applied on the data tagged by 
unigram tagger for identifying all putative sentence 
boundaries in it. Using POS information of the words 
preceding the candidate sentence boundaries, some of 
the potential boundaries have been selected as correct 
sentence markers, while all the rest have been 
disqualified.         

 

3.1. Algorithm 

• Ascertain ‘؟‘ ,’ـ’, ‘!’ and ‘"’ in the tagged data.  

• Mark them as sentence periphery by replacing their 
tags with <B>. 

• Make out <B> in the tagged corpus. 

• Read tag t of its preceding word. 

• If t Є {<NN>, <NNPC>, <NNC>, <JJ>, <CM>, 
<NNP>, <SC>, <PM>, <NNCM>, <CC>, <Q>, 
<FR>, <DATE>, <CD>}. 

• Debar <B> as boundary and replace it with <PM>. 

• Rests of the punctuations ending with <B> are 
actual sentence markers. 

 

3.2. Illustration 

According to Figure 1 firstly algorithm reads the data 
to identify the punctuations ‘؟‘ ,’ـ’, ‘!’ and ‘"’ in it. 
Further it replaces their tags with tag <B>. Tag <B> 
shows that tagged punctuation is a putative sentence 
boundary. Further it reads preceding tag of each 
putative sentence boundary and compares it with set 
T. Set T contains all those tags extracted from tagged 
corpora that if a putative sentence boundary is 
preceded by any one of them, will be disqualified. 
Remaining are actual sentence peripheries. 

 

4. Results and Discussions 

4.1. Properties of the Training and Testing 

Data 

Five different corpora files have been used to train and 
test the unigram statistical model for close test result 
evaluation. In open test file 5 (divided into eight 
different sets) has been used for training the system 
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and file 4 has been used as test data. Specifications of 
these files are given in Tables 1, 2, 3, 4, and 5.  
 

 

Figure 1. FD for proposed algorithm. 

 
Table 1. Use of period in training and testing data. 

 

No. of 

Tokens 

Periods 

(Sentence 

Markers) 

Periods (Not 

Sentence 

Markers) 

Total 

No. of 

Periods 

12808 453 155 608 

55034 1852 649 2501 

56970 1924 449 2373 

12481 437 117 554 

124812 3881 1253 5134 

 

Table 1 shows that file 1 contains 12808 tokens and 
608 periods in it, out of it there are 453 periods 
behaving as sentence marker while 155 are not sentence 
markers. File 2 has 55034 tokens. It has 2501 periods in 
it and out of 2501 periods 1852 show the behavior of 
sentence marker punctuation where as rest of 649 show 
non-terminating behavior. File 3 contains 56970 tokens 
out of it there are 2373 periods. These periods contain 
1924 actual sentence terminators and 449 periods used 
in abbreviations, dates or numeric values. File 4 has 
about 437 terminating and 117 non-terminating periods 
and file 5 contains 3881 and 1253 terminating and non-
terminating periods respectively. Table 2 shows that 
there are 6 question marks in file 1 and all of them are 
used as sentence terminators. File 2 has about 17 

question marks and only one of them is ambiguity 
creating mark.  File 3 has 22 question marks behaving 
as sentence marker. Files 4 and 5 contain 45 and 9 
question marks respectively, as sentence terminators, 
whereas each contains only one non-terminating 
question mark. 

 
Table 2. Use of question mark in training and testing data. 

 

No. of 

Tokens 

Question Mark 

(Sentence 

Terminator) 

Question Mark 

(Not Sentence 

Terminator) 

Total No. of 

Question 

Marks 

12808 6 0 6 

55034 17 1 18 

56970 22 0 22 

12481 45 1 46 

124812 9 1 10 

Table 3. Use of exclamation mark in training and testing data. 
 

No. of 

Tokens 

Exclamation 

Sign (Sentence 

Terminator) 

Exclamation 

Sign (Not 

Sentence 

Terminator) 

Total No. of 

Exclamation 

Signs 

12808 0 0 0 

55034 0 2 2 

56970 2 0 2 

12481 0 0 0 

124812 2 2 4 

 
According to Table 3 there are only 2 exclamation 

marks in file 2 and both of them are non-terminating 
marks. File3 has only 2 exclamation marks and both 
of these are sentence terminator. File 5 contains two 
terminator and two non-terminator exclamation marks. 
 
Table 4. Sentence terminating punctuations in training and testing 
data. 
 

No. of 

Tokens 

No. of  

Periods 

No. of 

Question 

Marks 

No. of 

Exclamation 

Marks 

Total 

No. of 

Sentence 

Markers 

12808 453 6 0 459 

55034 1852 17 0 1869 

56970 1924 22 2 1948 

12481 437 45 0 482 

12482 3881 9 2 3892 

Table 5. Non-terminating punctuations in training and testing data. 

No. of 

Tokens 

No. of  

Periods 

No. of 

Question 

Marks 

No. of 

Exclamation 

Marks 

Total No. of  

Non-

Terminating 

Punctuations 

12808 155 0 0 155 

55034 649 1 2 652 

56970 449 0 0 449 

12481 117 1 0 118 

12482 1253 1 2 1256 

 
According to Tables 4 and 5, file1 contains 459 

terminating and 155 non-terminating punctuations, 
file2 has 1869 terminating and 652 non-terminating 
punctuations and file3 has 1948 terminating and 449 
non-terminating punctuations. Files 4 and 5 contain 
118 and 1256 ambiguity creating punctuations 
respectively. 
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4.2. Results Obtained by Keeping Training and 

Testing Data Similar to Each other  

Results we obtained while keeping same training and 
testing data, by using unigram statistical model are 
given in Table 6.   

Table 6. Results using unigram statistical model. 

No. of 

Sentences 
Precision Recall F1-Measure 

459 75.70% 99.78% 86.09% 

1869 74.61% 100% 85.45% 

1948 81.54% 100% 89.83% 

 
Performance evaluation of the model is given in 

Figure 2. These results show that even using same 
training and testing data we could not get very high 
values of precision. It is all because of small sized 
training data. 
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Figure 2. Performance using unigram statistical model. 

 

Data set having 459 sentences showed 75.70% 
precision, 99.78% recall, and 86.09% F1-Measure. 
Data set of 1869 sentences could produce 74.61% 
precision, 100% recall, and 85.04% F1-Measure. Data 
set with 1948 sentences showed slightly better 
performance. It showed about 81.54% precision, 100% 
recall, and 89.83% F1-Measure. After applying our 
proposed algorithm we obtained following results. 
 

Table 7. Results obtained by applying proposed approach. 
 

No. of Sentences Precision Recall F1-Measure 

459 92.61% 76.47% 83.77% 

1869 95.13% 85.82% 90.23% 

1948 99.36% 96.45% 97.89% 

 
Figure 3 shows evaluation of precision, recall, and 

F1-Measure results obtained after applying rule based 
algorithm to tagged data returned by unigram tagger. 
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Figure 3. Performance using unigram statistical model along with 
rules. 

 

Table 7 shows that we got significant improvement 
in results after applying our proposed algorithm to 
data tagged by unigram tagger. For 459 sentences, we 
got 92.61% precision, 76.47% recall, and 83.71% F1-
Measure. For 1869 sentences, we obtained 95.13% 
precision, 85.82% recall, and 90.23% F1-Measure. For 
1948 sentences, we got 99.36% precision, 96.45% 
recall, and 97.89% F1-Measure.  

Table 8.  Error rate of unigram model and hybrid approach in close 
test. 
 

No. of 

Sentences 

Error Rate  of 

Unigram Model 

Error Rate of Our 

Approach 

459 32% 29% 

1869 34% 18% 

1948 22% 4% 

 
Table 8 shows the comparison of error rates 

produced by unigram statistical model and hybrid 
approach. With 1948 sentences there is significant 
difference in error rate produced by unigram model 
(22%) and hybrid approach (4%). Figure 4 shows this 
comparison graphically.  
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Figure 4. Comparison of unigram model and hybrid 
approach. 

 

4.3. Results Obtained by Keeping Training and 

Testing Data Different from Each Other  

While keeping training and testing data in such a way 
that there is no similarity in training and testing data 
files. The file used to train the tagger contains totally 
different contents from the file being used as test data 
file.  The results we obtained are given in Tables 9 and 
10 before and after applying algorithm. 

Table 9. Results obtained by using unigram statistical model. 
 

No. of Sentences in 

Training  Data 
Precision Recall F1-Measure 

500 60.18% 99.77% 75.08% 

1000 75.5% 100% 86.04% 

1500 79.11% 100% 88.33% 

2000 79.11% 100% 88.33% 

2500 79.11% 100% 88.33% 

3000 79.11% 100% 88.33% 

3500 79.11% 100% 88.33% 

3928 79.11% 100% 88.33% 
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Figure 5 shows evaluation of results contained in 
Table 9. Table 9 shows that keeping the test data fix 
and varying size of training data, as we are increasing 
the size of the training data set, results are improved. 
Therefore, significant performance of the unigram 
tagger requires sufficient amount of training data. 
Obviously, training data provided to unigram tagger is 
not as sufficient that it can learn where to mark a period 
as sentence marker and where it should leave it as an 
ordinary punctuation. That’s why results are not as 
better as unigram tagger shows usually. With 1500 
sentences and onwards it shows no change in results 
that means, its not learning something new from 
training data to improve its performance. Training data 
set, containing 1500 number of sentences and complete 
corpus file with 3928 number of sentences showed 
equivalent results. They produced about 79.11% 
precision, 100% recall, and 88.33% F1-Measure. 
Results given in Table 10 are obtained using unigram 
tagger along with our algorithm. 
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Figure 5. Performance by using unigram statistical model for test 
data. 

Table 10. Results obtained by applying proposed approach. 
 

No. of Sentences in 

Training  Data 
Precision Recall F1-Measure 

500% 72.2% 89.48% 79.92% 

1000% 93.7% 86.57% 90% 

1500% 99.48% 86.35% 92.45% 

2000% 99.48% 86.35% 92.45% 

2500% 99.48% 86.35% 92.45% 

3000% 99.48% 86.35% 92.45% 

3500% 99.48% 86.35% 92.45% 

3928% 99.48% 86.35% 92.45% 

 

Performance evaluation of results shown in the 
above table is given in Figure 6.  
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Figure 6. Performance of proposed approach for test data. 

 

After applying algorithm to data returned by tagger, 
results are improved. We obtained 99.48% precision, 
86.35% recall, and 92.45% F1-Measure, with larger 
sets of training data. 
 
Table 11. Error rate of unigram model and hybrid approach in 

open test. 
 

Number of 

Sentences in 

Training Data Set 

Error Rate of 

Unigram Model 

Error Rate of 

Our Approach 

500 66% 44% 

1000 32% 19% 

1500 26% 14% 

2000 26% 14% 

2500 26% 14% 

3000 26% 14% 

3500 26% 14% 

3928 26% 14% 

 
Table 11 shows the comparison of unigram model 

and hybrid approach, while keeping fix sized testing 
data and training data with varying size. It shows that 
error rate is reduced, by both of these techniques, with 
larger training data sets. It also shows that low error 
rate is achieved by our proposed approach as 
compared to the unigram model with same training 
and testing data. Figure 7 shows this comparison 
graphically.  
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Figure 7. Comparison of unigram model and hybrid approach. 

 

Following formulas are used for precision, recall, 
F1-Measure and error rate. 

  

Precision=Total number of correct sentence markers/Total 

number of speculated sentence markers.  

Recall=Total number of correct sentence markers/Total number of 

actual sentence markers. 

F1-Measure=2*Precision*Recall/Precision + Recall. 

Error Rate= (Total no. of missed sentence markers + Total no. of 

incorrectly detected sentence markers)/Total number of actual 

sentence markers. 
 

Correct sentence markers are those which have been 
correctly identified after applying our technique to test 
data. Whereas speculated sentence markers are all 
periphery punctuations obtained from test data after 
implementing our approach. While actual sentence 
markers are the punctuations behaving like sentence 
boundary in the test data. 
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5. Conclusions 

Sentence boundary identification is an intricate job 
especially for Arabic script languages. We have 
implemented a hybrid approach for Urdu sentence 
boundary disambiguation. Our approach combines 
unigram statistical model and rule based algorithm. 
Unigram model (trained over tagged data) has been 
used to tag the test data. Sentence boundary ambiguities 
have been found in the data tagged by the unigram 
tagger. To solve these ambiguities, rule based algorithm 
has been formulated. To a significant extent these 
ambiguities have been resolved by the algorithm. We 
have performed both open and close tests to compute 
accuracy of our proposed approach.  

Open test showed 99.48% precision, 86.35% recall, 
and 92.45% F1-Measure, whereas, close test produced 
99.36% precision, 96.45% recall, and 97.89% F1-
Measure with maximum number of sentences in 
training data set. Error rates produced by both unigram 
model and our proposed approach have been compared 
and it is seen that proposed approach gives low error 
rates as compared to unigram model. 
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