
250 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

A Hybrid Approach for Urdu Sentence Boundary

Disambiguation

Zobia Rehman and Waqas Anwar
Department of Computer Science, COMSATS Institute of Information Technology, Pakistan

Abstract: Sentence boundary identification is a preliminary step for preparing a text document for Natural Language

Processing tasks, e.g., machine translation, POS tagging, text summarization and etc. We present a hybrid approach for Urdu

sentence boundary disambiguation comprising of unigram statistical model and rule based algorithm. After implementing this

approach, we obtained 99.48% precision, 86.35% recall and 92.45% F1-Measure while keeping training and testing data

different from each other, and with same training and testing data, we obtained 99.36% precision, 96.45% recall and 97.89%

F1-Measure.

Keywords: Sentence boundary disambiguation, unigram model.

Received October 19, 2009; accepted May 20, 2010

1. Introduction

Sentence boundary detection is a preliminary task for
numerous NLP applications, e.g., information retrieval,
information extraction, part of speech tagging, machine
translation, chunking, parsing, and text summarization.
All these tasks require their input text to be alienated
into sentences for further processing. But it is difficult
to properly alienate text into sentences, as there are
numerous ambiguity issues as Urdu script is derived
from Persian and Arabic [7].

Sentence terminating punctuations, e.g., ‘.’, ‘?’, and
‘!’ often appear inside the sentence, e.g., period can
appear inside the sentence, such as, part of
abbreviation, decimal between numbers and line
breaker. So it is nontrivial to decide about a punctuation
that either it is a sentence marker or not and it becomes
more complex in the languages like Urdu where there is
no discrimination between upper and lower case
characters. Consider the given examples:

	�� ����ے� �����ں �	ں ۔ �	�دوی�۔ ای�۔ اے۔
 ۔#ہ� �!� � ہ�ئ

 #�ے ای'� 	�ں ��ے؟! $ہ	ں

� "�,�ے+�$ےدو۔"(ےہ�،ا

 -�#�4	�م 	�ا! -�	ں +(�ر1 -ے-�#	0 $ے ی- �'ٹ�ـ,�

 9گ $ے #ہ� �ے ���7ں � ا�(� �6	ٹ �	ں �ے �	�۔ ۔ ۔ ۔ ۔

Obviously in above cases it is difficult for machine
to isolate the punctuations behaving like sentence
marker. In this paper a hybrid technique is presented
that combines the unigram statistical model and the
algorithm comprising of rules. Unigram model has been
trained over tagged data. After testing, this model
shows very low precision and high error rate, as all the

periods are tagged as sentence markers. To improve
precision, some rules are formulated. These rules are
based on the tag of the word preceding the punctuation
mark that is contestant of being a sentence marker.
After implementing these rules we got significant
improvement in our results. This work has shown
99.36% precision, 96.45% recall, and 97.89% F1-
measure while keeping the same training and testing
data, whereas 99.48% precision, 86.35% recall, and
92.45% F1-Measure on keeping training and testing
data different from each other.

The paper is organized as follows, section 2
describes the related work, section 3 describes
proposed strategy, results and discussions are given in
section 4, and section 5 gives conclusion of the work.

2. Related Work

2.1. Sentence Splitting Techniques Used for

Various Languages of the World Except

Urdu

The task of sentence boundary disambiguation is
performed for numerous languages. Although few of
them are Arabic script languages, written from right to
left, but still no work has been found for Urdu
sentence boundary disambiguation.

Various techniques have been used for different
languages, e.g., rule based techniques, collocation
identification [5, 6] verb and inflection detection [9],
machine learning techniques, regular expressions [16],
heuristic rules, artificial neural network models [15],
part of speech tagging [8] and maximum entropy [11].

In [12] Reynar and Ratnaparkhi used maximum
entropy approach for sentence boundary detection in
raw text. They trained their system on wall street

A Hybrid Approach for Urdu Sentence Boundary Disambiguation 251

journal and brown corpora and achieved 98.0% and
98.5% accuracy respectively. In Bondec [17] rule based
approach, maximum entropy and HMM were used.
Wall Street Journal was taken as training and testing
corpus. All three techniques worked independent of
each other and gave 16.25%, 10.00%, and 1.99% error
rate respectively. In [1] maximum entropy along with
set of rules was used. It worked on Wall Street Journal,
Brown, and GENIA corpora and obtained 98.8%,
96.2%, and 98.2% accuracy respectively. This system
was also trained for tagged data but improvement was
negligible. In [4] syllabication information and
phonetic rules were used for Turkish sentence boundary
disambiguation and got 96.02% accuracy. In [10]
Palmer and Hearts used feed forward neural network.
This network worked on tagged corpora along with
probabilistic POS information and produced 98.5%
accuracy for English text. In [13] for Persian, Kurdish
and Arabic texts finite state model was used to
disambiguate the sentence marker punctuations from
the punctuations used in dates, numbers, acronyms and
abbreviations. In [12] rules were formulated regarding
the position of period, verb, and proper noun in the
sentence. Capitalization was also considered while
developing these rules. On 2435 sentences it gave about
79.5% recall. [10] Was based on rules. These rules
were based on the location of period in the text and on
the type of its preceding punctuation and following
punctuation. As well as these rules were based on the
length of period’s preceding and following words also.
Text was divided in to tokens and candidate
punctuations were identified. These rules produced
99.4% accuracy for Greek text containing 8736 number
of sentences.

2.2. Sentence Splitting Techniques for Urdu

Language

Unluckily till now no efforts have been found for Urdu
sentence boundary identification. This work is equally
important for Urdu text processing but efforts are
missing for it. Urdu is a bi-directional language and it
uses Arabic orthography Unicode standards. All
currently available operating systems do not provide
support for such languages. Urdu language processing
also needs bi-directional text supporting IDE and text
editors. Moreover there are programming language
limitations as many programming languages do not
have any support for Unicode text processing [14].
There are limitations of training and testing data also.
Till now comprehensive tagged and plain corpora for
Urdu language are not seen.

3. Proposed Approach

A hybrid approach is presented for identifying sentence
boundaries in Urdu text. This approach combines
unigram statistical model [2, 3] and the rule based

algorithm. Tagged data has been used to train unigram
model. This trained model has been used to identify
word boundaries in test data. Once the test data is
tagged it is seen that every ‘ـ’ has been tagged as
sentence boundary, neglecting that either it is a
boundary marker or not (It happened because our
training corpus contains a very small amount of data.
Urdu language processing is in early stages and till
now no such corpus has been developed having size
like Brown or Wall Street Journal). Thus unigram
model produced very low precision. To solve the
problem of low precision in test data we have
formulated some rules. These rules are based on the
tag assigned to the word preceding the period or any
other punctuation behaving like a sentence boundary.
The algorithm has been applied on the data tagged by
unigram tagger for identifying all putative sentence
boundaries in it. Using POS information of the words
preceding the candidate sentence boundaries, some of
the potential boundaries have been selected as correct
sentence markers, while all the rest have been
disqualified.

3.1. Algorithm

• Ascertain ‘؟‘ ,’ـ’, ‘!’ and ‘"’ in the tagged data.

• Mark them as sentence periphery by replacing their
tags with .

• Make out in the tagged corpus.

• Read tag t of its preceding word.

• If t Є {<NN>, <NNPC>, <NNC>, <JJ>, <CM>,
<NNP>, <SC>, <PM>, <NNCM>, <CC>, <Q>,
<FR>, <DATE>, <CD>}.

• Debar as boundary and replace it with <PM>.

• Rests of the punctuations ending with are
actual sentence markers.

3.2. Illustration

According to Figure 1 firstly algorithm reads the data
to identify the punctuations ‘؟‘ ,’ـ’, ‘!’ and ‘"’ in it.
Further it replaces their tags with tag . Tag
shows that tagged punctuation is a putative sentence
boundary. Further it reads preceding tag of each
putative sentence boundary and compares it with set
T. Set T contains all those tags extracted from tagged
corpora that if a putative sentence boundary is
preceded by any one of them, will be disqualified.
Remaining are actual sentence peripheries.

4. Results and Discussions

4.1. Properties of the Training and Testing

Data

Five different corpora files have been used to train and
test the unigram statistical model for close test result
evaluation. In open test file 5 (divided into eight
different sets) has been used for training the system

252 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

and file 4 has been used as test data. Specifications of
these files are given in Tables 1, 2, 3, 4, and 5.

Figure 1. FD for proposed algorithm.

Table 1. Use of period in training and testing data.

No. of

Tokens

Periods

(Sentence

Markers)

Periods (Not

Sentence

Markers)

Total

No. of

Periods

12808 453 155 608

55034 1852 649 2501

56970 1924 449 2373

12481 437 117 554

124812 3881 1253 5134

Table 1 shows that file 1 contains 12808 tokens and
608 periods in it, out of it there are 453 periods
behaving as sentence marker while 155 are not sentence
markers. File 2 has 55034 tokens. It has 2501 periods in
it and out of 2501 periods 1852 show the behavior of
sentence marker punctuation where as rest of 649 show
non-terminating behavior. File 3 contains 56970 tokens
out of it there are 2373 periods. These periods contain
1924 actual sentence terminators and 449 periods used
in abbreviations, dates or numeric values. File 4 has
about 437 terminating and 117 non-terminating periods
and file 5 contains 3881 and 1253 terminating and non-
terminating periods respectively. Table 2 shows that
there are 6 question marks in file 1 and all of them are
used as sentence terminators. File 2 has about 17

question marks and only one of them is ambiguity
creating mark. File 3 has 22 question marks behaving
as sentence marker. Files 4 and 5 contain 45 and 9
question marks respectively, as sentence terminators,
whereas each contains only one non-terminating
question mark.

Table 2. Use of question mark in training and testing data.

No. of

Tokens

Question Mark

(Sentence

Terminator)

Question Mark

(Not Sentence

Terminator)

Total No. of

Question

Marks

12808 6 0 6

55034 17 1 18

56970 22 0 22

12481 45 1 46

124812 9 1 10

Table 3. Use of exclamation mark in training and testing data.

No. of

Tokens

Exclamation

Sign (Sentence

Terminator)

Exclamation

Sign (Not

Sentence

Terminator)

Total No. of

Exclamation

Signs

12808 0 0 0

55034 0 2 2

56970 2 0 2

12481 0 0 0

124812 2 2 4

According to Table 3 there are only 2 exclamation

marks in file 2 and both of them are non-terminating
marks. File3 has only 2 exclamation marks and both
of these are sentence terminator. File 5 contains two
terminator and two non-terminator exclamation marks.

Table 4. Sentence terminating punctuations in training and testing
data.

No. of

Tokens

No. of

Periods

No. of

Question

Marks

No. of

Exclamation

Marks

Total

No. of

Sentence

Markers

12808 453 6 0 459

55034 1852 17 0 1869

56970 1924 22 2 1948

12481 437 45 0 482

12482 3881 9 2 3892

Table 5. Non-terminating punctuations in training and testing data.

No. of

Tokens

No. of

Periods

No. of

Question

Marks

No. of

Exclamation

Marks

Total No. of

Non-

Terminating

Punctuations

12808 155 0 0 155

55034 649 1 2 652

56970 449 0 0 449

12481 117 1 0 118

12482 1253 1 2 1256

According to Tables 4 and 5, file1 contains 459

terminating and 155 non-terminating punctuations,
file2 has 1869 terminating and 652 non-terminating
punctuations and file3 has 1948 terminating and 449
non-terminating punctuations. Files 4 and 5 contain
118 and 1256 ambiguity creating punctuations
respectively.

A Hybrid Approach for Urdu Sentence Boundary Disambiguation 253

4.2. Results Obtained by Keeping Training and

Testing Data Similar to Each other

Results we obtained while keeping same training and
testing data, by using unigram statistical model are
given in Table 6.

Table 6. Results using unigram statistical model.

No. of

Sentences
Precision Recall F1-Measure

459 75.70% 99.78% 86.09%

1869 74.61% 100% 85.45%

1948 81.54% 100% 89.83%

Performance evaluation of the model is given in

Figure 2. These results show that even using same
training and testing data we could not get very high
values of precision. It is all because of small sized
training data.

0

10

20

30

40

50

60

70

80

90

100

459 1869 1948

Number of Sentences

Precision Recall F1-Measure

Figure 2. Performance using unigram statistical model.

Data set having 459 sentences showed 75.70%
precision, 99.78% recall, and 86.09% F1-Measure.
Data set of 1869 sentences could produce 74.61%
precision, 100% recall, and 85.04% F1-Measure. Data
set with 1948 sentences showed slightly better
performance. It showed about 81.54% precision, 100%
recall, and 89.83% F1-Measure. After applying our
proposed algorithm we obtained following results.

Table 7. Results obtained by applying proposed approach.

No. of Sentences Precision Recall F1-Measure

459 92.61% 76.47% 83.77%

1869 95.13% 85.82% 90.23%

1948 99.36% 96.45% 97.89%

Figure 3 shows evaluation of precision, recall, and

F1-Measure results obtained after applying rule based
algorithm to tagged data returned by unigram tagger.

0

10

20

30

40

50

60

70

80

90

100

459 1869 1948

Number of Sentences

Precision Recall F1-Measure

Figure 3. Performance using unigram statistical model along with
rules.

Table 7 shows that we got significant improvement
in results after applying our proposed algorithm to
data tagged by unigram tagger. For 459 sentences, we
got 92.61% precision, 76.47% recall, and 83.71% F1-
Measure. For 1869 sentences, we obtained 95.13%
precision, 85.82% recall, and 90.23% F1-Measure. For
1948 sentences, we got 99.36% precision, 96.45%
recall, and 97.89% F1-Measure.

Table 8. Error rate of unigram model and hybrid approach in close
test.

No. of

Sentences

Error Rate of

Unigram Model

Error Rate of Our

Approach

459 32% 29%

1869 34% 18%

1948 22% 4%

Table 8 shows the comparison of error rates

produced by unigram statistical model and hybrid
approach. With 1948 sentences there is significant
difference in error rate produced by unigram model
(22%) and hybrid approach (4%). Figure 4 shows this
comparison graphically.

0

5

10

15

20

25

30

35

40

459 1869 1948

Number of Sentences

Error Rate of Unigram Model Error Rate of Proposed Approach

Figure 4. Comparison of unigram model and hybrid
approach.

4.3. Results Obtained by Keeping Training and

Testing Data Different from Each Other

While keeping training and testing data in such a way
that there is no similarity in training and testing data
files. The file used to train the tagger contains totally
different contents from the file being used as test data
file. The results we obtained are given in Tables 9 and
10 before and after applying algorithm.

Table 9. Results obtained by using unigram statistical model.

No. of Sentences in

Training Data
Precision Recall F1-Measure

500 60.18% 99.77% 75.08%

1000 75.5% 100% 86.04%

1500 79.11% 100% 88.33%

2000 79.11% 100% 88.33%

2500 79.11% 100% 88.33%

3000 79.11% 100% 88.33%

3500 79.11% 100% 88.33%

3928 79.11% 100% 88.33%

254 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

Figure 5 shows evaluation of results contained in
Table 9. Table 9 shows that keeping the test data fix
and varying size of training data, as we are increasing
the size of the training data set, results are improved.
Therefore, significant performance of the unigram
tagger requires sufficient amount of training data.
Obviously, training data provided to unigram tagger is
not as sufficient that it can learn where to mark a period
as sentence marker and where it should leave it as an
ordinary punctuation. That’s why results are not as
better as unigram tagger shows usually. With 1500
sentences and onwards it shows no change in results
that means, its not learning something new from
training data to improve its performance. Training data
set, containing 1500 number of sentences and complete
corpus file with 3928 number of sentences showed
equivalent results. They produced about 79.11%
precision, 100% recall, and 88.33% F1-Measure.
Results given in Table 10 are obtained using unigram
tagger along with our algorithm.

0

10

20

30

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000 3500 3928

Number of Sentences

Precision Recall F1-Measure

Figure 5. Performance by using unigram statistical model for test
data.

Table 10. Results obtained by applying proposed approach.

No. of Sentences in

Training Data
Precision Recall F1-Measure

500% 72.2% 89.48% 79.92%

1000% 93.7% 86.57% 90%

1500% 99.48% 86.35% 92.45%

2000% 99.48% 86.35% 92.45%

2500% 99.48% 86.35% 92.45%

3000% 99.48% 86.35% 92.45%

3500% 99.48% 86.35% 92.45%

3928% 99.48% 86.35% 92.45%

Performance evaluation of results shown in the
above table is given in Figure 6.

0

10

20

30

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000 3500 3928

Number of Sentences

Precision Recall F1-Measure

Figure 6. Performance of proposed approach for test data.

After applying algorithm to data returned by tagger,
results are improved. We obtained 99.48% precision,
86.35% recall, and 92.45% F1-Measure, with larger
sets of training data.

Table 11. Error rate of unigram model and hybrid approach in

open test.

Number of

Sentences in

Training Data Set

Error Rate of

Unigram Model

Error Rate of

Our Approach

500 66% 44%

1000 32% 19%

1500 26% 14%

2000 26% 14%

2500 26% 14%

3000 26% 14%

3500 26% 14%

3928 26% 14%

Table 11 shows the comparison of unigram model

and hybrid approach, while keeping fix sized testing
data and training data with varying size. It shows that
error rate is reduced, by both of these techniques, with
larger training data sets. It also shows that low error
rate is achieved by our proposed approach as
compared to the unigram model with same training
and testing data. Figure 7 shows this comparison
graphically.

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500 3000 3500 3928

Number of Sentences

Error Rate of Unigram Model Error Rate of Proposed Approach

Figure 7. Comparison of unigram model and hybrid approach.

Following formulas are used for precision, recall,
F1-Measure and error rate.

Precision=Total number of correct sentence markers/Total

number of speculated sentence markers.

Recall=Total number of correct sentence markers/Total number of

actual sentence markers.

F1-Measure=2*Precision*Recall/Precision + Recall.

Error Rate= (Total no. of missed sentence markers + Total no. of

incorrectly detected sentence markers)/Total number of actual

sentence markers.

Correct sentence markers are those which have been
correctly identified after applying our technique to test
data. Whereas speculated sentence markers are all
periphery punctuations obtained from test data after
implementing our approach. While actual sentence
markers are the punctuations behaving like sentence
boundary in the test data.

A Hybrid Approach for Urdu Sentence Boundary Disambiguation 255

5. Conclusions

Sentence boundary identification is an intricate job
especially for Arabic script languages. We have
implemented a hybrid approach for Urdu sentence
boundary disambiguation. Our approach combines
unigram statistical model and rule based algorithm.
Unigram model (trained over tagged data) has been
used to tag the test data. Sentence boundary ambiguities
have been found in the data tagged by the unigram
tagger. To solve these ambiguities, rule based algorithm
has been formulated. To a significant extent these
ambiguities have been resolved by the algorithm. We
have performed both open and close tests to compute
accuracy of our proposed approach.

Open test showed 99.48% precision, 86.35% recall,
and 92.45% F1-Measure, whereas, close test produced
99.36% precision, 96.45% recall, and 97.89% F1-
Measure with maximum number of sentences in
training data set. Error rates produced by both unigram
model and our proposed approach have been compared
and it is seen that proposed approach gives low error
rates as compared to unigram model.

References

[1] Agarwal N., Ford K., and Shneider M., “Sentence
Boundary Detection Using a MaxEnt Classifier,”
in Proceedings of MISC, CA, pp. 1-6, 2005.

[2] Anwar W., Wang X., and Li L., “A Statistical
Based Part of Speech Tagger for Urdu
Language,” in Proceedings of Machine Learning

and Cybernatics, Hong Kong, pp. 3418-3424,
2007.

[3] Manning C. and Schutze H., Foundations of
Statistical Natural Language processing,
Massachusetts Institute of Technology Press, UK,
1999.

[4] Dincer B. and Karaoglan B., “Sentence Boundary
Detection in Turkish,” in Proceedings of

Advances in Information Systems, Berlin, pp. 255-
262, 2004.

[5] Kiss T. and Strunk J., “Unsupervised Multilingual
Sentence Boundary Detection,” Journal of MIT

Press, vol. 32, no. 4, pp. 485-525, 2006.
[6] Kiss T. and Strunk J., “Viewing Sentence

Boundary Detection as Collocation
Identification,” in Proceedings of KONVENS, pp.
75-82, 2002.

[7] Malik A., “A Hybrid Model for Urdu Hindi
Translation,” in Proceedings of the Named

Entities Workshop, Singapore, pp. 177-185, 2009.
[8] Mikheev A., “Tagging Sentence Boundaries,” in

Proceedings of the 1
st
 North American Chapter of

the Association for Computational Linguistics

Conference, pp. 264-271, 2000.
[9] Mobarakeh I. and Bidgoli M., “Verb Detection in

Persian Corpous,” International Journal of

Digital Content Technology and its Applications,
vol. 3, no. 1, pp. 58-65, 2009.

[10] Palmer D. and Hearst M., “Adaptive Sentence
Boundary Disambiguation,” in Proceedings of
the 4

th
 Conference on Applied Natural Language

processing, Germany, pp. 73-83, 1994.
[11] Phuong H. and Vinh T., “A Maximum Entropy

Approach to Sentence Boundary Detection of
Vietnamese Texts,” in Proceedings of IEEE
Conference of Research, pp. 1-5, 2008.

[12] Reynar J. and Ratnaparkhi A., “A Maximum
Entropy Approach to Identifying Sentence
Boundaries,” in Proceedings of the 5

th

Conference on Applied Natural Language

Processing, USA, pp. 16-19, 1997.
[13] Rezaei S., “Tokenizing an Arabic Script

Language,” Arabic NLP Workshop at

ACL/EACL, France, 2001.
[14] Riaz K., “Challenges for Urdu Stemming a

Progress Report,” in Proceedings of BCS IRSG
Symposium: Future Directions in Information

Access, pp. 1-6, 2007.
[15] Romportl J., Tihelka D., and Matousek J.,

“Sentence Boundary Detection in Czech TTS
System Using Neural Networks,” in Proceedings
of IEEE, pp. 247-250, 2003.

[16] Walker D., Clements D., Darwin M., and
Amtrup J., “Sentence Boundary Detection: A
Comparison of Paradigms for Improving MT
Quality,” in Proceedings of Machine Translation

in the Information Age, pp. 369-372, 2001.
[17] Wang H. and Huang Y., “Bondec- A Sentence

Boundary Detector,” CS224N Project, Stanford,
2003.

Zobia Rehman is a lecturer at
COMSATS Institute of Information
Technology, Pakistan since October
2009. She did her MS in computer
science from COMSATS in 2009.
Her area of interest is natural
language processing and artificial

neural networks.

Waqas Anwar is working in
COMSATS Institute of Information
Technology, Pakistan as assistant
professor since April 2008. He got
his PhD degree in Computer
application technology from Harbin
Institute of Technology, PR China

in 2008. He did Masters in computer science from
Hamdard University, Pakistan in 2001. He is an active
researcher and his areas of interest are Natural
language processing and computational intelligence.

