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Abstract: A new method for injecting faults in the configuration bits of SRAM-based FPGAs is proposed. The main 

advantages over previous methods are its ability to simultaneously inject several faults or bit-flips in the FPGA by 

“pipelining” the fault injection process. The design to be tested is divided into modules. The first step in the fault injection 

technique would be inserting one fault in each of the modules and observing the potential misbehavior of these modules. In the 

second step the effects on the whole system of the misbehavior of the module are independently evaluated. Using this technique 

makes possible to inject several faults when reconfiguring the FPGA with the faulty bitstream, while other techniques were 

able to insert only one fault on each reconfiguration. Thus the speed in which faults are injected is significantly increased and 

the time needed to conduct the experiment is shortened. A simulation is described to validate the new fault injection process.  
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1. Introduction 

Although FPGAs are becoming increasingly popular 

and thus potential candidates to a large scope of 

applications, they are still considered disqualified to be 

used in critical applications like aeronautics and space 

instruments. The SRAM- based FPGAs suffer from 

their vulnerability to the effect of radiation. 

Particularly, the so called Single Even Upset (SEU) 

phenomenon may result in the modification (bit flip) in 

the configuration bits that control the routing, logic 

behavior and other critical aspects of the FPGA designs 

potentially leading to a drastic misbehavior of the 

FPGA. Radiation hardened FPGAs have been 

introduced by manufacturers in order to overcome this 

vulnerability. Such FPGAs are significantly more 

expensive than the commercial ones.  

An alternative solution is the introduction of design 

redundancy techniques, mainly Triple Modularly 

Redundancy (TMR) techniques, in commercial FPGAs. 

In order to evaluate the efficiency of such techniques, 

fault injection experiments must be conducted. These 

experiments range from exposure to radiation or other 

disturbances, software simulation and fault injection by 

reconfiguring the FPGA. 

To evaluate the performance and the fault tolerance 

of a design meant to be implemented on an FPGA, 

emulation of the faults is practically useless since the 

emulation will only be able to test the faults that occur 

on the design level rather than the hardware level. To 

overcome this, an FPGA can be exposed to radiation 

to inject faults at the hardware level of the design; 

however such experiments are time consuming and 

lack the ability to control the exact amount and 

location of the faults, which is very crucial in such 

experiments. An alternative solution is to inject faults 

in the FPGA at the hardware level by inserting bit 

flips in the configuration bit-stream. However such 

techniques require constant reconfiguration of the 

FPGA to inject the new fault. This creates a 

performance bottleneck for these techniques compared 

to emulation techniques which required no 

reconfiguration during the fault injection process. 

In this paper a fault injection method is proposed in 

order to overcome the performance bottleneck 

suffered by other hardware fault injection methods. 

This is done by dividing the fault injection process 

into two steps: hardware fault injection by 

reconfiguration (similar to typical hardware fault 

injection methods) and emulation. The introduction of 

the emulation step is the key in removing the 

performance bottleneck and making hardware fault 

injection method as fast as emulation methods. 

However since the fault injection step that requires 

reconfiguration is still there, the bottleneck would not 

removed. To overcome this, multiple faults will be 

injected instead of a single fault in each 

reconfiguration cycle. This will drastically reduce the 

number of reconfigurations to be done and hence 
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overcomes the reconfiguration bottleneck. Simulation is 

done to prove that the unique design of this proposed 

fault injection method is able to remove the 

reconfiguration bottleneck by injecting multiple faults 

at each reconfiguration and yet still be able to 

individually observe the effect on the entire system of 

each of the faults.  

The paper is organized as follows: in section II are 

described the types and nature of the SEUs that may 

occur in the FPGA. In section III are summarized 

previous fault injection methods. In section IV is 

presented in detail the proposed fault injection method. 

Sections V and VI present the simulation experiment 

and section VII concludes the paper. 
 

2. The Research Method 

A Single Event Transient (SET) is a pulse of current 

generated by the impact of energetic particles hitting 

sensitive nodes of micro-electronic devices. SETs can 

alter, directly or indirectly, the content of a memory 

cell, phenomenon called SEU. Direct alteration occurs 

when the induced charge hits the memory unit itself. 

Indirect alteration occurs when an altered output of an 

erroneous combinational circuit is captured by a 

memory unit (Flip-Flop, Register, SRAM). For a 

sequential circuit, a transient error occurring in the 

combinational part of the circuit will have no effect if 

this error faded away before the arrival of the clock 

edge. Complex integrated circuits (microprocessors, 

semiconductor memories and FPGAs, …) may have 

significant number of memory cells thus being 

potentially sensitive to SEUs. At the application level, 

the error caused by an SEU in device outputs or 

operations is called soft error.  

There are two kinds of bits in the SRAM-based 

FPGAs: the user bits and the configuration bits. User 

bits are the bits programmed by the user mainly as 

memory elements. Configuration bits are the bits used 

by the FPGA to implement the routing of the circuit in 

addition to the combinational blocks. The number of 

SRAM configuration cells is more than 98% of all 

memory elements inside an FPGA [2]. Hence most 

SEUs will potentially occur in the configuration bits of 

the FPGA. 

Though SEUs might occur in the user bits as well as 

in the configuration bits of an FPGA, those that occur 

at the user level are more predictable and most of them 

are non-persistent errors, though some might turn out to 

be persistent [7]. This happens when an SEU occurs in 

circuit structures that contain feedback and store 

internal state. The feedback structures “trap” the 

incorrect state and store this erroneous state until 

appropriate reset measures are taken. For example, a bit 

flip in the current state of a design might permanently 

alter its state and its corresponding outputs making 

mandatory a reset to recover [7]. Non-persistent errors 

can be viewed as transient or temporarily errors. 

SEUs occurring in the configuration bits are 

virtually unrecoverable or permanent until a 

reconfiguration of the FPGA either partially or 

globally are made [2]. Nevertheless, an SEU in the 

configuration bits might lead to a persistent error that 

needs a system reset just like the aforementioned case 

of an SEU in the user bits. It is possible that one 

configuration bit might be in control of two or more 

logic or routing resources. Hence, at the higher level 

an SEU in the configuration memory of the FPGA 

might become an MEU (Multiple Events Upset) by 

altering different resources [5]. However there is also 

a great chance that an SEU in the configuration bits 

might not produce any error at all, as some of these 

configuration bits have the ‘don’t care’ status with 

respect to the configuration [2]. SEUs alter both the 

configuration of logic blocks as well as switching 

blocks.  

 

3. The Reflective Process 

Fault injection is necessary for evaluating the behavior 

of a system when a fault occurs. Fault injection is very 

important for evaluating fault tolerant designs and 

drawing conclusions about both the efficiency of fault 

tolerance techniques and the weakness of hardened 

devices. Fault injection in general can be made at any 

level, whether software, i.e., altering inputs and the 

program running on the design, or hardware where 

actual faults are injected in the design either by the use 

of radiation instruments or the use of emulation where 

the design is altered and retested using FPGAs [6]. 

However, software fault injections are not sufficient, 

since they do not mimic the real occurrence of faults 

in the design: A fault injection at the design level 

should be made and this can be done by altering the 

design and emulating the effects of such alteration. 

 
Figure 1. Basic components of a fault injection system. 

 

 For designs meant to be implemented on FPGAs, 

even fault injection at the design level is not enough. 

FPGAs contain configuration bits that can alter the 

routing, combinational circuitry and other important 

characteristics of the circuit [2, 9, 12]. Hence, a fault 

injection at the design level is not enough. Bit flips 

should be inserted in the configuration bits of the 

FPGA and this is only applicable by either 

reconfiguring the FPGA or inducing real SEUs by 

exposing the design to radiation fluxes. Any fault 

injection system shall have the basic design presented 

in Figure 1. 
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3.1. Fault Injection Through Radiation 

Exposure 

Fault injection through radiation exposures may be 

favored by engineers for the ability to mimic the 

physical phenomenon that induces the studied faults 

[6]. However, this technique suffers from several 

disadvantages. First there is no ability to control the 

exact location at which a fault can be injected neither 

the amount of faults injected can be controlled 

properly. Moreover, this technique is found to be much 

time consuming and expensive [6]. Nevertheless, such 

techniques are necessary for the assessment of critical 

designs and fault tolerance techniques. 

 

3.2. Fault Injection by Hardware Techniques in 

FPGAs 

Though the principles remain the same, the setups and 

algorithms might differ as the technology provides 

better solutions. The basic steps and modules which are 

present in FPGA SEUs injection can be explained in 

spite of the different techniques and technologies 

present. The injection process can be divided into three 

different phases [1]:  

1. Fault injection of SEUs in the configuration 

bitstream of the FPGA and generating faulty bit-

stream files. The fault injector should read a correct 

configuration bitstream of the FPGA and inject a bit 

flip in the stream at the desired bit in the bitstream. 

The fault list generator is usually a software tool run 

in the PC prior to the beginning of the fault injection 

process. The fault injector however might be a 

software module implemented on the PC as well as a 

hardware model implemented on an FPGA or an 

embedded microprocessor. 

2. Performing experiments in charge of the 

programming of the FPGA and providing input 

stimuli. This includes programming the FPGA with 

the faulty configuration bitstream or the correct 

bitstream for reset purpose. This phase can be 

implemented by software running on a PC 

communicating with special modules of the FPGA in 

charge of reconfiguring the design.  

3. Results analysis of the previous phases. The results 

of the faulty emulation are compared to the golden 

run and the fault’s effects are categorized and 

archived.  

Recent FPGAs allow partial reconfiguration of the 

circuit which increases by several orders of magnitude 

the rate of fault injection [11]. 

 

4. Proposed Fault Injection Method  

A new fault injection method was studied in order to 

speed up the fault injection and simulation process. The 

idea is to insert many SEUs at a time in the design at 

each reconfiguration cycle. Previous method inserted 

one fault at a time in order to be able to study each 

fault by itself. However, the newly proposed method 

can insert multiple faults at a time and in addition it 

can study each fault impact by itself. This was 

achievable by dividing the fault injection process into 

two stages. In the first stage multiple faults are 

injected and in the second stage, each of these faults is 

studied by itself. However many problems, restrictions 

and overhead may be identified for this technique. The 

purpose of this section is to explain the details of this 

technique and identify the problems and restriction it 

faces. On the light of these problems, a decision 

should be made whether to proceed with the 

development of this technique or work on finding a 

more efficient one. 

 

4.1. The Method  

The method begins with the division of the designs 

into sub-modules that have their own inputs and 

outputs vectors. A golden run is made and each 

module inputs and outputs are recorded. These 

modules are then all implemented on the FPGA. 

However each module will not be connected to the 

rest of the design but to an input bitstream recorded 

from the previous golden run of the design. Thus, 

though all modules are implemented on the FPGA, 

they are actually totally disconnected, each module 

being tested independently of the others. A fault is 

simultaneously injected in each of the models 

implemented on the FPGA. The output of each 

module is recorded and compared to the golden run 

module. Error(s) detected in the output stream of each 

module are studied independently on another FPGA 

by injecting it as an output bitstream of the 

corresponding module and seeing the faulty bitstream 

impact on the whole system. Though one fault is 

analyzed at a time, the latter step, the fault injection 

i.e., the bitstream injection, does not require 

reconfiguration of the circuit allowing thus the fault 

being injected rapidly. 

 

4.2. Design Modulation  

First the circuit is studied and divided into modules 

with a limited number of inputs and outputs. The 

modules should however be chosen with minimum 

feedbacks of their output through preceding circuitry. 

Feedback can reduce the accuracy of the simulation, 

since the inputs provided to the module do not depend 

on the output of the modules being tested; rather it is a 

recorded bitstream from the previous golden run. The 

presence of a close feedback to the module may force 

the fault injected in the module to affect the inputs of 

the modules themselves. As an example, in a simple 

pipeline processor, we can have the pipeline, the 

memory and the control unit each resembling a 

module. The pipeline modulation should be avoided as 

there might be a lot of feedback among the pipeline 
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stages. It should be noted that different instants of the 

same module can be implemented on the FPGA if the 

FPGA’s resources allowed it. 

 

4.3. The Golden Run  

After the modules have been chosen, the whole design 

should be implemented on the FPGA and a golden run 

is made where all the outputs of the modules are 

recorded and stored either on a RAM or on a PC to be 

used for further comparison. Note that in the golden run 

the modules are connected between them as required by 

the design. The golden run consists in recording the 

outputs of each of the modules during the normal 

operation of the circuit.  

In a way we’ll be actually building several circuits of 

the whole system and each will have one faulty module. 

However, we used one “Golden” circuit as a common 

circuit to be used by all the faulty modules. Thus by 

having a Golden circuit and a faulty copy of each of the 

modules we’re creating the illusion that we have a 

complete circuit for each of the faulty modules. In 

essence this is what allowed the faulty module to 

behave as if it is the only faulty module in the whole 

system. 

It is noted also that several copies of the same 

module can be implemented and a fault injected in 

each. This will also reduce the number of times a fault 

would be injected in a module. In a way we would be 

as if we are running the same experiment on different 

FPGAs or different circuits and injecting a different 

fault in the same module across the circuits. However 

the Golden circuit will actually play the role of “the rest 

of the design” for all the implemented modules and 

their copies. 

 

4.4. Impact on the System 

The same modules are now implemented on the FPGA. 

However the modules will here be totally disconnected. 

The input of each of the modules will be the bitstream 

recorded in the “golden run”. In the golden run the 

inputs of the modules are monitored and recorded. The 

bitstream of the inputs recorded in the golden run will 

be provided as an input to the module in the fault 

injection phase. The need for this bitstream is the fact 

that each module in the fault injection process is not 

connected to any of the other modules, hence the need 

to provide its inputs from the golden run. Before 

running the bitstream, one SEU is injected in the 

configuration bits of the each of the module, i.e., the 

configuration bits of the FPGA blocks and components 

concerning these modules. The total number of SEUs 

injected in one reconfiguration will be equal to the 

number of modules in the design. The design is then 

run and the outputs of the modules recorded and 

compared with the golden run of these modules. After 

recording the outputs, a reconfiguration of the FPGA is 

done where different SEUs are inserted in the 

configuration bits of the modules and the previously 

injected SEUs being removed. These steps are further 

repeated until all SEUs have been injected. 

 
Figure 2. Activating the faulty behavior of a module. 

 

This step can be described as the opposite of the 

first step. After recording the behavior of a faulty 

module connected to a ”golden” circuit i.e. as if it is 

the only module having faults, we are now observing 

the behavior of the whole system when this module 

has a faulty behavior. However, this second step is 

done without the need of reconfiguration and this is 

what the new method is all about: overcoming the 

performance bottleneck of the reconfiguration process 

required for each injected fault. Multiple faults are 

injected at each reconfiguration and then the effect on 

the system of each of these faults’ is independently 

observed without the need of reconfiguration. This 

will allow the whole experiment to run at a higher 

speed that resembles that of an emulation process that 

requires no reconfiguration. 

 

4.5. Limits on SEUs Injection Location 

Since the design is divided into modules in which one 

SEU is injected in each of them, it is undesirable that 

an injected SEU on one of the modules affects another 

module. This could happen when an SEU is inserted 

in the routing configuration bits of the configurable 

logic blocks (CLBs) of a module which are adjacent to 

CLBs of other module. Such SEU may cause a 

connection between the two modules, and the injected 

SEU effect on both of the modules will be invalid. To 

avoid this, such SEUs are not inserted in this method; 

rather they are simulated in the original RTR (Run 

Time Reconfiguration) fault injection method. 

However the percentage of such SEUs may be 

negligible and the overall performance will still be an 

improvement. 

 

5. The New Fault Injection Experiment 

Design 

A design has been made to check the validity of the 

proposed fault injection method. The new method is 
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tested on a simple pipelined adder. The experiment 

design is divided into two parts:  

1. The Multiple Fault Injection 

2. The System Emulation of Individual Faults 

 

5.1. The Pipelined Adder 

The adder is made of 8 pipelined stages with each stage 

adding 3 bits: the carry from the previous stage and one 

bit from each of the numbers to be added. The adder is 

able to add two 8-bit numbers at each clock cycle. 

A & B represents the 8-bit numbers to be added. F is 

the forwarded result of previous additions of previous 

bits of A & B. Aout & Bout are the remaining bits of A & 

B to be added in the preceding module. R is the result 

of the current addition along with the previous 

additions of A & B. At the end of the pipeline the 

addition result will be output in R and the carry will be 

the Cout signal. The modules are implemented using 

Verilog HDL and they are all the same codewise. 

 

5.2. The Multiple Fault Injection Design (MFI) 

The MFI design is shown in Figure 3. The three 

modules of the design are the fault injection circuit for 

testing, shown as TEST_SCHEMATIC in Figure 3, a 

control unit to manage the fault injection process shown 

as CONTROL in Figure 3 and a transmission unit used 

to serially transmit the data obtained from the fault 

injection process to be archived and used later in the 

system emulation process. 

 
 

Figure 3. Multiple fault injection design. 

 

5.3.  Fault Injection Circuit 

The fault injection circuit shown in Figure 3, called the 

TEST_SCHEMATIC block, includes the typical 

pipelined adder, and 8 faulty modules each representing 

one of the pipelined adder modules. The outputs from 

the modules of the typical fault free pipeline are used as 

inputs for each of the faulty modules implemented in 

the design.  

The memory units have a 25-bit width words and 

have a depth of 100 in this simulation. The 25-bit width 

is chosen because the outputs of the module are 25bits 

all together. The depth of 100 was enough, as for the 

simulation purpose there is no need to run the design 

for more than 100 clock cycles. An eight bit counter is 

connected to all the memory units to manage the 

address increment at each clock cycle.  

 

5.4. Control Unit 

The control unit was designed using verilog HDL. The 

control unit is responsible for managing the fault 

injection process and communicating with the 

transmission unit. Selecting the memory to be read, 

enabling memory write, managing the counter and 

taking commands from the user. The design is based 

on a state machine coded with Verilog HDL. The state 

machine contains four states: 

1. A default state where reset signals are asserted 

which waits for the “inject” signal indicating the 

initialization of the fault injection process. 

2. A fault injection state. In this state the reset signals 

are released, the counter in the fault injection circuit 

is enabled and memory write is enabled. Once the 

signal “inject” is released, the counter value is 

saved in the state machine the counter being 

disabled and reset. The state machine immediately 

switches to the next state i.e. the third one.  

3. The state waits for the signal “read” to start reading 

the memory contents of the memory elements in the 

fault injection circuit. Once the read signal is 

asserted the state machine switches to the next 

state. 

4. This compounded state is actually made of two 

states. The state’s purpose is to read the memory 

contents of the fault injection circuit. Once all the 

valid contents of the memory unit are read (this is 

done by comparing the current counter value to that 

stored before in the 2nd state) the next memory 

element is selected for read. The process repeats 

itself until all memory elements are read and 

the signal “FINISH” is asserted. 

 

5.5. The System Emulation Design 

The emulation design shown in Figure 4 is pretty 

similar to the fault injection design. A control unit 

manages the fault emulation process and 

communicates with the data transmitter, which is 

responsible of serially sending the data using RS-232 

protocol. The use of the RS-232 protocol was 

motivated by the fact that the goal of the experiment is 

to assess the validity of the method rather than its 

performance. 

The control unit or SysCon is also based on a state 

machine coded with verilog HDL. The Transmit unit 

is the same than the one used in the multiple fault 

injection system design. The System module however 

is what defines this design. The system emulation 

circuit is implemented in this module.  
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Figure 4. Design components of the emulation system. 
 

 

5.6. Fault Emulation Circuitry 

The emulation circuit is composed of a modified 

version of the pipelined adder design. The inputs of all 

the modules are connected to a multiplexer that chooses 

whether to input the normal outputs of the previous 

module or the outputs of the faulty module obtained 

from the fault injection process. 

  

5.6.1. Control Unit 

A control unit is used to manage the fault emulation 

process. The unit resembles a state machine that was 

implemented using verilog HDL. The state machine 

contains four states: 

1. The default state where reset signals are asserted 

which waits for the “emulate” signal which signals 

the initialization of the fault emulation process. 

2. The fault emulation state. In this state the reset 

signals are released, the counter in the fault injection 

circuit is enabled and memory write is enabled.  

3. The state waits for the signal “read” to start reading 

the contents of the memory elements in the fault 

injection circuit. When all memory elements are 

read, the counter which controls the addressing of 

the memory units is disabled. When the “read” 

signal is released the state machine jumps to the next 

state. 

4. This state is similar to state four in the control unit 

described in § 5.4. 

 

5.6.2. Typical Fault Injection Method Design 

A design of a typical fault injection method on the 

pipelined adder was also created for the purpose of 

comparing the circuit behavior with that of the new 

method. The design resembled a normal pipelined 

adder with its circuit behavior recorded in memory 

elements (RAMs).  

 

 

 

6. Fault Injection Simulation 

To assess the new fault injection method’s validity a 

fault injection simulation was done, the results being 

compared to the results of a typical fault injection 

method where only one fault is injected at a time. The 

simulation was done using the Xilinx ISE Simulator.  

 
6.1. The Fault Injection Process 

The fault injection process consists in injecting one 

fault in each of the pipelined adder modules in the 

module Test_Schematic. The fault injection was done 

by modifying the HDL codes implementing each of 

the simulator modules of the pipelined adder. The 

pipelined adder modules and the faulty modules share 

the same HDL code, however different source files are 

made for the pipelined adder and for the modules 

where the fault were to be injection. This would allow 

injecting faults in the modules by modifying the 

source files without affecting the “golden” modules of 

the pipelined adder which, for the purpose of the 

experiment, should have fault free performance.  

This method of fault injection, i.e., the fault 

injection and the HDL level, has a performance 

shortage. In real fault injection experiments the faults 

are injected by modifying the configuration bitstream 

of the FPGA on the run between each fault injection. 

This would have required knowledge of the FPGA 

configuration bitstream to make sure the faults are 

injected in their corresponding locations. However 

since the purpose of this experiment is to assess the 

validity of the method rather than its performance, the 

HDL level fault injection was used. 

The outputs of the modules are stored in the 

memory elements of the circuit. The control and 

transmitter modules manage the memory reading 

process. One of the memory elements corresponding 

to one of the modules is selected to have its outputs 

transmitted to the emulation circuit.  

 
6.2. Emulation Process 

In the emulation circuit the transmitted outputs of the 

faulty modules are provided to the circuit by selecting 

these stored outputs rather than the corresponding 

module’s output of the pipelined adder. The output of 

each of the modules is saved in its corresponding 

memory element. The memory elements of the 

corresponding module have a 25-bit width word. Each 

word represents the outputs of the module during one 

clock cycle. The 25-bit width word is injected in the 

inputs of all the multiplexers of the emulation circuit, 

since only one fault will be emulated at a time. Each 

multiplexer has a select input to choose between the 

output of the previous module or the faulty word 

connected to it.   

 

 



A New Fault Injection Approach to Study the Impact of Bitflips in the Configuration of SRAM-Based FPGAs                        161 
                                                                     

 

6.3. Typical Fault Injection 

A typical fault injection method is simulated to 

compare the results with those obtained from the new 

fault injection method. The design is composed of a 

simple pipelined adder with a memory unit attached to 

the outputs of each of the modules. For a fault to be 

injected, one of the modules of the pipelined adder will 

have its HDL source file modified. The simulation is 

then run and the results will be read from the memory 

elements of the circuit. 

  

6.3.1. Simulation Results 

A waveform vector file was created for each 

simulation. Commands units were asserted and released 

at the appropriate times as for the inputs.  

Several faults have been injected at different modules 

of the design. The system behavior has been observed 

and compared to the system behavior of a typical fault 

injection method. Comparing these outputs it can be 

seen that the new method was able to mimic the 

behavior of a typical fault injection method though 

multiple faults were injected at the same time. 

Another module’s stored outputs were observed in 

the same experiment. Again, the results confirmed that 

the observation is the same than the one of a typical 

fault injection process though multiple faults were 

simultaneously injected. 

Other faults were further injected in the same 

modules and the same results were observed again in 

typical fault injection method as well as in the new 

method. Moreover, other modules were chosen as 

targets for these faults and again the circuit behavior 

matched that of the typical method. This further assured 

that the new method is able to observe the behavior of a 

design for each fault injected as if it was rather injected 

individually. 

 

7. Conclusions 

While state-of-the-art FPGA fault injection methods 

suffer from a performance bottleneck because of the 

necessity to reconfigure the FPGA with the faulty bit-

stream each time a fault needs to be injected, the 

proposed method eliminates this bottleneck by injecting 

multiple faults at a time. However to enable the 

observation of each fault’s effect on the whole system a 

second emulation step was added to the fault injection 

process. The emulation steps do not require any 

reconfiguration and thus the reconfiguration bottleneck 

is eliminated.  

An experiment was made where a typical fault 

injection system was designed along with the new fault 

injection system. Faults were injected and simulation 

results showed that the new method’s observation is 

identical to that of typical method, yet multiple faults 

were being injected simultaneously and emulated which 

removes the reconfiguration bottleneck. 

The analysis of the new method shows that it will 

clearly have advantages over other methods. The 

design modulation step that was introduced is easily 

feasible as only few modules are needed to achieve the 

performance advantage. Moreover most fault tolerance 

designs are already modulated to apply TMR and 

better fault detection mechanism. This can make the 

modulation of the design a lot easier.  

Furthermore, the need to observe the outputs of all 

the modules where faults are injected will not 

introduce any communication bottleneck as all fault 

injection methods’ purpose is to observe the behavior 

of the system and its internal signal and components 

including what would be its modules. 
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