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Abstract: The present paper discusses the implementations of sparse matrix-vector products, which are crucial for high 

performance solutions of large-scale linear equations, on a PC-Cluster. Three storage formats for sparse matrices compressed 

row storage, block compressed row storage and sparse block compressed row storage are evaluated. Although using BCRS 

format reduces the execution time but the improvement may be limited because of the extra work from filled-in zeros. We show 

that the use of SBCRS not only improves the performance significantly but reduces matrix storage also.  
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1. Introduction 

The performance of diverse applications in scientific 

computing, economic modeling, and information 

retrieval, among others, is dominated by Sparse 

Matrix-Vector Product (SMVP), xAyy ×+← , where 

A is a sparse matrix, x and y are dense vectors. A 

variety of sparse matrix storage schemes [1, 5] are used 

to store and manipulate sparse matrices. These 

different data structures typically necessitate non-

contiguous multiple memory system accesses which 

hinders performance. Furthermore, these multiple 

indirect accesses are difficult for the compiler to 

optimize, resulting in poor performance. Thus, 

investigating other approaches to efficiently store 

sparse matrices could be beneficial. Conventional 

implementations using Compressed Sparse Row (CSR) 

format storage usually run at 10% of machine peak or 

less on uniprocessors [10]. Higher performance 

requires a compact data structure and appropriate code 

transformations that best exploit properties of both the 

sparse matrix and the underlying machine architecture.  

To achieve high performance on PC-cluster, it is 

desirable to increase both spatial and temporal locality 

of an application. The idea behind the temporal locality 

is to reuse as much as possible each data element that 

is brought into the memory system. Whereas the idea 

behind the spatial locality is the use of every element 

of data brought to the memory system. To increase 

temporal locality, blocking the computation [3] could 

be a beneficial choice. Here, instead of operating on 

entire rows or columns of a matrix, blocked algorithms 

operate on sub-matrices or, data blocks such as in 

Block Compressed Row Storage (BCRS). The goal is 

to maximize accesses to the data loaded into the cache 

before it is replaced. On the other hand, the way to 

ensure spatial locality is to access data contiguously in 

a data structure according to the memory layout of that 

data structure. 

In this paper, we will show the performance 

improvement due to Sparse Block Compressed Row 

Storage (SBCRS) [8], the use of which increases both 

the spatial and temporal locality.  The paper presents 

the parallel implementation of SMVP using three 

different storage formats on heterogeneous clusters [4, 

9]. The experimental results obtained are presented and 

discussed. 

The remaining paper is organized as follows: In 

section 2 we briefly present the CRS, BCRS and 

SBCRS formats and their algorithms for matrix-vector 

multiplication. Section 3 is about the parallel 

implementation of matrix-vector product. The 

experimental results and performance analysis is 

presented in section 4. Finally, in section 5, we give 

conclusions. 

 

2. Sparse Storage Formats and their 

Implementations 

The efficiency of an algorithm for the solution of linear 

system is determined by the performance of matrix-

vector multiplication that depends heavily on the 

storage scheme used. A number of storage schemes 

have been proposed for sparse matrices. They have 

been proposed for various objectives, such as 
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simplicity, generality, performance, or convenience 

with respect to a specific algorithm.  

In our previous work six storage formats including 

Coordinate Storage (COO), Compressed Row Storage 

(CRS), Compressed Column Storage (CCS), Jagged 

Diagonal Storage (JDS), Transposed Jagged Diagonal 

Storage (TJDS) and Bi-Jagged Diagonal Storage (Bi-

JDS) were implemented and compared [6,7].  

In this paper the data structures and the parallel 

implementations of matrix-vector product of one point 

based storage format, CRS and two block based 

storage formats BCRS and SBCRS are presented and 

analyzed. Figure 1 shows an example matrix and data 

structures of CRS, BCRS and SBCRS for this matrix. 
 

































22000000

03400000

00500000

00060000

00085300

00000050

00400000

00400906

 

 

(a) Example matrix. 
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(b) CRS format. 
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(c) BCRS format with (2x2) block size. 
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(d) SBCRS format with (2x2) block size. 
 

Figure 1. The data structures. 
 

2.1. The Compressed Row Storage 

The CRS format for sparse matrices is perhaps the 

most widely used format when no sparsity structure of 

the matrix is required. In CRS rows are stored in 

consecutive order. The CRS format is specified by the 

arrays {value, col_ind, row_ptr}. The double-precision 

array value( ) contains the non-zero matrix elements 

taken in a row-wise fashion, col_ind( ) contains the 

column positions of the corresponding elements in 

value( ) and row_ptr( ) contains pointers to the first 

non-zero element of each row in array value( ) with 

row_ptr(N+1) = nze where nze is the total number of 

nonzeros.  

 

2.1.1. SMVP in CRS  

The algorithm to perform the matrix-vector product Ax 

= y using the CRS format is shown in Figure 2(a). It is 

parallelized at the outer loop, and thus the computation 

over the rows of matrix is distributed to different 

processors. 

 
2.2. Block Compressed Row Storage  

For BCRS, the matrix is split into br×bc submatrices 

(called blocks), where br and bc are fixed integers. 

BCRS stores the non-zero blocks (submatrices with at 

least one non-zero element) in a manner similar to 

CRS. Let brows = rows/br and bnze be the number of 

non-zero blocks in the matrix. BCRS is shown by three 

arrays {value, bcol_ind, brow_ptr}. The double 

precision array value( ) of length bnze×br×bc stores 

the elements of the non-zero blocks: the first br×bc 

elements are of the first nonzero block, and the next 

br×bc elements are of the second non-zero block, etc. 

The integer array bcol_ind( ) of length bnze stores the 

block column indices of the non-zero blocks. The 

integer array brow_ptr( ) of length (brows+1) stores 

pointers to the beginning of each block row in the array 

bcol_ind( ).   

 
2.2.1. SMVP in BCRS  

The algorithm to perform parallel matrix–vector 

product for BCRS is shown in Figure 2(b). A larger br 

reduces the number of load instructions for the 

elements of the vector x, and a larger bc works as the 

unrolling of the inner loop, but this wastes memory and 

CPU power because of the zero elements in the non-

zero blocks. 

 

2.3. Sparse Block Compressed Row Storage  

The SBCRS format is similar to the BCRS regarding 

its relation with CRS. The format is constructed as 

follows: The Sparse matrix is divided into (S×S) sized 
blocks. The SBCRS structure consists of two parts: (a) 

A CRS-like structure where the elements are pointers 

to non-empty S
2
-blockarrays representing non-empty 

(S×S) sparse blocks in the matrix and (b) the collection 
of all S

2
-blockarrays. In essence, this is a variation of 

the BCRS, where the blocks are not assumed to be 

dense and of arbitrary size, but rather are (S×S) sparse 
blocks. All the non-zero values as well as the 

positional information combined are stored in a row-

wise fashion in an array (S
2
-blockarray) in memory. 

The positional data consists of column and row 

position of the non-zero elements within the sub-

matrix or block (row_pos and col_pos). Thus if we 

choose S<256, we only need to store 8-bits for each 
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row and column position. This is significantly less than 

other sparse matrix storage schemes where at least a 

32-bit entry has to be stored for each non-zero element. 

Three more arrays {block_ptr, bcol_ind, brow_ptr} are 

required for specifying SBCRS format. The two arrays 

bcol_ind( ) and brow_ptr( ) are similar as in BCRS 

while third array block_ptr( ) contains the pointers to 

the S
2
-blockarrays. 

 

2.3.1. SMVP in SBCRS  

The algorithm to perform the matrix-vector product 

using the SBCRS format is shown in Figure 2(c) where 

S represents the size of the block and row_pos( ) and 

col_pos( ) are row and column index within block 

stored in 8-bits each. 
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(c) SBCRS matrix-vector product. 

 

Figure 2. The algorithms. 

 

3. Parallel Implementation 

For parallel computers with distributed memory, we 

use a row-block distribution of matrix and vector 

elements among the processors involved in the matrix 

computation as shown in Figure 3. The row-block size 

is directly proportional to the computer relative 

computing power to achieve a good balance of 

workload.  

Matrix elements requiring access to vector data 

stored on remote processors cause communication. 

Components corresponding to internal interface points 

will be sent to the neighboring processors and 

components corresponding to external interface points 

would be received from the neighboring processors. 

Local pre-processing on each processor is needed to 

facilitate the implementation of the communication 

tasks and to have good efficiency during the matrix-

vector multiplication. For minimization of the 

communication cost the rows are permuted according 

to the column position of elements i.e., rows having 

common column indexes are combined on one 

processor. During the communication process we use 

non-blocking send-routines to have the possibility to 

continue with other useful work after sending the 

required blocks. This allows an efficient way of 

exchanging data as well as an overlapping of 

communication and computation. 

 

4. Experimental Results and Performance 

Analysis 

The experiments are carried out on a cluster of PCs 

interconnected with 100Mb/s Ethernet. All the PCs are 

installed with Linux operating system and MPICH2 is 

used as a message-passing programming model, which 

is considered as the most appropriate for parallel 

processing on clusters. We implemented the two block-

based data structures on parallel processors and 

compared their performance with that of conventional 

compressed row storage format. We experimented with 

the collection of matrices selected from the Matrix 

Market [2]. Table 1 shows the characteristics of each 

test matrix used in the experiments.  

 

 
Figure 3. Distribution of matrix and vector elements on four 

processors. Matrix elements causing communication are marked 

black and local matrix elements are colored red. 

 

 

 

 

 

 

 

for i = 0 to rows-1 

   y ( i )=0 

   for j = row_ptr ( i  ) to ( row_ptr ( i+1 ) – 1 ) 

      y ( i ) = y ( i ) + value ( j-1 ) * x ( col_ind ( j-1 ) ) 

   end for j 

end for i 

 

z=0 

for b = 0 to brows-1 

    y ( b )=0 

    for j = brow_ptr ( b ) to ( brow_ptr ( b+1 ) – 1 ) 

        for k = 0 to br-1 

            for t = 0 to bc-1 

                y ( bc*b+k ) = y (bc*b+k ) + val (z ) * x  

( bc*bcol_ind ( j-1 )+t ) 

                z++ 

            end for t 

        end for k 

    end for j 

end for b 

 

for b = 0 to brows-1 

    y ( b ) = 0 

    for j = brow_ptr ( b  ) to ( brow_ptr ( b+1 ) – 1 ) 

        for z = block_ptr ( j ) to block_ptr ( j+1 ) - 1 

            y(S*b+(row_pos(z)-1)) = y(S*b+(row_pos(z)-1))  

          +block_array(z)*x(S*(bcol_ind(j)-1) +col_pos(z)-1)

         end for z 

     end for j 

end for b 
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The main theme behind the performance 

improvement here is to increase both spatial and 

temporal locality of an application. To increase 

temporal locality, blocking the computation [3] could 

be used. The goal is to maximize accesses to the data 

loaded into the cache before the data is replaced. The 

BCRS format stores the non-zero blocks (sub-matrices 

br×bc with at least one non-zero element) in a manner 
similar to CRS. As BCRS includes all the zero values 

within the block these extra filled-in zeros wastes 

memory and CPU power. Since a larger block size can 

result in more overheads, so when performance does 

not improve significantly we still reduce the overall 

storage. Hence there is an optimum block size for 

which BCRS outperforms CRS.  

On the other hand SBCRS stores the non-zero 

blocks like BCRS where the blocks are not assumed to 

be dense and of arbitrary size rather they are sparse 

blocks i.e. no overhead of fill-in zeros is involved. The 

positional information of non-zero elements within the 

block is also stored in memory, which increases the 

spatial locality. As we choose block_size<256, we only 

require 8-bits for each row and column position. This 

is significantly less than other sparse matrix storage 

formats where at least a 32-bit entry has to be stored 

for each non-zero element. Since there is no overhead 

of extra zeros in SBCRS, increasing the size of block 

will reduce the storage appreciably as depicted in 

Figure 4.  

Figure 5 shows the comparison of the subsidiary 

storage required for the selected matrices using the 

three storage formats CRS, BCRS and SBCRS with 

optimal block size br×bc for BCRS and 256×256 for 
SBCRS. The optimal block sizes for which the 

performance is better as compared to the other block 

sizes for the same format are written at the top of 

respective bars. It is seen that SBCRS is more space 

efficient than CRS and BCRS except for s3rmt3m3, as 

the structure of the matrix is such that the elements are 

clustered along the diagonal and for this particular 

block size (3x3) there is very less overheads of fill-in 

zeros. 
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Figure 4. Storage space required by SBCRS format for different 

block sizes. 
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Figure 5. Storage space required by CRS, BCRS and SBCRS. 

# Matrix Name Dimension Non-zeros # Matrix Name Dimension Non-zeros 

1 Qc2534 2534 x 2534 463360 17 Bcsstk17 10974 x 10974 219812 

2 Psmigr_1 3140 x 3140 543162 18 Bcsstk18 11948 x 11948 80519 

3 Cavity16 4562 x 4562 138187 19 Fidap019 12005 x 12005 259863 

4 Bcssth16 4884 x 4884 147631 20 Fidapm29 13668 x 13668 186294 

5 Olm5000 5000 x 5000 19996 21 Bcsstk25 15439 x 15439 133840 

6 Sherman3 5005 x 5005 20033 22 Fidap011 16614 x 16614 1091362 

7 Rw5151 5151 x 5151 20199 23 E40r0000 17281 x 17281 553956 

8 S3rmt3m3 5357 x 5357 106526 24 memplus 17758 x 17758 126150 

9 S1rmt3m1 5489 x 5489 112505 25 Fidap035 19716 x 19716 218308 

10 S1rmq4m1 5489 x 5489 143300 26 Fidapm11 22294 x 22294 623554 

11 Fidap018 5773 x 5773 69335 27 Af23560 23560 x 23560 484256 

12 Utm5940 5940 x 5940 83842 28 Bcsstk30 28924 x 28924 1036208 

13 Fidap015 6867 x 6867 96421 29 Bcsstk31 35588 x 35588 608502 

14 Dw8192 8192 x 8192 41746 30 Bcsstk32 44609 x 44609 1029655 

15 Fidapm37 9152 x 9152 765944 31 S3dkt3m2 90449 x 90449 1921955 

16 Fidapm15 9287 x 9287 98519 32 S3dkq4m2 90449 x 90449 2455670 

 

Table 1. Test matrices for the experiments selected from Matrix Market [10]. 
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For BCRS the best performance is attained by 

choosing the optimum block size mentioned as br×bc. 
As mentioned in Figure 4, the optimum block size is 

different for different matrices. The BCRS 

performance is much better than CRS for diagonal 

matrices. As these matrices have high locality value 

i.e., the elements are clustered along the diagonal and 

are not scattered uniformly around the matrix, which 

leads to less overhead and most of the blocks (sub-

matrices) are dense.  

ca
vit
y1
6

bc
ss
tk
16

s3
rm
q4
m
1

s3
rm
t3
m
1

fid
ap
01
8

ut
m
59
40

fid
ap
01
5

fid
ap
m
15

bc
ss
tk
17

bc
ss
tk
18

fid
ap
01
9

fid
ap
m
29

bc
ss
tk
25

m
em
pl
us

fid
ap
03
5 --

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 CRS

 SBCRS(256x256)

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 S
e
c
o
n
d
s

Selected Matrices

 
(a) For small. 

qc
25
34

ps
m
ig
r_1

fid
ap
m
37

fid
ap
01
1

e4
0r
00
00

fid
ap
m
11

af
23
56
0

bc
ss
tk
30

bc
ss
tk
31

bc
ss
tk
32

s3
dk
t3
m
2

s3
dk
q4
m
2 --

10

20

30

40

50

60

70

80

Selected Matrices

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 s
e
c
o
n
d
s

 CRS

 SBCRS(256x256)

 
(b) For large. 

 

Figure 6. Execution times (in seconds) of matrix-vector products of 

CRS and SBCRS formats. 

 

 

  Figures 6 and 7 show the execution times in seconds 

for 1000 iterations of matrix vector products in various 

storage formats. The performance of SBCRS is 

appreciable as compared to CRS as shown in Figure 6 

and BCRS as shown in Figure 7 as the large block size 

reduces the number of load instructions for the 

elements of the vector x. SBCRS outperforms CRS for 

matrices fidapm37, fidapm11 as they are less sparse 

i.e., they have large value of non-zeros and larger the 

data in the block reduces number of blocks and also 

number of instruction to load and store the two vectors 

(multiplier and resultant) respectively. For matrix 

fidapm29 the performance of SBCRS reduces as 

compare to CRS because of high locality (nonzeros 

spread throughout the matrix) and consequently low 

clustering.  

The performance of SBCRS for matrices s3dkt3m2 

and s3dkq4m2 is nearly same as BCRS (less 

percentage improvement as compare to overall 

percentage improvement) due to reason that matrix 

elements are clustered along the diagonal and the extra 

work from filled-in zeros is almost ineffective and also 

the large blocks of SBCRS lie on the diagonal 

producing equal effectiveness due to reduction in load 

store instructions. The results show that the use of 

SBCRS not only reduces matrix storage as shown in 

Figure 5 but also improves the performance 

significantly as shown in Figure 6 and Figure 7. These 

results lead to the observation that the performance is 

improved by optimizing the choice of the matrix 

storage format and the best storage format differs for 

different matrices. 
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(b) For large. 
 

Figure 7. Execution times (in seconds) of matrix-vector products of 

BCRS and SBCRS formats. 

 

Figure 8 shows the execution time in seconds for 

1000 iterations of matrix vector products using SBCRS 

for different number of processors. Initially the 

parallelization is performed on cluster of eight 

processors, which will be further extended for larger 

clusters in future.  

The speed-up ratios for the parallel matrix-vector 

products using SBCRS are shown in Table 2. The 

parallelization speed-ups for the matrix-vector product 

are nearly ideal in most cases while some super linear 

speed-ups are observed for P=8 may be due to the 



Blocked-Based Sparse Matrix-Vector Multiplication on Distributed Memory Parallel Computers                                     135                                              
 

 

reason that smaller data size increases the data locality 

much which improves the cache hits. The parallel 

implementation on more than eight processors is under 

way. 
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Figure 8. Execution times (in seconds) of 1000 iterations of 

SBCRS matrix-vector products on different number of processors. 

 

 
Table 2. Speed-up ratios for parallel matrix vector products.  

 

# Matrix Name P=1 P=2 P=4 P=8 

1 E40r0000 1.00 1.93 3.95 8.18 

2 Fidapm11 1.00 1.98 3.99 9.43 

3 Bcsstk30 1.00 1.90 3.42 7.62 

4 Bcsstk31 1.00 1.96 3.85 7.55 

5 Bcsstk32 1.00 1.96 3.89 7.76 

6 S3dkt3m2 1.00 1.98 3.87 7.10 

 

5. Conclusions 

In the present paper, we have discussed the parallel 

performance of matrix-vector product routine that are 

crucial for high performance implementation of 

iterative linear solvers for SBCRS storage format on a 

PC-cluster and is compared with CRS and BCRS. 

Although using BCRS format reduces the execution 

time but the improvement may be limited because of 

extra work from filled-in zeros. The use of SBCRS 

improves the performance significantly and reduces 

matrix storage also. The SBCRS format performs 

better for large block size as the large block size 

reduces the number of load and store instructions for 

the elements of the vectors. To achieve high 

performance, it is desirable to increase both spatial and 

temporal locality of an application. SBCRS increases 

both the temporal and spatial localities by using sparse 

blocking. It outperforms for the diagonal and banded 

diagonal matrices while its performance improvement 

is very less for matrices with high locality (zeros are 

spread throughout the matrix).  
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