
The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011 155

A New Fault Injection Approach to Study

the Impact of Bitflips in the Configuration

of SRAM-Based FPGAs

Haissam Ziade
1
, Rafic Ayoubi

2
, Raoul Velazco

3
, and Tarek Idriss

2

1
Faculty of Engineering I, Lebanese University, Lebanon

2
Department of Computer Engineering, University of Balamand, Lebanon

3
TIMA Laboratory, INPG, France

Abstract: A new method for injecting faults in the configuration bits of SRAM-based FPGAs is proposed. The main

advantages over previous methods are its ability to simultaneously inject several faults or bit-flips in the FPGA by

“pipelining” the fault injection process. The design to be tested is divided into modules. The first step in the fault injection

technique would be inserting one fault in each of the modules and observing the potential misbehavior of these modules. In the

second step the effects on the whole system of the misbehavior of the module are independently evaluated. Using this technique

makes possible to inject several faults when reconfiguring the FPGA with the faulty bitstream, while other techniques were

able to insert only one fault on each reconfiguration. Thus the speed in which faults are injected is significantly increased and

the time needed to conduct the experiment is shortened. A simulation is described to validate the new fault injection process.

Keywords: FPGA, Fault injection techniques, SEU, and fault tolerance.

Received November 20, 2008; accepted May 17, 2009

1. Introduction

Although FPGAs are becoming increasingly popular

and thus potential candidates to a large scope of

applications, they are still considered disqualified to be

used in critical applications like aeronautics and space

instruments. The SRAM- based FPGAs suffer from

their vulnerability to the effect of radiation.

Particularly, the so called Single Even Upset (SEU)

phenomenon may result in the modification (bit flip) in

the configuration bits that control the routing, logic

behavior and other critical aspects of the FPGA designs

potentially leading to a drastic misbehavior of the

FPGA. Radiation hardened FPGAs have been

introduced by manufacturers in order to overcome this

vulnerability. Such FPGAs are significantly more

expensive than the commercial ones.

An alternative solution is the introduction of design

redundancy techniques, mainly Triple Modularly

Redundancy (TMR) techniques, in commercial FPGAs.

In order to evaluate the efficiency of such techniques,

fault injection experiments must be conducted. These

experiments range from exposure to radiation or other

disturbances, software simulation and fault injection by

reconfiguring the FPGA.

To evaluate the performance and the fault tolerance

of a design meant to be implemented on an FPGA,

emulation of the faults is practically useless since the

emulation will only be able to test the faults that occur

on the design level rather than the hardware level. To

overcome this, an FPGA can be exposed to radiation

to inject faults at the hardware level of the design;

however such experiments are time consuming and

lack the ability to control the exact amount and

location of the faults, which is very crucial in such

experiments. An alternative solution is to inject faults

in the FPGA at the hardware level by inserting bit

flips in the configuration bit-stream. However such

techniques require constant reconfiguration of the

FPGA to inject the new fault. This creates a

performance bottleneck for these techniques compared

to emulation techniques which required no

reconfiguration during the fault injection process.

In this paper a fault injection method is proposed in

order to overcome the performance bottleneck

suffered by other hardware fault injection methods.

This is done by dividing the fault injection process

into two steps: hardware fault injection by

reconfiguration (similar to typical hardware fault

injection methods) and emulation. The introduction of

the emulation step is the key in removing the

performance bottleneck and making hardware fault

injection method as fast as emulation methods.

However since the fault injection step that requires

reconfiguration is still there, the bottleneck would not

removed. To overcome this, multiple faults will be

injected instead of a single fault in each

reconfiguration cycle. This will drastically reduce the

number of reconfigurations to be done and hence

156 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

overcomes the reconfiguration bottleneck. Simulation is

done to prove that the unique design of this proposed

fault injection method is able to remove the

reconfiguration bottleneck by injecting multiple faults

at each reconfiguration and yet still be able to

individually observe the effect on the entire system of

each of the faults.

The paper is organized as follows: in section II are

described the types and nature of the SEUs that may

occur in the FPGA. In section III are summarized

previous fault injection methods. In section IV is

presented in detail the proposed fault injection method.

Sections V and VI present the simulation experiment

and section VII concludes the paper.

2. The Research Method

A Single Event Transient (SET) is a pulse of current

generated by the impact of energetic particles hitting

sensitive nodes of micro-electronic devices. SETs can

alter, directly or indirectly, the content of a memory

cell, phenomenon called SEU. Direct alteration occurs

when the induced charge hits the memory unit itself.

Indirect alteration occurs when an altered output of an

erroneous combinational circuit is captured by a

memory unit (Flip-Flop, Register, SRAM). For a

sequential circuit, a transient error occurring in the

combinational part of the circuit will have no effect if

this error faded away before the arrival of the clock

edge. Complex integrated circuits (microprocessors,

semiconductor memories and FPGAs, …) may have

significant number of memory cells thus being

potentially sensitive to SEUs. At the application level,

the error caused by an SEU in device outputs or

operations is called soft error.

There are two kinds of bits in the SRAM-based

FPGAs: the user bits and the configuration bits. User

bits are the bits programmed by the user mainly as

memory elements. Configuration bits are the bits used

by the FPGA to implement the routing of the circuit in

addition to the combinational blocks. The number of

SRAM configuration cells is more than 98% of all

memory elements inside an FPGA [2]. Hence most

SEUs will potentially occur in the configuration bits of

the FPGA.

Though SEUs might occur in the user bits as well as

in the configuration bits of an FPGA, those that occur

at the user level are more predictable and most of them

are non-persistent errors, though some might turn out to

be persistent [7]. This happens when an SEU occurs in

circuit structures that contain feedback and store

internal state. The feedback structures “trap” the

incorrect state and store this erroneous state until

appropriate reset measures are taken. For example, a bit

flip in the current state of a design might permanently

alter its state and its corresponding outputs making

mandatory a reset to recover [7]. Non-persistent errors

can be viewed as transient or temporarily errors.

SEUs occurring in the configuration bits are

virtually unrecoverable or permanent until a

reconfiguration of the FPGA either partially or

globally are made [2]. Nevertheless, an SEU in the

configuration bits might lead to a persistent error that

needs a system reset just like the aforementioned case

of an SEU in the user bits. It is possible that one

configuration bit might be in control of two or more

logic or routing resources. Hence, at the higher level

an SEU in the configuration memory of the FPGA

might become an MEU (Multiple Events Upset) by

altering different resources [5]. However there is also

a great chance that an SEU in the configuration bits

might not produce any error at all, as some of these

configuration bits have the ‘don’t care’ status with

respect to the configuration [2]. SEUs alter both the

configuration of logic blocks as well as switching

blocks.

3. The Reflective Process

Fault injection is necessary for evaluating the behavior

of a system when a fault occurs. Fault injection is very

important for evaluating fault tolerant designs and

drawing conclusions about both the efficiency of fault

tolerance techniques and the weakness of hardened

devices. Fault injection in general can be made at any

level, whether software, i.e., altering inputs and the

program running on the design, or hardware where

actual faults are injected in the design either by the use

of radiation instruments or the use of emulation where

the design is altered and retested using FPGAs [6].

However, software fault injections are not sufficient,

since they do not mimic the real occurrence of faults

in the design: A fault injection at the design level

should be made and this can be done by altering the

design and emulating the effects of such alteration.

Figure 1. Basic components of a fault injection system.

 For designs meant to be implemented on FPGAs,

even fault injection at the design level is not enough.

FPGAs contain configuration bits that can alter the

routing, combinational circuitry and other important

characteristics of the circuit [2, 9, 12]. Hence, a fault

injection at the design level is not enough. Bit flips

should be inserted in the configuration bits of the

FPGA and this is only applicable by either

reconfiguring the FPGA or inducing real SEUs by

exposing the design to radiation fluxes. Any fault

injection system shall have the basic design presented

in Figure 1.

A New Fault Injection Approach to Study the Impact of Bitflips in the Configuration of SRAM-Based FPGAs 157

3.1. Fault Injection Through Radiation

Exposure

Fault injection through radiation exposures may be

favored by engineers for the ability to mimic the

physical phenomenon that induces the studied faults

[6]. However, this technique suffers from several

disadvantages. First there is no ability to control the

exact location at which a fault can be injected neither

the amount of faults injected can be controlled

properly. Moreover, this technique is found to be much

time consuming and expensive [6]. Nevertheless, such

techniques are necessary for the assessment of critical

designs and fault tolerance techniques.

3.2. Fault Injection by Hardware Techniques in

FPGAs

Though the principles remain the same, the setups and

algorithms might differ as the technology provides

better solutions. The basic steps and modules which are

present in FPGA SEUs injection can be explained in

spite of the different techniques and technologies

present. The injection process can be divided into three

different phases [1]:

1. Fault injection of SEUs in the configuration

bitstream of the FPGA and generating faulty bit-

stream files. The fault injector should read a correct

configuration bitstream of the FPGA and inject a bit

flip in the stream at the desired bit in the bitstream.

The fault list generator is usually a software tool run

in the PC prior to the beginning of the fault injection

process. The fault injector however might be a

software module implemented on the PC as well as a

hardware model implemented on an FPGA or an

embedded microprocessor.

2. Performing experiments in charge of the

programming of the FPGA and providing input

stimuli. This includes programming the FPGA with

the faulty configuration bitstream or the correct

bitstream for reset purpose. This phase can be

implemented by software running on a PC

communicating with special modules of the FPGA in

charge of reconfiguring the design.

3. Results analysis of the previous phases. The results

of the faulty emulation are compared to the golden

run and the fault’s effects are categorized and

archived.

Recent FPGAs allow partial reconfiguration of the

circuit which increases by several orders of magnitude

the rate of fault injection [11].

4. Proposed Fault Injection Method

A new fault injection method was studied in order to

speed up the fault injection and simulation process. The

idea is to insert many SEUs at a time in the design at

each reconfiguration cycle. Previous method inserted

one fault at a time in order to be able to study each

fault by itself. However, the newly proposed method

can insert multiple faults at a time and in addition it

can study each fault impact by itself. This was

achievable by dividing the fault injection process into

two stages. In the first stage multiple faults are

injected and in the second stage, each of these faults is

studied by itself. However many problems, restrictions

and overhead may be identified for this technique. The

purpose of this section is to explain the details of this

technique and identify the problems and restriction it

faces. On the light of these problems, a decision

should be made whether to proceed with the

development of this technique or work on finding a

more efficient one.

4.1. The Method

The method begins with the division of the designs

into sub-modules that have their own inputs and

outputs vectors. A golden run is made and each

module inputs and outputs are recorded. These

modules are then all implemented on the FPGA.

However each module will not be connected to the

rest of the design but to an input bitstream recorded

from the previous golden run of the design. Thus,

though all modules are implemented on the FPGA,

they are actually totally disconnected, each module

being tested independently of the others. A fault is

simultaneously injected in each of the models

implemented on the FPGA. The output of each

module is recorded and compared to the golden run

module. Error(s) detected in the output stream of each

module are studied independently on another FPGA

by injecting it as an output bitstream of the

corresponding module and seeing the faulty bitstream

impact on the whole system. Though one fault is

analyzed at a time, the latter step, the fault injection

i.e., the bitstream injection, does not require

reconfiguration of the circuit allowing thus the fault

being injected rapidly.

4.2. Design Modulation

First the circuit is studied and divided into modules

with a limited number of inputs and outputs. The

modules should however be chosen with minimum

feedbacks of their output through preceding circuitry.

Feedback can reduce the accuracy of the simulation,

since the inputs provided to the module do not depend

on the output of the modules being tested; rather it is a

recorded bitstream from the previous golden run. The

presence of a close feedback to the module may force

the fault injected in the module to affect the inputs of

the modules themselves. As an example, in a simple

pipeline processor, we can have the pipeline, the

memory and the control unit each resembling a

module. The pipeline modulation should be avoided as

there might be a lot of feedback among the pipeline

158 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

stages. It should be noted that different instants of the

same module can be implemented on the FPGA if the

FPGA’s resources allowed it.

4.3. The Golden Run

After the modules have been chosen, the whole design

should be implemented on the FPGA and a golden run

is made where all the outputs of the modules are

recorded and stored either on a RAM or on a PC to be

used for further comparison. Note that in the golden run

the modules are connected between them as required by

the design. The golden run consists in recording the

outputs of each of the modules during the normal

operation of the circuit.

In a way we’ll be actually building several circuits of

the whole system and each will have one faulty module.

However, we used one “Golden” circuit as a common

circuit to be used by all the faulty modules. Thus by

having a Golden circuit and a faulty copy of each of the

modules we’re creating the illusion that we have a

complete circuit for each of the faulty modules. In

essence this is what allowed the faulty module to

behave as if it is the only faulty module in the whole

system.

It is noted also that several copies of the same

module can be implemented and a fault injected in

each. This will also reduce the number of times a fault

would be injected in a module. In a way we would be

as if we are running the same experiment on different

FPGAs or different circuits and injecting a different

fault in the same module across the circuits. However

the Golden circuit will actually play the role of “the rest

of the design” for all the implemented modules and

their copies.

4.4. Impact on the System

The same modules are now implemented on the FPGA.

However the modules will here be totally disconnected.

The input of each of the modules will be the bitstream

recorded in the “golden run”. In the golden run the

inputs of the modules are monitored and recorded. The

bitstream of the inputs recorded in the golden run will

be provided as an input to the module in the fault

injection phase. The need for this bitstream is the fact

that each module in the fault injection process is not

connected to any of the other modules, hence the need

to provide its inputs from the golden run. Before

running the bitstream, one SEU is injected in the

configuration bits of the each of the module, i.e., the

configuration bits of the FPGA blocks and components

concerning these modules. The total number of SEUs

injected in one reconfiguration will be equal to the

number of modules in the design. The design is then

run and the outputs of the modules recorded and

compared with the golden run of these modules. After

recording the outputs, a reconfiguration of the FPGA is

done where different SEUs are inserted in the

configuration bits of the modules and the previously

injected SEUs being removed. These steps are further

repeated until all SEUs have been injected.

Figure 2. Activating the faulty behavior of a module.

This step can be described as the opposite of the

first step. After recording the behavior of a faulty

module connected to a ”golden” circuit i.e. as if it is

the only module having faults, we are now observing

the behavior of the whole system when this module

has a faulty behavior. However, this second step is

done without the need of reconfiguration and this is

what the new method is all about: overcoming the

performance bottleneck of the reconfiguration process

required for each injected fault. Multiple faults are

injected at each reconfiguration and then the effect on

the system of each of these faults’ is independently

observed without the need of reconfiguration. This

will allow the whole experiment to run at a higher

speed that resembles that of an emulation process that

requires no reconfiguration.

4.5. Limits on SEUs Injection Location

Since the design is divided into modules in which one

SEU is injected in each of them, it is undesirable that

an injected SEU on one of the modules affects another

module. This could happen when an SEU is inserted

in the routing configuration bits of the configurable

logic blocks (CLBs) of a module which are adjacent to

CLBs of other module. Such SEU may cause a

connection between the two modules, and the injected

SEU effect on both of the modules will be invalid. To

avoid this, such SEUs are not inserted in this method;

rather they are simulated in the original RTR (Run

Time Reconfiguration) fault injection method.

However the percentage of such SEUs may be

negligible and the overall performance will still be an

improvement.

5. The New Fault Injection Experiment

Design

A design has been made to check the validity of the

proposed fault injection method. The new method is

A New Fault Injection Approach to Study the Impact of Bitflips in the Configuration of SRAM-Based FPGAs 159

tested on a simple pipelined adder. The experiment

design is divided into two parts:

1. The Multiple Fault Injection

2. The System Emulation of Individual Faults

5.1. The Pipelined Adder

The adder is made of 8 pipelined stages with each stage

adding 3 bits: the carry from the previous stage and one

bit from each of the numbers to be added. The adder is

able to add two 8-bit numbers at each clock cycle.

A & B represents the 8-bit numbers to be added. F is

the forwarded result of previous additions of previous

bits of A & B. Aout & Bout are the remaining bits of A &

B to be added in the preceding module. R is the result

of the current addition along with the previous

additions of A & B. At the end of the pipeline the

addition result will be output in R and the carry will be

the Cout signal. The modules are implemented using

Verilog HDL and they are all the same codewise.

5.2. The Multiple Fault Injection Design (MFI)

The MFI design is shown in Figure 3. The three

modules of the design are the fault injection circuit for

testing, shown as TEST_SCHEMATIC in Figure 3, a

control unit to manage the fault injection process shown

as CONTROL in Figure 3 and a transmission unit used

to serially transmit the data obtained from the fault

injection process to be archived and used later in the

system emulation process.

Figure 3. Multiple fault injection design.

5.3. Fault Injection Circuit

The fault injection circuit shown in Figure 3, called the

TEST_SCHEMATIC block, includes the typical

pipelined adder, and 8 faulty modules each representing

one of the pipelined adder modules. The outputs from

the modules of the typical fault free pipeline are used as

inputs for each of the faulty modules implemented in

the design.

The memory units have a 25-bit width words and

have a depth of 100 in this simulation. The 25-bit width

is chosen because the outputs of the module are 25bits

all together. The depth of 100 was enough, as for the

simulation purpose there is no need to run the design

for more than 100 clock cycles. An eight bit counter is

connected to all the memory units to manage the

address increment at each clock cycle.

5.4. Control Unit

The control unit was designed using verilog HDL. The

control unit is responsible for managing the fault

injection process and communicating with the

transmission unit. Selecting the memory to be read,

enabling memory write, managing the counter and

taking commands from the user. The design is based

on a state machine coded with Verilog HDL. The state

machine contains four states:

1. A default state where reset signals are asserted

which waits for the “inject” signal indicating the

initialization of the fault injection process.

2. A fault injection state. In this state the reset signals

are released, the counter in the fault injection circuit

is enabled and memory write is enabled. Once the

signal “inject” is released, the counter value is

saved in the state machine the counter being

disabled and reset. The state machine immediately

switches to the next state i.e. the third one.

3. The state waits for the signal “read” to start reading

the memory contents of the memory elements in the

fault injection circuit. Once the read signal is

asserted the state machine switches to the next

state.

4. This compounded state is actually made of two

states. The state’s purpose is to read the memory

contents of the fault injection circuit. Once all the

valid contents of the memory unit are read (this is

done by comparing the current counter value to that

stored before in the 2nd state) the next memory

element is selected for read. The process repeats

itself until all memory elements are read and

the signal “FINISH” is asserted.

5.5. The System Emulation Design

The emulation design shown in Figure 4 is pretty

similar to the fault injection design. A control unit

manages the fault emulation process and

communicates with the data transmitter, which is

responsible of serially sending the data using RS-232

protocol. The use of the RS-232 protocol was

motivated by the fact that the goal of the experiment is

to assess the validity of the method rather than its

performance.

The control unit or SysCon is also based on a state

machine coded with verilog HDL. The Transmit unit

is the same than the one used in the multiple fault

injection system design. The System module however

is what defines this design. The system emulation

circuit is implemented in this module.

Transmit

MO[24:0]

TX

Clk

RES

SS

DONE

Control

Clk

DONE FINISH

START

READ

RES

CTRV[7:0]

CLR

WE

CEN

SS

F

SELM[2:0]

Test_Sechematic

FG[7:0]

CinG

Clk

AG[7:0]

BG[7:0]

BF[7:0]

AF[7:0]

FF[7:0]

CinF

MO24:0]

CTRV[7:0]

160 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

Figure 4. Design components of the emulation system.

5.6. Fault Emulation Circuitry

The emulation circuit is composed of a modified

version of the pipelined adder design. The inputs of all

the modules are connected to a multiplexer that chooses

whether to input the normal outputs of the previous

module or the outputs of the faulty module obtained

from the fault injection process.

5.6.1. Control Unit

A control unit is used to manage the fault emulation

process. The unit resembles a state machine that was

implemented using verilog HDL. The state machine

contains four states:

1. The default state where reset signals are asserted

which waits for the “emulate” signal which signals

the initialization of the fault emulation process.

2. The fault emulation state. In this state the reset

signals are released, the counter in the fault injection

circuit is enabled and memory write is enabled.

3. The state waits for the signal “read” to start reading

the contents of the memory elements in the fault

injection circuit. When all memory elements are

read, the counter which controls the addressing of

the memory units is disabled. When the “read”

signal is released the state machine jumps to the next

state.

4. This state is similar to state four in the control unit

described in § 5.4.

5.6.2. Typical Fault Injection Method Design

A design of a typical fault injection method on the

pipelined adder was also created for the purpose of

comparing the circuit behavior with that of the new

method. The design resembled a normal pipelined

adder with its circuit behavior recorded in memory

elements (RAMs).

6. Fault Injection Simulation

To assess the new fault injection method’s validity a

fault injection simulation was done, the results being

compared to the results of a typical fault injection

method where only one fault is injected at a time. The

simulation was done using the Xilinx ISE Simulator.

6.1. The Fault Injection Process

The fault injection process consists in injecting one

fault in each of the pipelined adder modules in the

module Test_Schematic. The fault injection was done

by modifying the HDL codes implementing each of

the simulator modules of the pipelined adder. The

pipelined adder modules and the faulty modules share

the same HDL code, however different source files are

made for the pipelined adder and for the modules

where the fault were to be injection. This would allow

injecting faults in the modules by modifying the

source files without affecting the “golden” modules of

the pipelined adder which, for the purpose of the

experiment, should have fault free performance.

This method of fault injection, i.e., the fault

injection and the HDL level, has a performance

shortage. In real fault injection experiments the faults

are injected by modifying the configuration bitstream

of the FPGA on the run between each fault injection.

This would have required knowledge of the FPGA

configuration bitstream to make sure the faults are

injected in their corresponding locations. However

since the purpose of this experiment is to assess the

validity of the method rather than its performance, the

HDL level fault injection was used.

The outputs of the modules are stored in the

memory elements of the circuit. The control and

transmitter modules manage the memory reading

process. One of the memory elements corresponding

to one of the modules is selected to have its outputs

transmitted to the emulation circuit.

6.2. Emulation Process

In the emulation circuit the transmitted outputs of the

faulty modules are provided to the circuit by selecting

these stored outputs rather than the corresponding

module’s output of the pipelined adder. The output of

each of the modules is saved in its corresponding

memory element. The memory elements of the

corresponding module have a 25-bit width word. Each

word represents the outputs of the module during one

clock cycle. The 25-bit width word is injected in the

inputs of all the multiplexers of the emulation circuit,

since only one fault will be emulated at a time. Each

multiplexer has a select input to choose between the

output of the previous module or the faulty word

connected to it.

A New Fault Injection Approach to Study the Impact of Bitflips in the Configuration of SRAM-Based FPGAs 161

6.3. Typical Fault Injection

A typical fault injection method is simulated to

compare the results with those obtained from the new

fault injection method. The design is composed of a

simple pipelined adder with a memory unit attached to

the outputs of each of the modules. For a fault to be

injected, one of the modules of the pipelined adder will

have its HDL source file modified. The simulation is

then run and the results will be read from the memory

elements of the circuit.

6.3.1. Simulation Results

A waveform vector file was created for each

simulation. Commands units were asserted and released

at the appropriate times as for the inputs.

Several faults have been injected at different modules

of the design. The system behavior has been observed

and compared to the system behavior of a typical fault

injection method. Comparing these outputs it can be

seen that the new method was able to mimic the

behavior of a typical fault injection method though

multiple faults were injected at the same time.

Another module’s stored outputs were observed in

the same experiment. Again, the results confirmed that

the observation is the same than the one of a typical

fault injection process though multiple faults were

simultaneously injected.

Other faults were further injected in the same

modules and the same results were observed again in

typical fault injection method as well as in the new

method. Moreover, other modules were chosen as

targets for these faults and again the circuit behavior

matched that of the typical method. This further assured

that the new method is able to observe the behavior of a

design for each fault injected as if it was rather injected

individually.

7. Conclusions

While state-of-the-art FPGA fault injection methods

suffer from a performance bottleneck because of the

necessity to reconfigure the FPGA with the faulty bit-

stream each time a fault needs to be injected, the

proposed method eliminates this bottleneck by injecting

multiple faults at a time. However to enable the

observation of each fault’s effect on the whole system a

second emulation step was added to the fault injection

process. The emulation steps do not require any

reconfiguration and thus the reconfiguration bottleneck

is eliminated.

An experiment was made where a typical fault

injection system was designed along with the new fault

injection system. Faults were injected and simulation

results showed that the new method’s observation is

identical to that of typical method, yet multiple faults

were being injected simultaneously and emulated which

removes the reconfiguration bottleneck.

The analysis of the new method shows that it will

clearly have advantages over other methods. The

design modulation step that was introduced is easily

feasible as only few modules are needed to achieve the

performance advantage. Moreover most fault tolerance

designs are already modulated to apply TMR and

better fault detection mechanism. This can make the

modulation of the design a lot easier.

Furthermore, the need to observe the outputs of all

the modules where faults are injected will not

introduce any communication bottleneck as all fault

injection methods’ purpose is to observe the behavior

of the system and its internal signal and components

including what would be its modules.

Acknowledgments

This work is supported by the French/Lebanon

CEDRE program. We would like to acknowledge the

support of these organizations for their help and

contributions.

References

[1] Asadi G., Miremad S., Zarandi H., and Ejlali A.,

“Fault Injection into SRAM-Based FPGAs for

the Analysis of SEU Effects,” in Proceedings of

IEEE International Conference on Field-

Programmable Technology, pp. 428-430, 2003.

[2] Asadi G. and Tahoori M., “Soft Error Rate

Estimation and Mitigation for SRAM-Based

FPGAs,” in Proceedings ACM/SIGDA 13
th

International Symposium on Field-

Programmable Gate Arrays, pp. 149-160, 2005.

[3] Bellato M., Bernardi P., Bortolato D., Candelori

A., Ceschia M., Paccagnella A., Rebaudengo M.,

Reorda S., Violante M., and Zambolin P.,

“Evaluating the Effects of SEUs Affecting the

Configuration Memory of an SRAM-based

FPGA,” in Proceedings of the Design,

Automation, and Test in Europe, vol. 1, pp.

10584-10584, 2004.

[4] Bernardi P., Reorda S., Sterpone L., and

Violante M., “On the Evaluation of SEU

Sensitiveness in SRAM-Based FPGAs,” in

Proceedings of the 10
th
 International On-Line

Test Symposium, pp. 115-120, 2004.

[5] Ceschia M., Violante M., Reorda S., Paccagnella

A., Bernardi P., Rebaudengo M., Bortolato D.,

Bellato M., Zambolin P., and Candelori A.,

“Identification and Classification of Single-

Event Upsets in the Configuration Memory of

SRAM-Based FPGAs,” Computer Journal of

IEEE Transactions on Nuclear Science, vol. 50,

no. 6, pp. 55-59, 2003.

[6] Hsueh C., Tsai K., and Iyer K., “Fault Injection

Techniques and Tools,” Computer Journal of

162 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

IEEE Computer Society Press, vol. 30, no. 4, pp.

75-82, 2004.

[7] Morgan K., Caffrey M., Graham P., Johnson E.,

Pratt B., and Wirthlin M., “SEU-Induced

Persistent Error Propagation in FPGAs,”

Computer Journal of IEEE Transactions on

Nuclear Science, vol. 52, no. 6, pp. 2438-2445,

2005.

[8] Reorda S., Sterpone L., and Violante M.,

“Multiple Errors Produced by Single Upsets in

FPGA Configuration Memory: A Possible

Solution,” in Proceedings of Europe, pp. 136-141,

2005.

[9] Samudrala K., Ramos J., and Katkoori S.,

“Selective Triple Modular Redundancy Based

Single-Event Upset Tolerant Synthesis for

FPGAs,” Computer Journal of IEEE Transactions

on Nuclear Science, vol. 51, no. 5, pp. 2957-2966,

2004.

[10] Sterpone L. and Violante M., “A New Partial

Reconfiguration -Based Fault-Injection System to

Evaluate SEU Effects in SRAM-Based FPGAs,”

Computer Journal of IEEE Transactions on

Nuclear Science, vol. 54, no. 4, pp. 965-970,

2007.

[11] Sterpone L., Violante M., and Rezgui S., “An

Analysis Based on Fault Injection of Hardening

Techniques for SRAM-Based FPGAs,” Computer

Journal of IEEE Transactions on Nuclear

Science, vol. 53, no. 4, pp. 2054-2059, 2006.

[12] Velazco R., Fouillat P., and Reis R., Radiation

Effects on Embedded Systems, Springer, 2007.

Haissam Ziade received his BSc in

physics from Lebanese University in

1979, his engineering diploma from

ENSERG in Grenoble, France in

1982, and his PhD in engineering

from INSA/ Toulouse in 1986. Since

1986, he has been in the Electrical

and Electronics Department at the Lebanese University

at Tripoli/Lebanon, where he is currently an associate

professor. He is an assistant researcher at TIMA

Laboratory (Grenoble, France) in “Qualification of

Circuits” research group since 1986. His main research

topics are the study of the test and validation of complex

integrated circuits, the fault injection methodologies and

the design with programmable circuits and systems.

Rafic Ayoubi received the BS

degree in electrical engineering, and

the MS and PhD degrees in

computer engineering from the

University of Louisiana, Lafayette,

Louisiana in 1988, 1990, and 1995,

respectively. He joined The

University of Balamand, Tripoli, Lebanon, in 1996,

where he is currently an assistant professor. His

current research interests are in the areas of parallel

architectures, parallel algorithms, fault tolerance,

artificial neural networks, and FPGA technology. In

these areas, he published several research papers in

several journals and conferences. He has received the

first prize in the second annual exhibition for

industrial research achievements in Lebanon. He is a

member of the IEEE.

Raoul Velazco is the co-leader at

TIMA Laboratory Grenoble, France

of ARIS research group:

“architectures for complex and

robust integrated circuits and

systems”. His main research topics

are the study of the effects of

radiation on integrated circuits, the development of

test methods and tools for complex circuits

(processors, FPGAs, ASICs, microcontrollers, etc.,)

and the design and exploitation of experiments

devoted to operate at high altitude (balloons, airplanes,

satellites) with the goal of putting in evidence the

potential faults induced by the energetic particles

(present in the Earth’s atmosphere and in space) and

explore the efficiency of HW/SW fault tolerance

solutions. He has more than 180 publications.

Tarek Idriss acquired Bachelor of

science in computer engineering

from University of Balamand,

Lebanon, in 2006. Completed

Masters of science in computer

engineering from University of

Balamand, Lebanon, in 2008. Main

research topics included parallel processing, FPGAs

and fault tolerance systems.

