
440 The International Arab Journal of Information Technology, Vol. 8, No. 4, October 2011

Design and Implementation of a Fine-grained

Resource Usage Model for the Android Platform

Mohammad Nauman
1
 and Sohail Khan

2

1
Department of Computer Science, University of Peshawar, Pakistan

2
School of Electrical Engineering and Computer Science, NUST, Pakistan

Abstract: Android is among the new breed of smartphone software stacks. It is powerful yet friendly enough to be widely

adopted by both the end users and the developer community. This adoption has led to the creation of a large number of third-

party applications that run on top of the software stack accessing device resources and data. Users installing third party

applications are provided information about which resources an application might use but have no way of restricting access to

these resources if they wish to use the application. All permissions have to be granted or the application fails to install. In this

paper, we present a fine-grained usage control model for Android that allows users to specify exactly what resources an

application should be allowed access to. These decisions might be based on runtime constraints such as time of day or

location of the device or on application attributes such as the number of SMSs already sent by the application. We give details

of our implementation and describe an extended installer that provides an easy-to-use interface to the users for setting their

policies. Our architecture only requires a minimal change to the existing code base and is thus compatible with the existing

security mechanism. As a result, it has a high potential for adoption by the Android community at large.

Keywords: Security, mobile platforms, android, policy framework, and constraints.

Received February 1, 2010; accepted March 9, 2010

1. Introduction

In the current scenario of mobile platforms, Android [1]

is among the most popular open source and fully

customizable software stacks for mobile devices.

Introduced by Google, it includes an operating system,

system utilities, middleware in the form of a virtual

machine, and a set of core applications including a web

browser, dialer, calculator and a few others.

Third party developers creating applications for

Android can submit their applications to Android

Market [2] from where users can download and install

them. While this provides a high level of availability of

unique, specialized or general purpose applications, it

also gives rise to serious security concerns. When a

user installs an application, she has to trust that the

application will not misuse her phone’s resources. At

install-time, Android presents the list of permissions

requested by the application, which have to be granted

if the user wishes to continue with the installation. This

is an all-or-nothing decision in which the user can

either allow all permissions or give up the ability to

install the application. Moreover, once the user grants

the permissions, there is no way of revoking these

permissions from an installed application, or imposing

constraints on how, when and under what conditions

these permissions can be used.

Consider a weather update application that reads a

user’s location from her phone and provides timely

weather updates. It can receive location information in

two ways. It may read it automatically from GPS or

prompt the user to manually enter her location if GPS

is unavailable. In Android, the application must

request permission to read location information at

install-time and if the user permits it, the application

has access to her exact location even though such

precision is not necessary for providing weather

updates. If however, she denies the permission, the

application cannot be installed. The user therefore

does not have a choice to protect the privacy of her

location if she wishes to use the application for which

the exact location isn’t even necessary and the

application itself provides an alternative.

To address these problems, we have developed

Android permission extension (Apex) framework, a

comprehensive policy enforcement mechanism for the

Android platform. Apex gives a user several options

for restricting the usage of phone resources by

different applications. The user may grant some

permission and deny others. This allows the user to

use part of the functionality provided by the

application while still restricting access to critical

and/or costly resources. Apex also allows the user to

impose runtime constraints on the usage of resources.

Finally, the user may wish to restrict the usage of the

resources depending on an application’s use e.g.,

limiting the number of SMS messages sent each day.

We define the semantics of Apex as well as the

policy model used to describe these constraints. We

also describe an extended package installer which

allows end-users to specify their constraints without

Design and Implementation of a Fine-grained Resource Usage Model for the Android Platform 441

having to learn a policy language. Apex and the

extended installer are both implemented with a minimal

and backward compatible change in the existing

architecture and code base of Android for better

acceptability in the community.

Contributions: our contributions in this paper are as

follows:

1. We describe the extensions to the existing security

mechanism of Android for incorporating usage

constraints.

2. We create a policy enforcement framework that

incorporates usage policies while granting

permissions to applications for accessing resources.

3. We describe and implement an extended package

installer that utilizes an easy-to-use and intuitive

interface for allowing users to specify their

constraints and modify them even after the

installation of an application.

2. Background

2.1. Android Architecture

Android architecture is composed in layers. These are

the application layer, application framework layer,

Android runtime and system libraries [16].

Applications are composed of one or more different

components. There are four types of components

namely activities, services, broadcast receivers and

content providers [11]. Activities include a visible

interface of the application. Service components are

used for background processing which does not require

a visible interface. The broadcast receiver component

receives and responds to messages broadcast by

application code. Finally, content providers enable the

creation of a custom interface for storing and retrieving

data in different types of data stores such as filesystems

or SQLite databases. The application framework layer

enables the use or reuse of different low-level

components. Android also includes a set of system

libraries, which are used by different components of

Android. The Android runtime includes Apache

Harmony [1] class libraries that provide the

functionality of core libraries for Java language.

Android enforces a sandboxing mechanism by

running each application in a separate process of the

Dalvik virtual machine [6]. Different instances of the

virtual machine communicate with each other through a

specialized inter-process communication mechanism

provided by the application framework layer. This

allows for loose coupling of code written by different

developers.

Each application in Android is assigned a unique

User ID (UID) upon installation. An application may

request a specific UID through sharedUserId attribute

of an application’s manifest. However, packages

requesting the same UID have to be signed using the

same signature and are then considered to belong to the

same application. The UID is therefore associated

uniquely with an application and can be used to refer

to a specific application [14].

Different applications are executed in their own

instance of the Dalvik VM. Components of an

application can interact with other components-both

within the application and outside it-using a

specialized inter-component communication

mechanism based on Intents. Intent is “an abstract

representation of an action to be performed” [12].

Intents encapsulate the action to be performed in an

action string as well as any data that is associated with

the action to be performed, and the category which

describes the type of component that may handle the

Intent. Moreover, intent can also include extra

information associated with the call.

Intents can either be sent to a specific component-

called explicit intents-or broadcast to the Android

framework, which passes it on to the appropriate

components. These intents are called implicit intents

and are much more commonly used. Both of these

types share the same permission mechanism and for

the sake of clarity, we only consider implicit intents in

this paper.

2.2. Motivating Example

In order to demonstrate the existing Android security

framework and its limitations, we have created a set of

four example applications as a case study, which is

representative of a large class of applications available

in the Android Market [10]. Ringlet is a sample

application that performs several tasks using different

low-level components like GPRS, MMS, GPS etc., It

accesses three other applications, each gathering data

from a different social network – facebook, twitter and

flickr. On receiving user name/password pairs, Ringlet

passes on the username and passwords of the social

networks to their respective back-end services. The

back-end services connect the user to the three

networks at the same time and extract updates from

the social network sites to their respective content

provider datastores on the phone. The front-end GUI

receives messages from the content providers, displays

these messages to the user in one streamlined interface

and allows her to reply back to the messages or

forward these messages to a contact via SMS or

MMS. It should be noted that several applications

similar to Ringlet are available on the Android Market

that use several permissions such as sending SMS and

accessing the location of the user. If a user downloads

several applications for different purposes and grants

all requested permissions to all applications, there is

no way of ensuring that none of the applications will

misuse these permissions. Using Ringlet as an

example application, we will describe the limitations

of Android security mechanism for restricting access

by the different applications to the phone’s resources

442 The International Arab Journal of Information Technology, Vol. 8, No. 4, October 2011

based on user’s policies. This brief problem statement

is elaborated in the following section.

2.3. Problem Description

Android comes with a suite of built-in applications like

dialer, browser, address book, etc. Developers can write

their own application using the Android SDK. Each

application requires permissions to perform sensitive

tasks like sending messages, accessing the contacts

database or using the camera. The permissions required

by an application are expressed in its

AndroidManifest.xml file - referred to as the manifest

file - and the user agrees or disagrees to them at install-

time. When installing new software, Android

framework prompts the user to allow the specified

permissions required by the application. This way, the

user has a chance to choose whether to trust the

application or not. Unless the user grants all the

required permissions to the application, it cannot be

installed. Once the permissions are granted and the

application is installed the user can not change these

permissions [4], except by uninstalling the application

from the device.

In essence, there are four issues:

1. The user has to grant all permissions in order to be
able to install the application.

2. There is no way of restricting the extent to which an
application may use the granted permissions.

3. Since all permissions are based on singular, install-
time checks, access to resources cannot be restricted

based on dynamic constraints such as the location of

the user or the time of the day.

4. The only way of revoking permissions once they are
granted to an application is to uninstall the

application.

2.4. Challenges

There are several challenges that need to be addressed

while resolving these issues:

1. The new framework has to be compatible with the
current architecture so that the existing developer

community can readily accept the changes.

2. A minimum of changes must be made to the existing
code base and user interface.

3. The framework must be easy to configure for mobile
phone users keeping in mind the limitations of

display and input methods.

4. Performance overhead must be small.

We address these challenges by enhancing the existing

security architecture of Android for enabling the user to

restrict the usage limit of both newly installed

applications as well as applications installed in the past.

3. Android Permission Extension

Framework

Based on the problems and challenges described in the

previous sections, we have developed an Apex

framework. Figure 1 describes the architecture in

brief. The existing Android application framework

does not define a single entry point for execution of

applications [11] i.e., applications have no main()

function. Applications are composed of components,

which can be instantiated and executed on their own.

This means that any application can make use of

components belonging to other applications, provided

those applications permit it.

The instantiation of these components is handled

by different methods of the ApplicationContext class

in the Android application framework layer. The

ApplicationContext acts as an interface for handling

Intents. Whenever intent is raised, the

ApplicationContext performs two checks: first, it

checks whether there are permissions associated with

the Intent; secondly, it checks whether the calling

component has been granted the permission associated

with the Intent.

The ApplicationContext implements the

IActivityManager interface that uses the concept of

Binders and Parcels, the specialized Inter Process

Communication mechanism for Android. Binder is the

base class for remotable objects that implements the

IBinder interface. This interface provides the core part

of a lightweight remote procedure call mechanism,

which is designed specifically for improving

performance of in-process and cross-process calls.

Parcel acts as a generic buffer for inter-process

messages and is passed through IBinder.

The ApplicationContext creates a parcel aimed at

deciding whether the calling application has a specific

permission. The ActivityManagerNative class receives

this parcel and extracts the PID, UID and the permission

associated with the call and sends these arguments to

the checkPermission() method of the

ActivityManagerService class. This method is the only

public entry point for permissions checking (Source:

Comments in Android source code for class:

com.android.server.am.ActivityManagerService).

These arguments are passed to

checkComponentPermission(), which performs

multiple checks: if the UID is a system or root UID, it

always grants the requested permission. For all other

UIDs, it calls the PackageManagerService, which

extracts the package names for the passed UID and

validates the received permissions against the

grantedPermission hashset of the application. If the

received permission does not match any of those

contained in the hashset, the Android framework

throws a security exception signifying a denial of the

permission.

Design and Implementation of a Fine-grained Resource Usage Model for the Android Platform 443

For incorporating runtime constraints for

permissions, we have modified the

PackageManagerService class. After checking the

existing security permissions, control is passed to the

AccessManager. For this purpose we have placed a

hook in the checkUidPermission() of

PackageManagerService that passes the UID and the

requested permission to the AccessManager.

AccessManager invokes the PolicyResolver, which

retrieves the policy attached to the relevant application

and evaluates it using the PolicyEvaluationEngine. The

policies contain constraints for granting or denying the

permission along with attribute update actions. Both of

these are resolved using the ExpressionParser, which

retrieves the attributes of the application from the

attribute repository and also performs different

operations on these attributes. Instead of hard-coding

expressions, we have opted to define an interface for

expressions, which can be used for extending the set of

available expressions. This can be useful in future

extensions of the framework by incorporating new

expressions; for example those performing set

operations. Currently, a set of commonly used

expressions such as numerical comparison and datetime

functions are included in the source. Below we describe

the details of AccessManager and the relevant portion

of our constrained permission evaluation mechanism.

3.1. Apex Policy Execution

The AccessManager class handles all permission

checks related to the Apex framework. The user

policies are represented in an XML file stored in the

SystemDir of the Android filesystem. Figure 2 shows

example high-level policies for the Ringlet application.

The first three policies specify the constraint that the

Ringlet application can only send five SMS/MMS

messages each day. The first two of these save the

number of messages sent in the sentMms attribute of

the Ringlet application and the third policy resets the

count when the permission is requested for the first

time in a day. Note that the return value of the

authorization rule in the third policy is permit i.e., the

permission will be granted; whereas the second policy

imposes a restriction by returning deny if the number

of times used exceeds the allocated quota.

The fourth policy specifies the time of the day

during which permission to access the GPS should be

denied to protect the privacy of the user and the fifth

one restrict the use of Internet outright. Note that these

high-level policies are for illustrative purposes only

and are not used in the implementation. Since the

existing Android security mechanism stores

permissions in an XML file, we have also opted for an

XML representation of these policies. These policies

are stored in SystemDir of the Android filesystem as

XML files. For performance enhancement, each file

stores policies related to one specific application. Each

application in Android is associated with a specific

UID and all permissions are associated with

applications instead of different packages. Therefore,

Apex policies associated with a single UID are stored

in one file and are applicable on all packages in the

application this UID represents.

Figure 3 shows the XML representation of the first

policy shown in Figure 2. The root node is the

<Policies> element, which includes <Policy>

elements, each corresponding to different policies

associated with the application.

mms_count_allow ("edu.ringlet.Ringlet" as Ringlet,

"android.permission.SEND_SMS" as MMS):
 Ringlet.sentMms <= 5 /\ Ringlet.lastUsedDay = System.CurrentDay ->

permit(Ringlet, MMS);

 Ringlet.sentMms' = Ringlet.sentMms + 1;
mms_count_deny ("edu.ringlet.Ringlet" as Ringlet,

"android.permission.SEND_SMS" as MMS):

 Ringlet.sentMms > 5 /\ Ringlet.lastUsedDay = System.CurrentDay ->
deny(Ringlet, MMS);

reset_mms_count("edu.ringlet.Ringlet" as Ringlet,
"android.permission.SEND_SMS" as MMS):

Ringlet.lastUsedDay != System.CurrentDay -> permit(Ringlet, MMS);

 Ringlet.lastUsedDay' = System.CurrentDay;
 Ringlet.sentMms' = 1;

 Figure 2. High-level Apex policies.

Android Permission Extension Framework

Components

Activities, Services, ...

Application Context

checkPermission()

checkCallingPermission()

...

Package Manager Service

checkComponentPermission()

checkUidPermission()

checkPermission()
P
ro
c
e
s
s
 B
o
u
n
d
a
ry

-

Parcel

(IPC Mechanism)

Existing Permission Checks

Access Manager

P
o
lic
y
 E
v
a
lu
a
ti
o
n
 E
n
g
in
e

E
x
p
re
s
s
io
n
 P
a
rs
e
r

Policy Resolver

Policy

Repository

Expression

Repository

Security

Exception User

defines

policies

IActivityManager

Attribute

Repository

ActivityManagerNative

ActivityManagerService

Permission PID UID

1

2

3

4

5

6

7

8

9

10

11

A

B

C

D

E

Unmodified

Created for Apex

Modified for Apex

Figure 1. Apex architecture.

444 The International Arab Journal of Information Technology, Vol. 8, No. 4, October 2011

<Policies TargetUid="10029">
 <Policy Effect="Permit">

 <Permission>android.permission.SEND_SMS</Permission>

 <Constraint CombiningAlgorithm="edu:android:apex:ALL">
 <Expression FunctionID="edu:android:apex:less-than-equal">

 <ApplicationAttribute AttributeName="sentMms" default="0">

 <Constant>5</Constant>
 </Expression>

 <Expression FunctionID="edu:android:apex:date-equal">

 <ApplicationAttribute AttributeName="lastUsedDay"
default="eval(day(System.CurrentDate)- 1)">

 <SystemAttribute AttributeName="CurrentDate">

 </Expression>
 </Constraint>

 <Updates>
 <Update TargetAttribute="sentMms">

 <Expression FunctionID="edu:android:apex:add">

 <ApplicationAttribute AttributeName="sentMms" default="0">
 <Constant>1</Constant>

 </Expression>

 </Update>
 </Updates>

 </Policy>

 <Policy> ... </Policy>
</Policies>

Figure 3. XML Representation of policies in Apex.

The Effect of the policy specifies whether to permit

or deny the permission if the constraints are satisfied.

The permission targeted by the policy is specified in the

<Permission> tag. Policies include the conditions for

authorization (specified using the <Constraint> tag) and

the updates that are to be performed (captured in the

<Updates> tag). Each constraint consists of one or more

<Expression>s. The results of the expressions are

combined using the CombiningAlgorithm specified by

the constraint. Expressions apply functions on their

operands and can be recursively defined. Functions are

specified using the FunctionID attribute and provide a

pluggable architecture for further extensions. Operands

can be of three types 1) Application attributes-

specified using <ApplicationAttribute> tag that takes an

attribute name and a default value to be returned if the

attribute doesn’t exist in the attribute repository, 2)

System attributes, which include attributes not

associated with a single application such as the location

of the phone and time of the day and 3) constants.

A policy may also include several updates, each of

which is specified by an <Update> tag. The result of

the update expression is saved in the attribute specified

by TargetAttribute. If the constraints in a policy are

satisfied, the updates have to be performed regardless

of the effect of the policy. If any of the satisfied

policies has the effect ‘deny’, the end result of the

permission check is to deny the requested permission.

Otherwise the permission is granted. Note that in our

framework, even if a satisfied policy has the effect of

denying permission, all subsequent matching policies

are still evaluated. This is so that the updates specified

by other satisfied policies may be performed.

The representation of Apex policies in XML is a

design decision motivated by the fact that the manifest

file, which hosts the existing permission constructs, is

also represented in XML. Android source code includes

a light-weight and efficient XML serializer –

FastXmlSerializer and a parser based on

XmlPullParser. Both of these are based on the XML

processing interfaces defined by the XMLPULL

API [17]. They are used by the

PackageManagerService for processing and writing

constructs of permissions and have been utilized in

Apex for efficient XML processing.

The result of the policy evaluation is propagated to

the application layer using the existing Android IPC

mechanisms.

3.2. Result Propagation

The Android framework returns one of two possible

values as a result of the permission check. These are

the Permission_Granted and Permission_Denied

public fields of the PackageManager class. If the

permission is granted, Apex returns

Permission_Granted. To differentiate between the

denial of a permission based on static checks and that

resulting from the constraint checks, we have included

a new member field

Permission_Constraint_Check_Failed in the

PackageManager class. If the result of the policy

evaluation is deny, the AccessManager and

subsequently PackageManagerService returns this

value to the requesting process. In the

ApplicationContext class, the enforce() method is used

to create an instance of a SecurityException with a

custom message declaring that the constraint checks

have failed. The exception is then thrown and

eventually caught by the application that requested the

permission. Figure 4 shows the error message

displayed by the Ringlet application when it was

denied permission to send an MMS message. We have

opted not to change the SecurityException class for

the sake of backward compatibility. Existing

application code catches security exceptions and a

change in this mechanism might break down existing

code.

Note that the inclusion of a new public member

field in the PackageManager class constitutes a change

in the public API of the Android SDK. A change of this

Figure 4. Permission denied as a result of constraint violation.

Nature cannot be incorporated in the publicly

available Android source code without an approval

Design and Implementation of a Fine-grained Resource Usage Model for the Android Platform 445

through the Android source review process [15].

However, we believe that this is only a minor change in

the API and is useful for the purpose of communicating

the reason of permission denial to the requesting

applications.

3.3. Performance Evaluation

The primary users of mobile phones in general and

Android in particular are usually unable or unwilling to

sacrifice performance for security. Moreover, the

computational power of most smartphones, while being

superior to traditional cell phones, is still lower than

desktop computers. It is therefore necessary that the

security policy model not overly tax the computational

capabilities of the phone. Writing policies is a one-time

operation, is currently performed at install-time and

therefore does not cause any reduction in runtime

performance. The evaluation of dynamic constraints

and execution of update actions however, is a recurrent

task and is performed for all applications for which a

policy exists. Note that by saving policies related to

each application in a single file, XML parsing can be

completely avoided for those applications for which no

policy file exists, thus significantly improving

performance.

To measure the performance hit caused by execution

of Apex policies for the Ringlet activity, we have

carried out some preliminary experiments. Table 1

shows the time taken by the existing security

mechanism as well as that by Apex to resolve certain

permission checks. These tests have been carried out on

the Android emulator on a desktop PC with CPU speed

and network latency set to emulate a real phone device.

The increase in the amount of time taken for policy

evaluation is rather large but note that the raw values

are still in an acceptable range. A permission check

taking approximately 70ms is certainly tolerable. Also

note the minimal change in the time taken for the

permission evaluation for browser application, for

which no policy has been defined. This minimal

performance hit, coupled with the usability of Apex

make our framework suitable for use in the consumer

market. Below, we describe how this usability has been

achieved using an extended Android installer.

Table 1. Performance evaluation results.

Action Application
Time Taken for

Existing Checks (ms)

Time

Taken with

Apex (ms)

Sending SMS Ringlet 34 103

Accessing GPS Ringlet 17 94

Accessing Camera Ringlet 25 47

Access Internet Browser 27 29

4. Poly Android Installer

Writing usage policies is a complex procedure, even for

system administrators. Android is targeted at the

consumer market and the end users are, in general,

unable to write complex usage policies. One of the

most important aspects of our new policy enforcement

framework is the usability of the architecture. To this

end, we have created Poly - an advanced Android

application installer. Poly augments the existing

package installer by allowing users to specify their

constraints for each permission at install time using a

simple and usable interface. In the existing Android

framework, the user is presented with an interface that

lists the permissions required by an application. We

have extended the installer to allow the user to click

on individual permissions and specify their

constraints. When a user clicks on a permission she is

presented with an interface that allows her to pick one

of a few options. She can allow the permission

outright, deny the permission completely or specify

constraints on the permission such as the number of

times it can be used or the time of the day during

which it should be allowed. This serves multiple

purposes:

• For the novice user, the default setting is to allow.
The default behavior of Android installer is also to

allow all permissions, if the user agrees to install an

application. This is a major usability feature that

makes the behavior of the existing Android installer

a subset of Poly and will hopefully allow for easier

adoption of our constrained policy enforcement

framework.

• The deny option allows a user to selectively deny a

permission as opposed to the all-or-nothing

approach of the existing security mechanism. For

example, Alice downloads an application that asks

for several permissions including the one associated

with sending SMS. Alice may wish to stop the

application from sending SMS while still being able

to install the application and use all other features.

In Poly, Alice can simply tap on the ‘send SMS’

permission and set it to ‘deny’.

• The third option is the constrained permission. This

is the main concern of this contribution and has

been discussed at length in the previous sections.

An important point to note here is that currently, we

have incorporated only simple constraints such as

restricting the number of times used and the time of

the day in which to grant a permission. This

simplification is for the sake of usability. We aim to

develop a fully functional desktop application,

which will allow expert users to write very fine-

grained policies.

For the implementation of Poly we have extended the

PackageInstallerActivity. In the existing Android

framework this activity is responsible for handling all

application installations. It presents the user with an

interface that lists the permissions requested by the

application and allows the user to accept all

permissions or deny the installation of the application.

We have modified this functionality to enable the user

446 The International Arab Journal of Information Technology, Vol. 8, No. 4, October 2011

to click on a specific permission and set the constraints

for its usage. The constraints are organized in a user-

friendly list of commonly used conditions. Once the

user sets these constraints, Poly creates an XML

representation of these constraints and store the policy

in the system directory from where it can be read

during policy resolution. Figure 5 shows the GUI

presented to the user when she installs an application.

Figure 5. Poly android installer interface.

5. Constraint Modification at Runtime

One of the limitations of existing Android security

mechanism is the inability to revoke permissions after

an application has been installed. If a user wishes to

revoke permission, the only choice she has is to

uninstall the application completely. Apex allows the

user to specify her fine-grained constraints at install-

time through Poly. However, once the user starts using

the application and comes to trust the application, she

may decide to grant more permission to the application

for improving her experience with the different features

of the application. Consider, for example, that after

using the Ringlet application (cf. section 2.2) for a few

weeks, the user comes to trust that the application will

not misuse her location information and wishes to use

the GPS feature of the application for including her

location in the messages. At this time, she should be

able to grant Ringlet the permission to access GPS. For

modifying the runtime constraints on permissions, we

have created a shortcut to the constraint specification

activity of Poly as shown in Figure 5 in the settings

application of Android (com.android.settings.

ManageApplications class). This allows the user to

modify the constraints she specified at install-time,

even after the application has been installed. Using this

interface, the user can grant the GPS permission to

Ringlet application after she trusts that this information

will not be misused. Similarly, the user can also deny

access to a specific permission after install-time if she

suspects that an application is misusing a resource.

We believe that our comprehensive constrained

policy mechanism coupled with the usable and flexible

user interface of Poly provides a secure, yet user-

friendly security mechanism for the Android platform.

6. Related Work

To date, no efforts have been reported at addressing

any of the problems described in section 2.3 for the

Android platform. Android source has recently been

made available to the open source community and as

such there is little scientific literature available on the

security mechanisms of Android. Kirin [7] is an

enhanced installer for Android that extracts the

permissions required by the application from the

manifest file for each application. These permissions

are validated against the organizational policies to

verify their compliance to the different stakeholder

requirements. The stakeholder security requirements

are represented as policy invariants. The installer

eliminates the need for user’s install-time decisions

about granting the permissions to the application. It

validates the permissions automatically against the

policy invariants. If the application’s permissions do

not comply with these invariants, the application is not

installed. However, there are two differences between

Kirin and the approach presented in this paper:

1. The installer validates the permissions of an

application only at install-time. There is no method

to check runtime constraints. For example, a

stakeholder policy that implements a limit on the

usage of a particular resource cannot be enforced,

2. Associating permissions with components is not just
restricted to the manifest file [14].

An application can also include a call to

Context.checkCallingPermission(),

Context.checkPermission() or PackageManager.

checkPermission() to ensure that a calling application

has the required permissions. Since Kirin only extracts

permissions from the manifest file it cannot include

this extra runtime information in its inference.

Similarly, [18] have described SAINT - a mechanism

aimed at Android that allows application developers to

define install-time and runtime constraints. However,

note that this framework gives the option of policy

specification to the application developers and not the

user. Our work, on the other hand, is user-centric in

that it allows the user to decide which resources

should be accessible to which applications. We

believe that, as the owner of the device, the decision to

grant or deny access to device resources should

remain with the user and not the application

developers.

Another recent work related to applications security

on Android, proposed by [8], is SCanDroid. It is a tool

for automated reasoning about information flow and

security verification of Android applications. It

extracts information from the Android manifest file

and the application source code to decide if the

application may lead to unwanted information flows.

While this is an exciting idea, it relies on the

availability of the source code of the application in

Design and Implementation of a Fine-grained Resource Usage Model for the Android Platform 447

question-a rather impractical assumption in the current

situation of the Android developer community.

Moreover, the tool does not restrict access to any

resources as a result of its computation. It is merely for

the sake of analysis. Finally, the common user cannot

be expected to execute such a tool and a bridge has to

be created between the average user and the tool for

wide-spread adoption of this concept in the consumer

market.

7. Conclusions

The massive increase in the consumer and developer

community of the Android platform has given rise to

important security concerns. One of the major concerns

among these is the lack of a model that allows users to

specify, at a fine-grained level, which of the phone’s

resources should be accessible to third-party

applications. In this paper, we have described Apex-an

extension to the Android permission framework. Apex

allows users to specify detailed runtime constraints to

restrict the use of sensitive resources by applications.

The framework achieves this with a minimal trade-off

between security and performance. The user can

specify her constraints through a simple interface of the

extended Android installer called Poly. The extensions

are incorporated in the Android framework with a

minimal change in the codebase and the user interface

of existing security architecture. Our model is

significantly different from related efforts [7, 8, and 18]

in that not only does it define an easy-to-use policy

language, it is also user-centric. It allows users to make

decisions rather than automating the decisions based on

the policies of remote owners. Secondly, it allows finer-

granular control over usage through constructs such as

attribute updates.

While we have successfully incorporated Apex in

Android, a lot remains to be accomplished for fully

exploiting the potential of the framework. For one, the

installer currently incorporates a small number of

constraints and a study of user requirements would help

in deciding which constraint types are the most useful

for a larger user community. Secondly, the problem still

persists that users may unknowingly grant permissions

that violate a larger security goal. A conjunction of

Kirin [7] with our extended package installer may

remedy this problem.

References

[1] Apache, Apache Harmony-Open Source Java

Platform, http://harmony.apache.org/, Last Visited

2009.

[2] Bell D. and LaPadula L., “Secure Computer

Systems: Mathematical Foundations,” Technical

Report, 1973.

[3] Burns J., “Exploratory Android Surgery,”

https://www.blackhat.com/html/bh-usa-09/bh-sa-

09-archives.html, Last Visited 2009.

[4] Burns J., “iSEC Partners: Developing Secure

Mobile Applications for Android,” http:// www.

isecpartners.com/files/iSEC_Securing_Android_

Apps.pdf, Last Visited 2009.

[5] Cheng J., Wong S., Yang H., and Lu S.,

“SmartSiren: Virus Detection and Alert for

Smartphones,” in Proceedings of the 5
th

International Conference on Mobile Systems,

Applications and Services, USA, pp. 258-271,

2007.

[6] Dan B., “Dalvik Virtual Machine,”

http://www.dalvikvm.com/, Last Visited 2009.

[7] Enck W., Ongtang M., and McDaniel P.,

“Understanding Android Security,” Computer

Journal of IEEE Security & Privacy, vol. 7, no.

1, pp. 50-57, 2009.

[8] Fuchs A., Chaudhuri A., and Foster J.,

“SCanDroid: Automated Security Certification

of Android Applications,” in Proceedings of the

31
st
 IEEE Symposium on Security and Privacy,

pp. 22-26, 2010.

[9] Google, Android Home Page,

http://www.android.com, Last Visited 2009.

[10] Google, Android Market, http://www.

android.com/market.html, Last Visited 2009

[11] Google, Android Reference: Application

Fundamentals-Components, http://developer

.android.com/guide/topics/fundamentals.html,

Last Visited 2009.

[12] Google, Android Reference: Intent,.

http://developer.android.com/reference/android/c

ontent/Intent.html, Last Visited 2009.

[13] Google, Android Reference: Manifest File -

Permissions, http://developer.android.com

/guide/topics/ manifest/ manifest- intro. html#

perms, Last Visited 2009.

[14] Google, “Android Reference: Security and

Permissions,” http://developer.android.com

/guide/topics/security/security.html, Last Visited

2009.

[15] Google, “Android Submission Workflow,”

http://source.android.com/submit-patches/

workflow, Last Visited 2009.

[16] Google, “What is Android?-Android Developer

Reference,” http://developer.android. com/guide

/basics/what-is-android.html, Last Visited 2009.

[17] Haustein S. and Slominski A., “XML Pull

Parsing,” http://www.xmlpull.org/, Last Visited

2009.

[18] Ongtang M., McLaughlin S., Enck W., and

McDaniel P., “Semantically Rich Application-

Centric Security in Android,” in Proceedings of

the Annual Computer Security Applications

Conference, pp. 55-59, 2009.

448 The International Arab Journal of Information Technology, Vol. 8, No. 4, October 2011

Mohammad Nauman is a researcher

working in the field of collaborative

systems and usage control. His

research interests include remote

attestation of distributed systems and

security on smartphone platforms. He

has a Masters in software engineering

and is currently pursuing his PhD in computer

information systems. He also serves under the Expert

Group for JSR321: Trusted Computing API for the Java

Platform. He has published several articles in

conferences of international repute and has presented

his findings on several occasions to an international

audience. He is also an author of two books-one on

search in social networks and another on application of

remote attestation in real-world scenarios.

Sohail Khan is an R and D scholar

and has completed his Masters in

Software Engineering from School of

Electrical Engineering and Computer

Science in the National University of

Sciences and Technology Pakistan.

His research interests include

information security and identity management. He

focuses on secure and trusted mobile platforms,

applications, and services. He is currently working on

creating a scalable and secure identity management

framework as part of an e-Government system for

Deployment throughout Pakistan.

