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Abstract: The core of a parallel processing system is the interconnection network by which the system’s processors are 
linked. Due to the great role played by the interconnection network’s topology in improving the parallel processing system’s 
performance, various topologies have been proposed in the literature. This paper proposes a new interconnection network 
topology, referred to as the chained-cubic tree, in which chains of hypercubes are arranged in a tree structure. The major 
topological properties of the proposed topology have been investigated, including its diameter, degree, connectivity, 
bisection width, size, cost, and hamiltonicity. A comparative study is then conducted between the proposed CCT and other 
interconnection networks’ topologies, including tree and hypercube in order to evaluate the rank occupied by CCT among 
other well-known topologies in terms of various performance and cost metrics. The concluding results proved that the CCT 
topology overcomes the shortcomings of its progenitors, tree and hypercube, while keeping most of its appealing properties. 
 
Keywords: Chained-cubic tree, hypercube, tree, interconnection network, and topology. 
 

Received October 15, 2009; accepted November 5, 2009 
 

 

1. Introduction 

The past two decades have witnessed a revolution in 
high performance scientific computing programs, real 
time applications, and other technologies in various 
fields that are pressing request for ever-fast computers 
and concurrent computations, which may not be 
implemented without parallel processing techniques. 
Therefore, parallel processing is considered as one of 
the hot topics in the computing era. 

Based on the fact that interconnection networks 
form the heart of parallel processing and due to their 
major role in parallel systems’ performance, many 
researchers have been motivated to present, evaluate, 
analyze, and improve many interconnection network 
topologies [1, 2, 4, 6, 7, 8, 12, 21]. For example, 
Harwood and Shen [7] proposed a new family of 
extremal interconnection networks, and they analyzed 
their topological properties from cost, degree, 
diameter, and bisection width. Interconnection 
networks have been defined as a form of connectivity 
between their components to facilitate the routing of 
data between the parallel entities for communication 
and cooperating. The performance of any parallel 
machine is directly coupled with the degree of 
concurrency supplied by the interconnection network. 
To obtain high performance, parallel entities must be 
able to communicate with each other concurrently 
capturing a topology structure. The word topology 
comes from the Greek word topos meaning place and 
logos which means study. It is a description of any 
kind of locality in terms of its layout. In 
interconnection networks, a topology is a schematic 
description of the arrangement of a network (its 

geometry), including its nodes and connecting lines, 
which is considered as a branch of the mathematical 
graph theory. The topology of an interconnection 
network is considered to be its most important feature 
and the major determiner of performance. Building a 
good topology structure for an interconnection network 
has always been a finicky step since high concurrency 
may yield to expensive cost. Therefore, a wide variety 
of network topologies have been used in 
interconnection networks trying to trade off cost and 
scalability with performance. 

The hypercube is one of the most known 
interconnection networks due to its attractive 
properties. However, because of its major drawback in 
terms of increasing degree for massive parallel 
processing [1, 8, 9, 15], many researchers proposed 
many alternatives of the hypercube to get over this 
problem. A study of the existing literature reveals that 
none of the known interconnection networks can be 
claimed to outperform all the others with respect to all 
the properties and metrics such as diameter, degree, 
bisection width, and connectivity. However, many 
researchers who tried to solve the degree problem of 
the hypercube found themselves to be involved with 
other problems such as high diameter, complexity 
design, and high cost. Therefore, many of the 
hypercube’s alternatives and variations were not 
applied in the real world, but some compromises have 
been made in order to make it practicable. On the other 
hand, the tree topology cannot be considered as a 
practical topology, because of its low bisection width 
and the absence of parallel paths [8, 9]. However, it 
has a good degree and diameter properties with basic 
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routing algorithms. Researchers who did investigate 
the tree topology found many promising alternatives. 
At any rate, this area is still open for more 
improvements on quality and performance.  

Seeking a good variation of hypercubes and trees, 
that preserves their attractive properties and reduces 
their drawbacks, led to propose the Chained-Cubic 
Tree (CCT) network as a combination of chained 
hypercube and tree networks. It is instigated by the 
good qualities it exhibits over its constituent networks. 
It makes a fair compromise between them by 
supporting and upgrading their advantages, reducing or 
eliminating foremost drawbacks with acceptable cost 
and appealing properties.  

The remainder of this paper is organized as follows. 
Section 2 surveys briefly some of the related work in 
this area. In section 3, some fundamental concepts are 
presented. The topological structure of the proposed 
interconnection network is presented in section 4. 
Section 5 discusses the topological properties of CCT. 
A comparative study with other interconnection 
networks is conducted in section 6. Section 7 
concludes the paper and suggests some future works. 

 
2. Related Work 

A wide variety of network topologies has been used in 
interconnection networks to obtain high performance 
in a parallel system. In one direction, many researchers 
investigated pure topologies such as ring, mesh, 
hypercube, tree, and star networks. These pure 
topologies have gained widespread acceptance in 
parallel computing due to many of their attractive 
properties [4, 6, 8, 9, 15]. In another direction, 
researchers studied the combination or modification of 
these pure topologies, with a great deal of research that 
has been directed towards studying their topological 
properties and communication capabilities [1, 2, 8, 12, 
16, 18, 19, 20, 21, 22]. Since this work proposes a new 
interconnection network that is related to hypercube 
and tree topologies, it will be helpful to mention 
briefly some of these topologies that are generated 
based on the hypercube and tree topologies. 

The hypercube network is one of the popular pure 
topologies that was a subject of a wide range of studies 
and has been applied in many of the combined 
topologies [9]. It has many attractive properties such as 
low diameter, symmetry, regularity, high 
communication bandwidth, maximum fault-tolerance, 
and simple routing strategies [6, 8, 9]. Regarding to its 
major shortcoming in terms of increasing degree for 
massive parallel processing, many researchers 
presented variations of the hypercube or combined it 
with other topologies to alleviate this shortcoming. Efe 
et al. [5] introduced a new version of the hypercube 
with some changes made on its linking procedure. This 
new interconnection network has been known as the 
crossed hypercube network. It has been indicated that 

it preserves the attractive properties of the hypercube 
and more importantly reduces the diameter by a factor 
of two. Preparata and Vuillemin [14] proposed the 
cube-connected cycles network, which is a 
combination of the hypercube and the ring, produced 
by replacing each node of the d-dimensional hypercube 
with a ring of d nodes to eliminate the hypercube's 
degree drawback and to preserve the hypercube's 
appealing properties. Abuelrub [1] proposed the hyper-
mesh interconnection network, which eliminates the 
major drawbacks of hypercube and mesh 
interconnection networks by combining them as a 
hypercube of two dimensional meshes. This topology 
has reduced the hypercube's degree and has decreased 
the diameter of the mesh. Loh et al. [11] has proposed 
the exchanged hypercube, which is obtained by 
systematically removing links from a binary 
hypercube. It maintains several desirable properties of 
the binary hypercube and reduces interconnection 
complexity by scaling upward with lower edge cost 
than the n-cube.  

Many researchers tried to eliminate the drawbacks 
of trees in order to gain from the great appealing 
advantages of this pure topology. Leiserson [10] 
proposed fat-trees, which improve the bisection width 
of traditional trees. The fat-tree is an indirect 
interconnection network based on a complete binary 
tree. Unlike traditional trees in computer science, fat-
trees resemble real trees because they get thicker near 
the root. Al-Omari [13] presented the tree-hypercube 
interconnection network, which consists of a full 
binary tree with extra links between the same tree level 
nodes to construct a hypercube, whose dimension is 
equal to the current tree's level. This hyper 
interconnection network has the parallel path property 
that could not be found in the pure tree interconnection 
network. Leighton [9] had proposed the mesh of trees, 
which is a hybrid interconnection network based on 
two dimensional meshes and trees. It has a small 
diameter relative to meshes, and a large bisection 
width relative to trees that supports the parallel paths 
property. Also, it is known as the fastest network when 
considered solely in terms of speed [3]. 

 
3. Preliminaries 

A graph G denoted as a pair (V, E), is a finite 
nonempty set V of elements called vertices, together 
with a set E of two element subsets of V called edges. 
Given vertices v1 and v2 in a graph, the edge between 
them may be written as (v1, v2). A graph is called 
directed if the edges have a direction, and undirected if 
the edges have no implied direction [8, 9]. The d-
dimensional hypercube interconnection network, 
denoted by Qd, is an undirected graph consisting of 
N=2d nodes, labeled from 0 to 2d-1 binary string, and 
has d2d-1

 edges, such that there is an edge between any 
two nodes if and only if the binary representations of 



336                                                                               The International Arab Journal of Information Technology, Vol. 8, No. 3, July 2011  

 

their labels differ in precisely one bit. Therefore, it has 
two nodes along each dimension. Nodes that are 
connected via one edge have labels that are different in 
one bit position, nodes that are distant by two edges are 
different in two bit positions, and so on [8, 9, 15]. 

A tree is an undirected connected graph of at least 
two nodes with no cycles. A binary tree structure is 
considered as one of the inexpensive ways to connect n 
nodes. A full binary tree with n nodes has n−1 edges 
[9]. Each node has a connection to its parent node, plus 
two connections to its left and right children, with the 
exception of the root, which has no parent, and the 
leaves, which have no children. Taking into account 
that a tree topology provides parent-child connections 
between nodes, two nodes may communicate in this 
topology by finding a path ascending from the source 
to a common parent node and then descending to the 
destination, which will issue a bottleneck towards the 
root. In a binary tree interconnection network, the 
depth of the root is 0 and the depth of any other node is 
one plus the depth of its parent. A complete binary tree 
is a binary tree in which all the leaves are at the same 
depth. There are 2p nodes at depth p of a complete 
binary tree. The height of a binary tree is the maximum 
of the depths of its leaves. A complete binary tree with 
height h, denoted by Th, has 2h+1-1 nodes [8, 9]. 
 
4. Topological Structure 

A new interconnection network is proposed based on a 
tree of height h, Th, and a hypercube of dimension d, 
Qd, topologies, referred to as the Chained-Cubic Tree, 
CCT (h, d).  
Definition 1: the chained-cubic tree interconnection 
network is an undirected graph, which is constructed 
by replacing the 2h+1-1 super-nodes of a tree Th by 
hypercubes Qd and connecting the sibling hypercubes 
in the same tree level with each other via extra 
cascading links.   

It attempts to eliminate or reduce the progenitor's 
drawbacks with benefiting from their advantages. CCT 
is constructed by replacing the 2h+1-1 super-nodes of 
the tree by hypercubes of size 2d nodes and connects 
the sibling hypercubes in the same tree level with each 
other via extra links. Figure 1 shows CCT (1, 2) as an 
example. 
 
 
 
 
 

 
Figure 1. Chained-cubic tree (1, 2). 

 
The topological structure of the CCT (h, d) 

interconnection network can be built as follows: 

1. Build a tree Th and a hypercube Qd. Figure 2 shows 
tree T1 and hypercube Q3, respectively. 

 
 
 
 
 

Figure 2. Tree T1 and hypercube Q3. 
 

2. Replace each tree node with a 2d nodes hypercube 
Qd, as shown in Figure 3.  

 
 
 
 
 
 
 
 
 
 

Figure 3. Replacing tree nodes with hypercubes. 
 

3. Replace the parent-child tree links by connecting 
every node in the hypercube parent node with its 
corresponding hypercube child node. Figure 4 
illustrates the process of constructing vertical 
parent-child connections (parent hypercube–child 
hypercube). For example, Figure 4 shows, in bold 
lines, how to connect parent hypercube’s node 6 
(110) with its two children hypercubes’ node 6 
(110). 

 
 
 
 
 
 
 

 
 
 
 

 

Figure 4. Vertical parent-child links for CCT (1, 3) for nodes 110. 
 

At each level of the tree, add additional links to the 
tree hypercube nodes to connect each one of the 
hypercubes with each other from right and left of the 
same tree level to construct a chain of hypercubes in each 
level of the tree. These connections are denoted as the 
horizontal cascading links of CCT. Connecting two 
hypercubes in the same level can be applied by 
connecting the nodes that differ in the prefix bit. For 
example, Figure 5 shows, in bold lines, how to connect 
first hypercube’s node 3 (011) with the second 
hypercube’s node 7 (111) and vice versa. 

 
 
 
 

 

 
Figure 5. Horizontal cascading links for CCT (h, 3). 
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Figure 6 shows a CCT (1, 3) as an example with soft 
vertical parent-child links and bold horizontal 
cascading links. Note that, to scale up the design, add a 
new tree level of chained hypercubes. Then connect 
this level with the last level of the old tree in vertical 
parent-child connections to produce CCT (h+1, d). 
Note that there is no need to upgrade the size of the 
hypercube, which could change all the nodes of degree 
e to nodes with degree e+1. 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. A CCT (1, 3) with soft vertical parent-child links and 
bold horizontal cascading links.  

 
Now, after the building procedure is made, we need 

a labeling process for the nodes in the CCT(h, d). 
Definition 2: each node v in the CCT(h, d), where h 
referred to the height of Th and d referred to the 
dimension of Qd, is labeled by a pair <t-label(v), q-
label(v)>, where t-label(v) and q-label(v) are called the 
tree binary label and the hypercube binary label, 
respectively, in which v is located in the tree node that 
is labeled by t-label and in the hypercube nodes that is 
labeled by q-label. Figure 7 shows the labeling 
procedure for CCT (1, 3) which is constructed from the 
previous construction steps and resulted by Figure 6. 
For example, the node with binary representation 110 
of the hypercube that lays on the root of the tree with 
binary representation 01 as shown in Figure 6, has 
been labeled in Figure 7 as <01, 110> as bold text  

 
Figure 7. Labeling CCT(1, 3). 

 
Definition 3: for two binary hypercube labels q-label 
(v1) and q-label (v2), where v1 and v2 are two nodes in 
CCT, these labels are called prefixed-differ hypercube 
labels if and only if they are differ in the prefix bit (left 
most). We can refer to two prefixed-differ hypercube 
labels by prefixed-differ(q-label (v1), q-label (v2)). 
Definition 4: for each two nodes v1 <t-label (v1), q-
label (v1)> and v2 <t-label (v2), q-label (v2)> in CCT(h, 
d), v1 is the parent of v2 if and only if q-label (v1)= q-

label (v2) and          └ (t-label(v2)/2) ┘= t-label(v1) 
(note that q-label(v1)= q-label(v2) and  └ log(t-
label(v2)) ┘ =└  log(t-label(v1)) ┘+ 1). 
Definition 5: two nodes v1 <t-label (v1), q-label (v1)> 
and v2 <t-label (v2), q-label (v2)> in CCT(h, d) are 
connected by an edge if and only if exactly one of the 
following conditions holds: 
 

1. v1 is a parent of v2. 
2. v2 is a parent of v1. 
3. v1 and v2 are on the same tree level and t-label 

(v1)= t-label (v2)-1 and prefixed-differ (q-label (v1), 
q-label (v1)). 

4. v1 and v2 are on the same tree level and t-label 
(v1)= t-label (v2)+1 and prefixed-differ (q-label 
(v1), q-label (v2)). 

  

In Definition 5, the first two cases are connected via 
vertical parent-child links, while the other two cases 
are connected via the horizontal cascading links. 

The vertical parent-child links are considered as a 
result of the cross product of tree and hypercubes, 
while, the horizontal cascading links are added to this 
structure as extra links to provide it with many 
appealing properties such as hamiltonicity. The next 
section describes the properties of this new 
interconnection network. 
 
5. Topological Properties 

In order to evaluate and understand the role and the 
behavior of this new network structure, it is helpful to 
answer the following two questions. What are the 
topological properties of this architecture? Does it 
provide noticeable improvements over its constituent 
topologies and other topologies? 

There are various criteria used to characterize the 
performance and the cost of interconnection networks. 
We use the following basic properties to characterize 
the CCT (h, d) interconnection network, where h refers 
to the height of the tree, Th, and d refers to the 
dimension of the hypercube, Qd. 

 

1. Diameter: the maximum distance between any two 
nodes in the network. 

Theorem 1: the diameter of CCT (h, d) is 2h+d-1 
Proof: since the diameter of a tree Th is 2h, and the 
diameter of the hypercube Qd is d. 

Therefore, the maximum distance between any two 
nodes in CCT (h, d) will go along the tree architecture 
in 2h diameter, and then pass through the hypercube in 
d diameter. Therefore, the diameter of CCT (h, d) will 
be the summation of the tree and hypercube diameters 
minus one since we can skip the root step. Therefore, 
the diameter of CCT (h, d) is 2h+d-1. Figure 8 shows 
the maximum distance between two nodes v1 and v2 in 
CCT. 
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Figure 8. The maximum distance (diameter) between two nodes 
(v1, v2) in CCT: (a) CCT (0, 2); (b) CCT( 1, 2); (c) CCT(2, 2). 
 
2. Degree: the maximum number of links that are 

connected with a node. 
Theorem 2: the degree of CCT (h, d) is d+5. 
Proof: the degree of the hypercube Qd is d, and the 
degree of the tree Th is at most 3, see Figure (9). Also, 
the extra links for horizontal connections in the CCT 
will cost each node at most 2 links. Therefore, the 
degree will be d+3+2= d+5. Figure (10) shows the 
number of links of an internal node in CCT (3, 3) is 
equal to 8.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. The vertex degree for the nodes in: (a) Tree T3, (b) 
Hypercube. Q. 
 
 
 
 
 
 
 
 
 
 

Figure 10. The vertex degree for an internal node in CCT (3, 3). 
 
3. Connectivity: a measure of the multiplicity of paths 

between any two nodes. 
Theorem 3: the connectivity of CCT (h, d) is at least 
d+2 and at most d+5, and it is d if and only if h=0. 
Proof: the connectivity is measured based on the node's 
neighbors. Therefore, all the neighbors' cases in the 
CCT topology must be considered: 

1. A hypercube node in the root of a tree topology will 
be connected to d nodes of its own hypercube's 
group and with two child nodes. So, the number of 
neighbors will be d+2. 

2. The internal node in the CCT (h, d) will be 
connected, at most, to d nodes of its own 
hypercube's group and with one parent node, two 
sibling nodes, and two child nodes. Therefore, the 
number of neighbors will be at most d+5. 

3. A leaf hypercube node will be connected to d nodes 
of its own hypercube group, one parent node, and 
one or two sibling nodes. So, the number of 
neighbors will be at least d+2 and at most d+3 in 
this case. 

4. If the height of the tree is zero, CCT has only one 
hypercube, then any node will be connected to only 
d nodes. Therefore, the number of neighbors will be 
d.  

The connectivity of the CCT architecture depends on 
the cases that have the least number of neighbors; 
which are the first, third, and fourth cases. Therefore, 
the connectivity of CCT (h, d) is at least d if h= 0; 
otherwise, the connectivity will be at least d+2. 
5. Bisection width: The minimum number of 

communication links that must be removed to 
partition the network into at most two equal halves. 

 

Theorem 4: the bisection width of CCT (h, d) is 2d 
(h+1.5). 
Proof: the CCT architecture resembles the tree 
architecture in having two sub trees, and then we need 
to remove all the connections between these sub trees 
and divide the root (a hypercube) into two equal 
partitions. To divide the tree into two sub trees, we 
have to remove h2d horizontal ascendant links and 2d 
vertical links that connect the root with the two halves. 
To divide the root hypercube we need to remove 2d-1 
links. So, the summation will generate the bisection 
width of CCT, which is h2d + 2d + 2d-1 = (h+1) 2d + 
2d-1= 2d (h+1.5).  
6. Size: The number of nodes in the network. 
Theorem 5: the size of CCT (h, d) is 2h+d+1-2d. 
Proof: the size of the hypercube, Qd, is 2d nodes, and 
the size of the tree, Th, is 2h+1-1. The size of CCT will 
be generated by multiplying the size of the hypercube 
with the size of the tree and the result will be 2h+d+1-2d.  
7. Cost:  the number of communication links required 

to build the network. 
Theorem 6: the cost or the number of links of CCT (h, 
d) is 2h+d(d+4)-2d(d/2+h+4). 
Proof: the number of hypercubes in CCT is (2h+1-1). 
The cost of each Qd hypercube is d2d/2. The number of 
parent hypercubes is (2h-1). Each parent hypercube is 
connected with two child hypercubes, where the 
number of links is equal to (2d+1). If we trace the tree 
from left to right, we will have (2h+1-h-2)2d horizontal 
connection links. So, the overall number of links is:  
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(2h+1-1) d2d-1+ (2h-1)(2d+1)+(2h+1-h-2)2d= 2h+d(d+4)-
2d(d/2+h+4). It is obvious that, this proposed topology 
guarantees a high bisection width and connectivity, 
with low diameter compared to tree topology and low 
degree compared to hypercube topology. 
8. Hamiltonicity: a path which is a sequence of 

adjacent vertices is a Hamiltonian path if its vertices 
are distinct and they span on the vertices. A cycle 
which is a path with at least three vertices such that 
the first vertex is the last one is Hamiltonian cycle if 
it traverses every vertex of the graph exactly once 
[20]. 

 

As mentioned before, CCT is constructed from 
arranging chains of hypercubes in a tree structure. 
However, one property of hypercubes is that they are 
Hamiltonian [17, 18, 19, 20]. Sun et al. [18] showed 
the Hamiltonian laceability of faulty hypercubes. Also, 
Sun et al. [19] showed the mutually independent 
Hamiltonian paths and cycles in hypercubes. 
Moreover, Stewart [17] presented distributed 
algorithms for building Hamiltonian cycles in k-ary n-
cubes and hypercubes with faulty links. However, next 
we will show that CCT is Hamiltonian. 
Theorem 7:  CCT is a Hamiltonian interconnection 
network, which means there exist a cycle that can 
cover all the nodes only once and ends with the same 
starting node.  
Proof: to be Hamiltonian is so important, since this 
will facilitate the process of reformulating the 
interconnection network to another well-known 
interconnection networks (such as ring or tree). Since 
the nodes of the tree are replaced by hypercubes, and 
we know that the hypercube is Hamiltonian (by 
following the gray code procedure for visiting nodes) 
[6, 8], and each internal hypercube in any level of the 
CCT is connected by right and left to its sibling 
hypercubes. Each level of the CCT is also connected to 
two levels above and below of it. Then, there exist a 
path to visit all the nodes without repeating any node 
in this path except the starting node. 

 The process of constructing a Hamiltonian circuit 
of CCT(h, d) with starting node    v0 = v1  <t-label (v1), 
q-label (v1)> which is also the ending node is as 
follows: 

1. If v1 is a node in a hypercube with unvisited nodes, 
then v1 will be replaced with the next node of 
following the gray code procedure of q-label (The 
Hamiltonian circuit of hypercube with ignoring the 
last step of returning to the starting node). 

2. Else, If v1 has unvisited right child via the horizontal 
cascading links, and the t-label for both nodes end 
with 1, then visit the right child of v1, and v1 is 
replaced by this new visited node. 

3. Else, if v1 has unvisited left sibling node that both 
share the same direct parent hypercube, then visit it 
via the horizontal cascading link that connect them, 
and replace v1 with the new visited node. 

4. Else, if v1 has unvisited parent node and the t-label 
of both nodes end with 0 then visit it via the vertical 
parent-child links, (Special case: if the v1 =010 then 
visit the parent node). Replace v1 with the new 
visited node. 

5. Else, if v1 has been connected from left with 
unvisited node then visit it via the horizontal 
cascading links, and replace v1 with the new visited 
node. 

6. Repeat the previous steps until all the nodes are 
visited and the next node is the starting node v0. 

 

Figure 11 shows the Hamiltonian circuit of CCT(3, 3), 
the starting node is <0110, 000> where each node in 
the tree corresponds to a hypercube Q3. 
 
 
 
 
 
 
 
 

 

Figure 11. The hamiltonicity of CCT(3, 3) with starting node 
<0110, 000>. 

 
6. Comparison and Evaluation 

It is essentially impossible to fairly compare 
interconnection networks, simply because there are too 
many parameters and topological properties. The most 
suitable way for evaluating a new topology is to 
conduct a comparative study between the topological 
properties of both; the proposed topology and the other 
topologies that are familiar by their appealing 
topological properties. In this paper, it has been chosen 
to compare CCT with the following topologies: a 
hypercube Qd of dimension d, a tree Th of height h, a 2-
dimensional mesh M(r, r), and a mesh of trees of   r by 
r mesh and tree of height h, MOT(r, h). These are 
chosen according to their preference, strong properties, 
and the good qualities they exhibit over other 
topologies. Table 1 shows their topological properties. 

In order to evaluate the proposed interconnection 
network, each of the proposed network’s topological 
properties need to be evaluated and measured for 
growing sizes of CCT. This allows us to compare the 
proposed CCT interconnection network and determine 
its position among other interconnection networks 
based on the evaluated topological properties. This will 
give us the ability to judge if it is better or worse than 
its progenitors; tree and hypercube, and other 
interconnection networks, as shown in Figures (12-17). 
Figure 12 shows these topologies’ scaling near to the 
preferred sizes. It is shown that the mesh and mesh of 
trees are the best scaling topologies. Figure 13 shows 
the diameter of each of the above mentioned 
topologies with their sizes growing up. It is obvious 
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from Figure 13 that hypercube and CCT topologies 
have the first and second best two diameters, 
respectively. It means that their speeds are high 
compared with others. It can also be noticed that the 
mesh topology is considered as an outlier for its high 
diameter. Figure 14 shows a comparison between the 
above mentioned topologies according to the degree 
property. Tree, mesh, and MOT topologies have a 
constant degree. This means scaling up the system can 
be done without replacing the old processors with new 
ones. It can be observed that the hypercube topology 
has the highest degree. This is costly when the network 
needs to be scaled up. CCT has also a bad degree, but 
it could not be considered as a shortcoming since 
scaling up the system can be made by adding a new 
level to the tree. So, there is no need to replace the 
processors. 

Figure 15 shows a comparative study based on the 
bisection width property, where high bisection width is 
more desirable. It is obvious that the hypercube 
topology has the highest bisection width. The CCT 
topology has the second highest bisection width, which 
is responsible for increasing its reliability. The rest of 
the topologies’ bisection width values are low, 
especially, the tree topology. Figure 16 illustrates the 
connectivity comparisons between interconnection 
networks, where CCT has the second highest 
connectivity. Figure 17 shows the cost property for the 
above mentioned topologies. Many researchers neglect 
the cost of the interconnection network since the goal 
is to gain speed by trading off between performance 
and cost. Also, the cost is ignored based on the 
noticeable fact that reveals the continuous declining of 
the computer components’ cost. The tree is considered 
as the cheapest network. The hypercube has a high 
performance beside its high cost, while the CCT 
topology has a moderate cost. As it has been 
mentioned, it may not be considered as a disadvantage 
for this proposed topology since it has a good 
performance in return. 

7. Conclusions and Future Work 

Huge research efforts have been directed towards 
studying interconnection networks due to the 
significant role they play in parallel processing 
systems' performance.  So, many topologies have been 
proposed in the last few decades. An observable fact is 
that high performance may be accompanied by design 
and cost complexities. None of these topologies, until 
now, can be claimed to outperform all the others. The 
hypercube topology is considered as one of the 
strongest topologies, but because of its high degree 
which forms a major drawback when massive 
parallelism is applied, many researchers worked to find 
alternatives for this topology while preserving the 
same advantages. Tree topology cannot be considered 
as a practical topology, because of its connectivity and 
bisection width problems, although it has good degree 
and diameter properties with basic routing algorithms. 

The CCT topology is introduced to make a 
compromise between both topologies. It enhances the 
constituent networks, the tree and the hypercube 
networks, by keeping the diameter within the moderate 
range of a good diameter, increasing the connectivity 
and the bisection width for trees to be near the 
hypercube, and decreasing the degree of the nodes 
corresponding to the hypercubes. However, it may 
have its own drawbacks such the physical constraints 
to build it, but preliminary investigations show that the 
new proposed CCT topology exhibits the good 
properties of its constituent networks and eliminates 
their disadvantages. 

As a future work, more studies can be made on the 
CCT topological properties. A good problem would be 
to investigate its communication and computation 
operations. 

 
 
 

 
Table 1. Topological properties of some interconnection networks. 

Topology/ Properties Size Diameter Degree Connectivity Bisection Width Cost 

Hypercube Qd 2d D d d 2d-1 d2d-1 

Tree Th 2h+1 -1 2h 3 1 1 2h+1-2 

Mesh  M(r, r) r2 2r-2 4 2 R 2r2-2r 

Mesh of Trees MOT(r, h)  3r2-2r 4 log(r) 3 2 R 4r2 -4r 

Chained-Cubic Tree CCT(h,d) 2h+d+1-2d 2h+d-1 d+5 
at least d+2 at 

most d+5 
 2d (h+1.5) 

2h+d(d+4)-
2d(d/2+h+4) 
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differences. 
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Figure 13. Diameter comparison for interconnection networks of 
different sizes. 
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Figure 14. Degree comparison for interconnection networks of 
different sizes. 
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Figure 15. Bisection width comparison for interconnection networks 
of different sizes. 
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Figure 16. Connectivity comparison for interconnection networks 
of different sizes. 
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Figure 17. Cost comparison for interconnection networks of 
different sizes. 
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