
130 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

Blocked-Based Sparse Matrix-Vector

Multiplication on Distributed

Memory Parallel Computers

Rukhsana Shahnaz and Anila Usman

Department of Computer and Information Science, Pakistan Inst. of Eng. and Applied Sciences, Pakistan

Abstract: The present paper discusses the implementations of sparse matrix-vector products, which are crucial for high

performance solutions of large-scale linear equations, on a PC-Cluster. Three storage formats for sparse matrices compressed

row storage, block compressed row storage and sparse block compressed row storage are evaluated. Although using BCRS

format reduces the execution time but the improvement may be limited because of the extra work from filled-in zeros. We show

that the use of SBCRS not only improves the performance significantly but reduces matrix storage also.

Keywords: Matrix-vector product, compressed storage formats, sparse matrix data structures, locality of matrix, parallel

matrix computation, and block-based compressed storage.

Received September 24, 2008; accepted May 17, 2009

1. Introduction

The performance of diverse applications in scientific

computing, economic modeling, and information

retrieval, among others, is dominated by Sparse

Matrix-Vector Product (SMVP), xAyy ×+← , where

A is a sparse matrix, x and y are dense vectors. A

variety of sparse matrix storage schemes [1, 5] are used

to store and manipulate sparse matrices. These

different data structures typically necessitate non-

contiguous multiple memory system accesses which

hinders performance. Furthermore, these multiple

indirect accesses are difficult for the compiler to

optimize, resulting in poor performance. Thus,

investigating other approaches to efficiently store

sparse matrices could be beneficial. Conventional

implementations using Compressed Sparse Row (CSR)

format storage usually run at 10% of machine peak or

less on uniprocessors [10]. Higher performance

requires a compact data structure and appropriate code

transformations that best exploit properties of both the

sparse matrix and the underlying machine architecture.

To achieve high performance on PC-cluster, it is

desirable to increase both spatial and temporal locality

of an application. The idea behind the temporal locality

is to reuse as much as possible each data element that

is brought into the memory system. Whereas the idea

behind the spatial locality is the use of every element

of data brought to the memory system. To increase

temporal locality, blocking the computation [3] could

be a beneficial choice. Here, instead of operating on

entire rows or columns of a matrix, blocked algorithms

operate on sub-matrices or, data blocks such as in

Block Compressed Row Storage (BCRS). The goal is

to maximize accesses to the data loaded into the cache

before it is replaced. On the other hand, the way to

ensure spatial locality is to access data contiguously in

a data structure according to the memory layout of that

data structure.

In this paper, we will show the performance

improvement due to Sparse Block Compressed Row

Storage (SBCRS) [8], the use of which increases both

the spatial and temporal locality. The paper presents

the parallel implementation of SMVP using three

different storage formats on heterogeneous clusters [4,

9]. The experimental results obtained are presented and

discussed.

The remaining paper is organized as follows: In

section 2 we briefly present the CRS, BCRS and

SBCRS formats and their algorithms for matrix-vector

multiplication. Section 3 is about the parallel

implementation of matrix-vector product. The

experimental results and performance analysis is

presented in section 4. Finally, in section 5, we give

conclusions.

2. Sparse Storage Formats and their

Implementations

The efficiency of an algorithm for the solution of linear

system is determined by the performance of matrix-

vector multiplication that depends heavily on the

storage scheme used. A number of storage schemes

have been proposed for sparse matrices. They have

been proposed for various objectives, such as

Blocked-Based Sparse Matrix-Vector Multiplication on Distributed Memory Parallel Computers 131

simplicity, generality, performance, or convenience

with respect to a specific algorithm.

In our previous work six storage formats including

Coordinate Storage (COO), Compressed Row Storage

(CRS), Compressed Column Storage (CCS), Jagged

Diagonal Storage (JDS), Transposed Jagged Diagonal

Storage (TJDS) and Bi-Jagged Diagonal Storage (Bi-

JDS) were implemented and compared [6,7].

In this paper the data structures and the parallel

implementations of matrix-vector product of one point

based storage format, CRS and two block based

storage formats BCRS and SBCRS are presented and

analyzed. Figure 1 shows an example matrix and data

structures of CRS, BCRS and SBCRS for this matrix.

22000000

03400000

00500000

00060000

00085300

00000050

00400000

00400906

(a) Example matrix.

{ }
{ }

{ }1413111096541_

87766554326631_

22345685354496

=

=

=

ptrrow

indcol

value

(b) CRS format.

{

}
{ }

{ }108741_

433321321_

220300405006080053

000050404000090006

=

=

=

ptrbrow

indbcol

value

(c) BCRS format with (2x2) block size.

{ }
{ }

{ }108741_

433321321_

12119865321_

2

2

2

1

2

2

1

1

3

2

1

4

2

2

5

1

1

6

1

2

8

2

2

5

1

2

3

2

1

5

2

2

4

2

1

4

1

1

9

1

1

6

_

=

=

=

=

ptrbrow

indbcol

ptrblock

arrayblock

(d) SBCRS format with (2x2) block size.

Figure 1. The data structures.

2.1. The Compressed Row Storage

The CRS format for sparse matrices is perhaps the

most widely used format when no sparsity structure of

the matrix is required. In CRS rows are stored in

consecutive order. The CRS format is specified by the

arrays {value, col_ind, row_ptr}. The double-precision

array value() contains the non-zero matrix elements

taken in a row-wise fashion, col_ind() contains the

column positions of the corresponding elements in

value() and row_ptr() contains pointers to the first

non-zero element of each row in array value() with

row_ptr(N+1) = nze where nze is the total number of

nonzeros.

2.1.1. SMVP in CRS

The algorithm to perform the matrix-vector product Ax

= y using the CRS format is shown in Figure 2(a). It is

parallelized at the outer loop, and thus the computation

over the rows of matrix is distributed to different

processors.

2.2. Block Compressed Row Storage

For BCRS, the matrix is split into br×bc submatrices

(called blocks), where br and bc are fixed integers.

BCRS stores the non-zero blocks (submatrices with at

least one non-zero element) in a manner similar to

CRS. Let brows = rows/br and bnze be the number of

non-zero blocks in the matrix. BCRS is shown by three

arrays {value, bcol_ind, brow_ptr}. The double

precision array value() of length bnze×br×bc stores

the elements of the non-zero blocks: the first br×bc

elements are of the first nonzero block, and the next

br×bc elements are of the second non-zero block, etc.

The integer array bcol_ind() of length bnze stores the

block column indices of the non-zero blocks. The

integer array brow_ptr() of length (brows+1) stores

pointers to the beginning of each block row in the array

bcol_ind().

2.2.1. SMVP in BCRS

The algorithm to perform parallel matrix–vector

product for BCRS is shown in Figure 2(b). A larger br

reduces the number of load instructions for the

elements of the vector x, and a larger bc works as the

unrolling of the inner loop, but this wastes memory and

CPU power because of the zero elements in the non-

zero blocks.

2.3. Sparse Block Compressed Row Storage

The SBCRS format is similar to the BCRS regarding

its relation with CRS. The format is constructed as

follows: The Sparse matrix is divided into (S×S) sized
blocks. The SBCRS structure consists of two parts: (a)

A CRS-like structure where the elements are pointers

to non-empty S
2
-blockarrays representing non-empty

(S×S) sparse blocks in the matrix and (b) the collection
of all S

2
-blockarrays. In essence, this is a variation of

the BCRS, where the blocks are not assumed to be

dense and of arbitrary size, but rather are (S×S) sparse
blocks. All the non-zero values as well as the

positional information combined are stored in a row-

wise fashion in an array (S
2
-blockarray) in memory.

The positional data consists of column and row

position of the non-zero elements within the sub-

matrix or block (row_pos and col_pos). Thus if we

choose S<256, we only need to store 8-bits for each

132 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

row and column position. This is significantly less than

other sparse matrix storage schemes where at least a

32-bit entry has to be stored for each non-zero element.

Three more arrays {block_ptr, bcol_ind, brow_ptr} are

required for specifying SBCRS format. The two arrays

bcol_ind() and brow_ptr() are similar as in BCRS

while third array block_ptr() contains the pointers to

the S
2
-blockarrays.

2.3.1. SMVP in SBCRS

The algorithm to perform the matrix-vector product

using the SBCRS format is shown in Figure 2(c) where

S represents the size of the block and row_pos() and

col_pos() are row and column index within block

stored in 8-bits each.

(a) CRS.

(b) BCRS.

(c) SBCRS matrix-vector product.

Figure 2. The algorithms.

3. Parallel Implementation

For parallel computers with distributed memory, we

use a row-block distribution of matrix and vector

elements among the processors involved in the matrix

computation as shown in Figure 3. The row-block size

is directly proportional to the computer relative

computing power to achieve a good balance of

workload.

Matrix elements requiring access to vector data

stored on remote processors cause communication.

Components corresponding to internal interface points

will be sent to the neighboring processors and

components corresponding to external interface points

would be received from the neighboring processors.

Local pre-processing on each processor is needed to

facilitate the implementation of the communication

tasks and to have good efficiency during the matrix-

vector multiplication. For minimization of the

communication cost the rows are permuted according

to the column position of elements i.e., rows having

common column indexes are combined on one

processor. During the communication process we use

non-blocking send-routines to have the possibility to

continue with other useful work after sending the

required blocks. This allows an efficient way of

exchanging data as well as an overlapping of

communication and computation.

4. Experimental Results and Performance

Analysis

The experiments are carried out on a cluster of PCs

interconnected with 100Mb/s Ethernet. All the PCs are

installed with Linux operating system and MPICH2 is

used as a message-passing programming model, which

is considered as the most appropriate for parallel

processing on clusters. We implemented the two block-

based data structures on parallel processors and

compared their performance with that of conventional

compressed row storage format. We experimented with

the collection of matrices selected from the Matrix

Market [2]. Table 1 shows the characteristics of each

test matrix used in the experiments.

Figure 3. Distribution of matrix and vector elements on four

processors. Matrix elements causing communication are marked

black and local matrix elements are colored red.

for i = 0 to rows-1

 y (i)=0

 for j = row_ptr (i) to (row_ptr (i+1) – 1)

 y (i) = y (i) + value (j-1) * x (col_ind (j-1))

 end for j

end for i

z=0

for b = 0 to brows-1

 y (b)=0

 for j = brow_ptr (b) to (brow_ptr (b+1) – 1)

 for k = 0 to br-1

 for t = 0 to bc-1

 y (bc*b+k) = y (bc*b+k) + val (z) * x

(bc*bcol_ind (j-1)+t)

 z++

 end for t

 end for k

 end for j

end for b

for b = 0 to brows-1

 y (b) = 0

 for j = brow_ptr (b) to (brow_ptr (b+1) – 1)

 for z = block_ptr (j) to block_ptr (j+1) - 1

 y(S*b+(row_pos(z)-1)) = y(S*b+(row_pos(z)-1))

 +block_array(z)*x(S*(bcol_ind(j)-1) +col_pos(z)-1)

 end for z

 end for j

end for b

Blocked-Based Sparse Matrix-Vector Multiplication on Distributed Memory Parallel Computers 133

The main theme behind the performance

improvement here is to increase both spatial and

temporal locality of an application. To increase

temporal locality, blocking the computation [3] could

be used. The goal is to maximize accesses to the data

loaded into the cache before the data is replaced. The

BCRS format stores the non-zero blocks (sub-matrices

br×bc with at least one non-zero element) in a manner
similar to CRS. As BCRS includes all the zero values

within the block these extra filled-in zeros wastes

memory and CPU power. Since a larger block size can

result in more overheads, so when performance does

not improve significantly we still reduce the overall

storage. Hence there is an optimum block size for

which BCRS outperforms CRS.

On the other hand SBCRS stores the non-zero

blocks like BCRS where the blocks are not assumed to

be dense and of arbitrary size rather they are sparse

blocks i.e. no overhead of fill-in zeros is involved. The

positional information of non-zero elements within the

block is also stored in memory, which increases the

spatial locality. As we choose block_size<256, we only

require 8-bits for each row and column position. This

is significantly less than other sparse matrix storage

formats where at least a 32-bit entry has to be stored

for each non-zero element. Since there is no overhead

of extra zeros in SBCRS, increasing the size of block

will reduce the storage appreciably as depicted in

Figure 4.

Figure 5 shows the comparison of the subsidiary

storage required for the selected matrices using the

three storage formats CRS, BCRS and SBCRS with

optimal block size br×bc for BCRS and 256×256 for
SBCRS. The optimal block sizes for which the

performance is better as compared to the other block

sizes for the same format are written at the top of

respective bars. It is seen that SBCRS is more space

efficient than CRS and BCRS except for s3rmt3m3, as

the structure of the matrix is such that the elements are

clustered along the diagonal and for this particular

block size (3x3) there is very less overheads of fill-in

zeros.

olm
500

0

she
rman3

rw515
1
s3rm

t3m
3

s1rm
t3m

1

s1rm
q4m

1
fida

p01
8

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

S
to
ra
g
e
 S
p
a
c
e

Selected Matrices

 2x2 blocks

 4x4 blocks

 8x8 blocks

 16x16 blocks

 32x32 blocks

 64x64 blocks

 128x128 blocks

 256x256 blocks

Figure 4. Storage space required by SBCRS format for different

block sizes.

olm
50
00

sh
erm

an
3

rw
51
51

s3
rm

t3m
3

s1
rm

t3m
1

s1
rm

tq4
m1

fid
ap
01
8

utm
59
40

fid
ap
01
5

dw
81
92

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

(2
x
3
)

(1
x
3
)

(1
x
2
)

(2
x
2
)

(3
x
3
)

(1
x
3
)

(3
x
3
)

(2
x
1
)

(1
x
2
)

(2
x
2
)

Selected M a trices

S
to
ra
g
e
 S
p
a
c
e

 CRS

 BCRS(brxbc)

 SBCRS(256x256)

Figure 5. Storage space required by CRS, BCRS and SBCRS.

Matrix Name Dimension Non-zeros # Matrix Name Dimension Non-zeros

1 Qc2534 2534 x 2534 463360 17 Bcsstk17 10974 x 10974 219812

2 Psmigr_1 3140 x 3140 543162 18 Bcsstk18 11948 x 11948 80519

3 Cavity16 4562 x 4562 138187 19 Fidap019 12005 x 12005 259863

4 Bcssth16 4884 x 4884 147631 20 Fidapm29 13668 x 13668 186294

5 Olm5000 5000 x 5000 19996 21 Bcsstk25 15439 x 15439 133840

6 Sherman3 5005 x 5005 20033 22 Fidap011 16614 x 16614 1091362

7 Rw5151 5151 x 5151 20199 23 E40r0000 17281 x 17281 553956

8 S3rmt3m3 5357 x 5357 106526 24 memplus 17758 x 17758 126150

9 S1rmt3m1 5489 x 5489 112505 25 Fidap035 19716 x 19716 218308

10 S1rmq4m1 5489 x 5489 143300 26 Fidapm11 22294 x 22294 623554

11 Fidap018 5773 x 5773 69335 27 Af23560 23560 x 23560 484256

12 Utm5940 5940 x 5940 83842 28 Bcsstk30 28924 x 28924 1036208

13 Fidap015 6867 x 6867 96421 29 Bcsstk31 35588 x 35588 608502

14 Dw8192 8192 x 8192 41746 30 Bcsstk32 44609 x 44609 1029655

15 Fidapm37 9152 x 9152 765944 31 S3dkt3m2 90449 x 90449 1921955

16 Fidapm15 9287 x 9287 98519 32 S3dkq4m2 90449 x 90449 2455670

Table 1. Test matrices for the experiments selected from Matrix Market [10].

134 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

For BCRS the best performance is attained by

choosing the optimum block size mentioned as br×bc.
As mentioned in Figure 4, the optimum block size is

different for different matrices. The BCRS

performance is much better than CRS for diagonal

matrices. As these matrices have high locality value

i.e., the elements are clustered along the diagonal and

are not scattered uniformly around the matrix, which

leads to less overhead and most of the blocks (sub-

matrices) are dense.

ca
vit
y1
6

bc
ss
tk
16

s3
rm
q4
m
1

s3
rm
t3
m
1

fid
ap
01
8

ut
m
59
40

fid
ap
01
5

fid
ap
m
15

bc
ss
tk
17

bc
ss
tk
18

fid
ap
01
9

fid
ap
m
29

bc
ss
tk
25

m
em
pl
us

fid
ap
03
5 --

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 CRS

 SBCRS(256x256)

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 S
e
c
o
n
d
s

Selected Matrices

(a) For small.

qc
25
34

ps
m
ig
r_1

fid
ap
m
37

fid
ap
01
1

e4
0r
00
00

fid
ap
m
11

af
23
56
0

bc
ss
tk
30

bc
ss
tk
31

bc
ss
tk
32

s3
dk
t3
m
2

s3
dk
q4
m
2 --

10

20

30

40

50

60

70

80

Selected Matrices

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 s
e
c
o
n
d
s

 CRS

 SBCRS(256x256)

(b) For large.

Figure 6. Execution times (in seconds) of matrix-vector products of

CRS and SBCRS formats.

 Figures 6 and 7 show the execution times in seconds

for 1000 iterations of matrix vector products in various

storage formats. The performance of SBCRS is

appreciable as compared to CRS as shown in Figure 6

and BCRS as shown in Figure 7 as the large block size

reduces the number of load instructions for the

elements of the vector x. SBCRS outperforms CRS for

matrices fidapm37, fidapm11 as they are less sparse

i.e., they have large value of non-zeros and larger the

data in the block reduces number of blocks and also

number of instruction to load and store the two vectors

(multiplier and resultant) respectively. For matrix

fidapm29 the performance of SBCRS reduces as

compare to CRS because of high locality (nonzeros

spread throughout the matrix) and consequently low

clustering.

The performance of SBCRS for matrices s3dkt3m2

and s3dkq4m2 is nearly same as BCRS (less

percentage improvement as compare to overall

percentage improvement) due to reason that matrix

elements are clustered along the diagonal and the extra

work from filled-in zeros is almost ineffective and also

the large blocks of SBCRS lie on the diagonal

producing equal effectiveness due to reduction in load

store instructions. The results show that the use of

SBCRS not only reduces matrix storage as shown in

Figure 5 but also improves the performance

significantly as shown in Figure 6 and Figure 7. These

results lead to the observation that the performance is

improved by optimizing the choice of the matrix

storage format and the best storage format differs for

different matrices.

ca
vit
y1
6

bc
ss
tk
16

s3
rm
q4
m
1

s3
rm
t3
m
1

fid
ap
01
8

ut
m
59
40

fid
ap
01
5

fid
ap
m
15

bc
ss
tk
17

bc
ss
tk
18

fid
ap
01
9

fid
ap
m
29

bc
ss
tk
25

m
em
pl
us

fid
ap
03
5 --

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 S
e
c
o
n
d

Selected Matrices

 BCRS(brxbc)

 SBCRS(256x256)

(a) For small.

qc
25
34

ps
m
ig
r_
1

fid
ap
m
37

fid
ap
01
1

e4
0r
00
00

fid
ap
m
11

af
23
56
0

bc
ss
tk
30

bc
ss
tk
31

bc
ss
tk
32

s3
dk
t3
m
2

s3
dk
q4
m
2 --

10

20

30

40

50

60

Selected Matrices

E
x
e
c
u
ti
o
n
 T
im
e
 i
n
 s
e
c
o
n
d
s

 BCRS(brxbc)

 SBCRS(256x256)

(b) For large.

Figure 7. Execution times (in seconds) of matrix-vector products of

BCRS and SBCRS formats.

Figure 8 shows the execution time in seconds for

1000 iterations of matrix vector products using SBCRS

for different number of processors. Initially the

parallelization is performed on cluster of eight

processors, which will be further extended for larger

clusters in future.

The speed-up ratios for the parallel matrix-vector

products using SBCRS are shown in Table 2. The

parallelization speed-ups for the matrix-vector product

are nearly ideal in most cases while some super linear

speed-ups are observed for P=8 may be due to the

Blocked-Based Sparse Matrix-Vector Multiplication on Distributed Memory Parallel Computers 135

reason that smaller data size increases the data locality

much which improves the cache hits. The parallel

implementation on more than eight processors is under

way.

qc
25
34

ps
mi
gr
_1

fid
ap
m
37

fid
ap
01
1

e4
0r
00
00

fid
ap
m
11

af
23
56
0

bc
ss
tk3
0

bc
ss
tk3
1

bc
ss
tk3
2

s3
dk
t3m

2

s3
dk
q4
m2 --

0

10

20

30

40

50

60

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
o
n
d
s
)

Selected Matrices

 P=1

 P=2

 P=4

 P=8

Figure 8. Execution times (in seconds) of 1000 iterations of

SBCRS matrix-vector products on different number of processors.

Table 2. Speed-up ratios for parallel matrix vector products.

Matrix Name P=1 P=2 P=4 P=8

1 E40r0000 1.00 1.93 3.95 8.18

2 Fidapm11 1.00 1.98 3.99 9.43

3 Bcsstk30 1.00 1.90 3.42 7.62

4 Bcsstk31 1.00 1.96 3.85 7.55

5 Bcsstk32 1.00 1.96 3.89 7.76

6 S3dkt3m2 1.00 1.98 3.87 7.10

5. Conclusions

In the present paper, we have discussed the parallel

performance of matrix-vector product routine that are

crucial for high performance implementation of

iterative linear solvers for SBCRS storage format on a

PC-cluster and is compared with CRS and BCRS.

Although using BCRS format reduces the execution

time but the improvement may be limited because of

extra work from filled-in zeros. The use of SBCRS

improves the performance significantly and reduces

matrix storage also. The SBCRS format performs

better for large block size as the large block size

reduces the number of load and store instructions for

the elements of the vectors. To achieve high

performance, it is desirable to increase both spatial and

temporal locality of an application. SBCRS increases

both the temporal and spatial localities by using sparse

blocking. It outperforms for the diagonal and banded

diagonal matrices while its performance improvement

is very less for matrices with high locality (zeros are

spread throughout the matrix).

References

[1] Barrett R., Berry M., Chan T., Demmel J.,

Donato J., Dongarra J., Eijkhout V., Pozo R.,

Romine C., and Vorst H., Templates for the

Solution of Linear Systems: Building Blocks for

Iterative Methods, SIAM Press, 1994.

[2] Boisvert R., Pozo R., Remington K., Barrett R.,

and Dongarra J., The Matrix Market: A Web

Resource for Test Matrix Collections, Chapman

and Hall, London, pp. 125-137, 1997.

[3] Pinar A. and Heath M., “Improving Performance

of Sparse Matrix-Vector Multiplication,” in

Proceedings of Supercomputing, Portland, pp.

159-163, 1999.

[4] Rosenberg A., “Sharing Partitionable Workloads

in Heterogeneous NOWs: Greedier Is Not

Better,” in Proceedings of 3
rd
 IEEE International

Conference on Cluster Computing, pp. 124-124,

2001.

[5] Saad Y., Iterative Methods for Sparse Linear

Systems, SIAM, USA, 2003.

[6] Shahnaz R. and Usman A., “Implementation and

Evaluation of Sparse Matrix-Vector Product on

Distributed Memory Parallel Computers,” in

Proceedings of Cluster IEEE International

Conference on Cluster Computing, Barcelona,

pp. 1-6, 2006.

[7] Shahnaz R. and Usman A., “An Efficient Sparse

Matrix Vector Multiplication on Distributed

Memory Parallel Computers”, Computer

International Journal of Computer Science and

Network Security, vol. 7, no. 1, pp. 77-82, 2007.

[8] Smailbegovic F., Gaydadjiev G., and Vassiliadis

S., “Sparse Matrix Storage Format,” in

Proceedings of the 16
th
 Annual Workshop on

Circuits, Systems and Signal Processing, pp.

445-448, 2005.

[9] Tinetti F., “Performance of Scientific Processing

in NOW: Matrix Multiplication Example,”

Journal of Computer Science and Technology,

vol. 1, no. 4, pp. 78-87, 2001.

[10] Vuduc R., Demmel J., Yelick K., Kamil S.,

Nishtala R., and Lee B., “Performance

Optimizations and Bounds for Sparse Matrix-

Vector Multiply,” in Proceedings of the

IEEE/ACM Conference on Supercomputing, pp.

458-463, 2002.

136 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

Rukhsana Shahnaz received PhD

scholar in the Department of

Computer and Information Sciences,

Pakistan Institute of Engineering and

Applied Sciences. She is being

funded by Higher Education

Commission of Pakistan under a

PhD fellowship program. Her research interests

include performance improvement of sparse systems

and cluster computing.

Anila Usman is a faculty member in

the Department of Computer and

Information Sciences, Pakistan

Institute of Engineering and Applied

Sciences since 1991. Currently, she

is serving as the head of Department

of Computer and Information

Sciences. She received PhD in numerical computing

from the University of Manchester, UK in 1998, and

post doctorate from the same university in 2004, on

high performance computing. Her research interests

include numerical computing and parallel/distributed

computing.

