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Abstract: This paper presents a new extended average magnitude difference function for noise robust pitch detection. 

Average magnitude difference function based algorithms are suitable for real time operations, but suffer from incorrect pitch 

detection in noisy conditions. The proposed new extended average magnitude difference function  involves in sufficient number 

of averaging for all lag values compared to the original average magnitude difference function, and thereby eliminates the 

falling tendency of the average magnitude difference function without emphasizing pitch harmonics at higher lags, which is a 

severe limitation of other existing improvements of the average magnitude difference function. A noise robust post processing 

that explores the contribution of each frequency channel is also presented. Experimental results on Keele pitch database in 

different noise level, both with white and color noise, shows the superiority of the proposed extended average magnitude 

difference function based pitch detection method over other methods based on average magnitude difference function. 
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1. Introduction 

Precise calculation of pitch in speech signal has 

demonstrated to be a basic task in almost all areas of 

speech research including speech/music recognition, 

speaker recognition/verification, speech forensics, 

voice-enabled security, etc., a wide range of perceptual 

models and algorithms using a variety of techniques 

and a varying degree of accuracy to extract pitch exist. 

However, the pitch detection algorithms face a real 

challenge in presence of noise [11]. Noise often buries 

real harmonic peaks and creates false peaks, which 

cause problems to find pitch [8]. 

There are many pitch detection algorithms such as 

Average Magnitude Difference Function (AMDF) 

[14], Short-Term Autocorrelation Function (ACF) 

[10], cepstrum [16], and different combinations and 

modifications of them [1, 2, 3, 6, 7, 12, 17]. Among the 

algorithms, AMDF is used for real time application as 

it involves less computation, and it is the focus of this 

paper. However, AMDF in [14] has ‘falling tendency’ 

at the later half of a frame and that makes it erroneous 

even in less noisy condition. Also, noise and intensity 

variation produce false pitch in AMDF. To overcome 

this situation, several improvements of AMDF are 

proposed in the literature. For example, High 

Resolution AMDF (HRAMDF) [5] and circular AMDF 

(CAMDF) [18] conquer the falling tendency of AMDF 

by well averaging all the lag values. But in doing so, 

these methods generate new double pitch errors by 

emphasizing pitch harmonics at higher lags. 

In this paper, we introduce a new Extended AMDF 

(EAMDF) that eliminates the falling tendency of 

AMDF without emphasizing pitch harmonics at higher 

lags. The proposed EAMDF is similar to AMDF 

except it spreads over second half of the previous 

frame, the current frame, and the first half of the next 

frame. With this length, the EAMDF averages a 

reasonable amount for all the lag values, and provides 

better smoothing than the other improvements. 

We also explore channel contribution to detect true 

pitch. The EAMDF is applied on a bank of band pass 

filters, and each channel EAMDF is verified for a 

proper pitch candidate. Pitch candidates are assigned 

weight with respect to presence or absence of peaks at 

their harmonics. The highest weighted candidate is 

then selected as pitch. 

All the experiments are carried out using Keele 

pitch reference database [13]. There are a quite a 

number of literatures that present with the result on 

Keele database. We choose the same database, which 

is publicly available, to compare with other methods.  

The paper is organized as follows: section 2 reviews 

AMDF, HRAMDF, and CAMDF; section 3 introduces 

the proposed EAMDF; section 4 describes the 

proposed EAMDF based pitch detection method, and 

section 5 gives experimental results with discussion. 

Section 6 presents results under restaurant noise. 

Finally, section 7 draws some conclusion. 

 

2. Review of AMDF and its Variations 

As this paper focuses on the improvement of AMDF-

based pitch detection, we describe some major and 

well known AMDF-based pitch detection algorithms. 
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2.1 AMDF 

 

The original AMDF was proposed in [14] and it is 

defined as 
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where x(n) is the speech sample sequence multiplied 

by a rectangular window of length N, and τ is the lag 

number. The range of τ is between 0 and N-1, and the 

constant term outside summation is for normalization. 

For a periodic or quasi periodic signal with a period of 

TP, eq should exhibit minimum at lag TP and minimum 

peaks with lower degree at its multiple. In general, a 

rough estimation of pitch is derived by 
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where τmin and τmax correspond to possible minimum 

and maximum pitch periods in samples. In equation 1 

less data is involved to calculate D at higher lags, 

because speech signal is weighted by a rectangular 

window and outside the window the values are zero. 

Therefore, AMDF cannot show periodic nature at the 

later half of a frame and it is often called as the ‘falling 

trend’ in literature. Furthermore, D is sensitive to noise 

and intensity, which makes it difficult to produce 

minimum at TP. In noisy conditions, it can output 

minimum at TP/2 or 2TP, which is normally termed as 

‘half pitch error’ or ‘double pitch error’, respectively.   

Figure 1 (b) shows an example of double pitch error 

using AMDF. In the figure, speech is a female voiced 

frame as shown in Figure 1(a) contaminated with white 

noise at signal-to-noise ratio (SNR) = -5 dB. The true 

pitch period is at lag 85, but AMDF falsely detect it at 

its double (at lag 170). 

 

2.2. HRAMDF 
 

To avoid the falling tendency of AMDF, HRAMDF 

was proposed in the speech coding standard LPC-10 

[5]. HRAMDF is defined as 
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There are two major differences between equations 1 

and 3. Unlike AMDF, HRAMDF involves two speech 

frames and all the lags are well averaged resulting in 

the elimination of the falling trend of AMDF. 

However, as pitch multiples are emphasized, this type 

of modification introduces mostly double pitch errors. 

From Figure 1(c), we can see that though HRAMDF 

successfully eliminates falling tendency of AMDF, 

double pitch error prevails. 

 

2.3. CAMDF 
 

CAMDF was proposed in [18] and is defined by 
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where mod(n+τ, N) represents the modulo operation. 

This function is symmetric around τ = N/2, meaning 

that it can produce pitch only within N/2. To determine 

pitch within full-length (N), it needs double sized 

frame. The lags are equally averaged and also there is 

no falling tendency. It has better performance than 

HRAMDF, however, magnitudes at all the pitch 

multiples are enhanced introducing new errors. Figure 

1(d) shows CAMDF calculating over a double sized 

frame. Double pitch error is not eliminated, but the 

difference of magnitudes between true pitch and 

double pitch is reduced. 
 

 
Figure 1. Comparison between (b) AMDF, (c) HRAMDF, (d) 

CAMDF, and (e) the proposed EAMDF on (a) a female voiced 

frame with SNR = -5 dB (white noise). The proposed EAMDF 

extracts the true pitch, while the others produce double pitch error. 

 

3. The Proposed Extended AMDF 

HRAMDF and CAMDF almost successfully avoid the 

falling trend of AMDF by well averaging for all lag 

values. However, giving equal emphasis on all lags 

enhances peaks (minimums) at multiple pitch periods 

and these results in frequent double pitch errors.   

We propose a new EAMDF that avoids enhancing 

peaks at pitch multiples and at the same time 

eliminates the falling trend of AMDF. The proposed 

EAMDF is defined as: 
 



Extended Average Magnitude Difference Function Based Pitch Detection                                                                                 199                                                
 

 

∑
−+

−=

+−
−

=
τ

τ
τ

τ
2/

2/

|)()(|
1

)(
NN

Nn

E nxnx
N

D                    (5) 

 

In contrast of the original AMDF, the calculation of 

EAMDF is spread over three frames: second half of the 

previous frame, the current frame, and first half of the 

next frame (so a total of 2N samples). It does not give 

equal weights to all lags, but still at some extent 

eliminates the falling trend by averaging double 

number of samples compared to the original AMDF. It 

can be seen in Figure 1 that only EAMDF as shown in 

Figure 1(e) can correctly determine the pitch period at 

lag 85. The proposed function has also greater 

smoothing power than the other improvements of 

AMDF, by taking into account some samples of the 

previous and the next frames. The EAMDF is applied 

to detect pitch in noisy speech signal and the procedure 

is described in the next section. 
 

4. The Proposed EAMDF-Based Pitch 

Detection 

Figure 2 shows a block diagram of the proposed 

EAMDF-based pitch detection method. First, input 

speech is passed through a bank of four band-pass 

filters. The bands of the filters are in the range of 50-

200 Hz, 150-300 Hz, 250-400 Hz, and 350-500 Hz, 

respectively. High frequency components are blocked, 

because they do not contain significant pitch 

information. We could have used a low-pass filter with 

a cut off frequency of 500 Hz instead of using four 

individual band-pass filters encourages us to use 

several overlapping band-pass filters instead of one 

low-pass filter. Figure 3 illustrates such an example. 

Figure 3 (a) shows a female voiced frame with SNR = 

-5 dB.  

Figure 3 (b), (c), (d) and (e) output the results of 

EAMDF on the four band-pass filters, and 3 (f) gives 

that on the low-pass filter. The minimum peaks that 

determine the pitch are encircled in the figures. The 

actual pitch is 89, which is wrongly detected with 

double pitch error (lag = 178) on the low-pass filter. 

However, first and second band-pass filters can 

correctly determine the pitch. This finding concludes 

that if we can select the appropriate channels, there is a 

high possibility to reduce half pitch or double pitch 

errors. After band-pass filtering, each filter output is 

half-wave rectified and center clipped in a fairly 

conventional way. The half-wave rectification is used 

to mimic phase-lock property of human and center 

clipping is used to remove unwanted noise up to some 

limit. These two blocks can also be used as a way to 

reduce computation.  

The proposed EAMDF, described in section 3, is 

applied on center clipped speech. EAMDF values are 

normalized by the maximum value in a frame. In 

theory, EAMDF should exhibit minimum at pitch 

period, however, due to noise effect and intensity 

variation, there are some instances where it shows 

minimum at half or double the pitch period. To 

eliminate these errors, we apply some post processing 

that includes candidate refinement and weight 

assignment, channel selection, and final pitch 

detection. In the experiments, we consider 50- 450 Hz 

to be the pitch range, and calculation and selection are 

made inside the corresponding lag of the EAMDF.  

     For candidate refinement, we first mirror EAMDF 

values about lag axis by ‘1 – EAMDF’ to convert the 

notches into peaks (Fig. 4). Then, all the peaks that are 

above 0.2 in amplitude and greater than the values at 

±2 lags, are retained. We call these peaks as pitch 

candidates. After extracting pitch candidates, they are 

assigned some weights (initially weights are one) by 

exploring periodicity of pitch.  

For a pitch candidate at t1, its weight will be 

increased by 1/2 if there is a candidate at 2t1, by 

another 1/3 if there is a candidate at 3t1, and so on. 

Similarly, its weight will be decreased by 1/2 or 1/3 in 

case of absence of candidate at 2t1 or 3t1, respectively. 

The presence / absence of candidates (at 2t1 or 3t1) 

is determined within ±0.5 ms of 2t1 or 3t1. This kind of 

weight assignment enhances the possibility to detect 

true pitch, as well as suppress a false pitch. For 

example, in Figure 4, candidate at true pitch will have 

more weight than the candidate at double pitch.    

 
Figure 2. Block diagram of the EAMDF-based pitch detection. 

 
 

After weight assignment, the channel(s) with 

highest weighted candidate(s) will be selected. If the 

selected channels contain the same highest weighted 

candidate, then this candidate is detected as the final 

pitch. Otherwise the candidates of the channels are 

added lag by lag, and the same weight assignment 

procedure is applied on the added candidates. Then the 

candidate with highest weight is selected as the final 

pitch. If several candidates with same highest weight 

exist, the candidate with the maximum height is 

detected as pitch. 

 

5. Experiments 
 

5.1. Database 
 

The performance of the proposed EAMDF-based pitch 

detection algorithm is evaluated using the Keele pitch 
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extraction reference database [13]. There are five male 

(M) and five female (F) speakers in the database. The 

data consists of a phonetically balanced English text of 

around 35 second. Speech data is sampled at 20 kHz 

with 16-bit resolution. The pitch values are provided at 

100 Hz frame rate with 26.5 ms window. We added 

white Gaussian noise to the clean speech at different 

SNR (SNR = 10 dB, 5 dB, 0 dB, -5dB, -10 dB).  
 

 
Figure 3. Illustration of the use of several band-pass filters [(b) to 

(e)] instead of a single low-pass filter (f) for (a) female voiced 

frame. The first two filters can correctly determine pitch from 

minimum peak (encircled) obtained by the EAMDF, while the low-

pass filter produces double pitch error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. (a) A male voiced frame with SNR = -5 dB (white noise), 

(b) mirroring of EAMDF and (c) candidate refinement and weight 

assignment of the noisy speech. Mirroring is used to convert 

notches of EAMDF into peaks. Higher peaks (within pitch range) 

are retained and assigned weights corresponding to presence / 

absence of harmonics. 

 

In our experiment, we use all the female (F1, F2, 

F3, F4, and F5) and male voices (M1, M2, M3, M4, 

and M5) from Keele database. The results of individual 

female speaker are averaged to give average result for 

female speakers, and similarly the results of individual 

male speakers are averaged to give average result for 

male speakers. 

 

5.2. Experimental Setup 
 

We evaluate AMDF, HRAMDF, CAMDF, and the 

proposed EAMDF-based pitch detection algorithms on 

Keele pitch database. AMDF, HRAMDF, and CAMDF 

involve pitch detection using only minimum peak. For 

a fair comparison, we also present the result using 

EAMDF without any post processing. 

The window length is set to 26.5 ms and frame rate 

is 100 Hz. The errors are reported in terms of average 

percentage gross pitch error (%GPE). Gross pitch error 

is measured if the measured pitch defers 1 ms from the 

actual pitch. The true pitch values are obtained from 

the original database. Some instances of pitch values 

from that database correspond to half / double pitch 

errors or ‘-1’ that are manually corrected. Results are 

shown based on these manually corrected values. 

Segmental SNR is used for evaluation. 

 
Table 1. Comparison of different methods in terms of %GPE. The 

results are on male speech contaminated with white noise at 

different SNR. 

Method Clean 10 dB 5 dB 0 dB -5 dB -10 dB

AMDF 9.69 13.44 17.15 20.36 34.89 71.46

HRAMDF 8.01 11.32 16.13 18.84 31.43 68.79

CAMDF 7.26 10.69 15.46 17.79 29.45 66.39

EAMDF 5.36 8.43 13.57 15.72 24.50 61.87

EAMDF + 

post 

processing

0.52 2.47 4.10 6.19 12.43 38.12

 
 

Table 2. Comparison of different methods in terms of %GPE. The 

results are on female speech contaminated with white noise at 

different SNR. 

Method Clean 10 dB 5 dB 0 dB -5 dB -10 dB

AMDF 11.58 15.64 19.12 23.39 39.03 73.29

HRAMDF 10.32 13.52 18.32 21.31 36.39 70.63

CAMDF 9.47 12.09 17.58 19.84 34.61 68.78

EAMDF 6.80 10.19 16.89 17.10 29.47 63.54

EAMDF + 

post 

processing

0.83 2.96 3.15 4.98 10.99 41.69
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Table 3. Comparison between the proposed EAMDF and WAC [8] 

at SNR = 0 dB for five males (M1, M2, M3, M4, and M5) speech. 

Method M1 M2 M3 M4 M5

WAC 16.01 43.67 33.46 16.38 31.42

EAMDF 15.58 41.80 31.04 15.80 30.14

EAMDF + post 

processing
6.03 16.31 12.86 6.31 11.71

 
 

Table 4. Comparison between the proposed EAMDF and WAC [8] 

at SNR = 0 dB for five females (F1, F2, F3, F4, and F5) speech. 
 

 
 

 

 
 

Figure 5. The average performance in terms of %GPE of different 

methods at low SNRs. 

 

5.3.  Results and Discussion 

Tables 1 and 2 show %GPE of the different methods 

for male and female speech, respectively, at different 

SNR. From these tables we can see that the proposed 

EAMDF based pitch detection has the least %GPE for 

both male and female speech at different SNR. Even 

without post processing and only by selecting 

minimum as pitch period, the proposed EAMDF 

performs better than CAMDF. For example, in SNR = 

0 dB, the original AMDF has 20.36% GPE, HRAMDF 

has 18.84%, CAMDF gives 17.79%, while EAMDF 

reduces it to 15.72% for male speech. 

    However, post processing that include candidate 

refinement and weight assignment, has a great impact 

on reducing error. For instance, applying post 

processing to EAMDF further reduces GPE to 6.19% 

from 15.72% in the above example.  

   Figure 5 shows the average performance (male and 

female) in terms of %GPE of the different methods at 

low SNRs (SNR = 0 dB, -5 dB, -10 dB). From the 

plots, the superiority of the proposed EAMDF based 

pitch detection method can easily be seen in very noisy 

condition. 

     A comparative evaluation in terms of half and 

double pitch errors for a female voiced speech segment 

consisting of 112 frames at SNR = 10 dB is illustrated 

in Figure 6. AMDF produces many half and double 

pitch errors, which are marked as deviation in dashed 

line. HRAMDF and CAMDF reduce the errors, 

however, at the cost of new double pitch error 

(encircled in the figure). EAMDF further reduces the 

error without introducing any new error, and the 

proposed EAMDF based pitch detection matches with 

the true pitches throughout the segment. 

    It can be noted that the proposed EAMDF is 

evaluated and compared with other AMDF-based 

family of pitch detection. However, we also compare 

the proposed method with one of the ACF-based pitch 

extraction algorithm called weighted autocorrelation 

(WAC) [15]. The WAC reported here includes no post-

processing steps. The results are given in Table 3 for 

male speech and in table 4 for female speech. From 

these tables, we can see that proposed EAMDF has 

comparable performance with WAC for male speech 

and far better performance for female speech even 

without the post-processing. It can be mentioned that 

WAC involves many multiplication, whereas EAMDF 

involves only addition / subtraction. 

 
Figure 6. Pitch error in different methods for a female voiced 

segment of 112 frames at SNR = 10 dB. (a) AMDF produces many 

half and double pitch errors, while (b) HRAMDF and (c) CAMDF 

reduce error at the cost of new double pitch error (encircled). (d) 

EAMDF has less error, and (e) the proposed EAMDF based pitch 

detection has no error. 

 

6. Evaluation in Restaurant Noise 
 

We evaluate the proposed EAMDF-based PDA with 

AMDF, HRAMDF, and CAMDF in color noise also. 

The noise we consider is restaurant noise, which is 

taken from Freesound [4]. The noise was taken at a 

hotel during breakfast, and the filename was chosen as 

22529_LG_Breakfast04.wav. The recording was done 

with 44.1 kHz, and we downsample it to 20 kHz. The 

waveform of the restaurant noise, its spectrogram, and 

pitch contour are shown in Fig. 7. This kind of noise is 
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chosen in our experiment to evaluate the pitch 

detection algorithms in a real-world scenario. 

Restaurant noise is one of the difficult noises to deal 

with, because there are many human voices in this 

noise that introduces new pitches in addition to the 

pitch of main speaker. The noise is added artificially to 

the clean speech from the Keele pitch database at 

different SNR. Experimental setup for this evaluation 

is similar to as described in section 5. 
 

 
 

Figure 7. Wave signal of a restaurant noise, and its spectrogram 

and pitch contour. 

 

The experimental results are shown in Table 5 and 

Table 6 for male and female speakers, respectively. 

From these tables, we can easily see the superiority of 

the proposed EAMDF-based PDA. If we compare 

these tables with Tables 1 and 2, we can find that 

%GPE in restaurant noise is much higher than in white 

noise. For example, at SNR = 0 dB and male speakers, 

for white noise EAMDF without post processing has 

15.72% GPE, while for restaurant noise it has 32.47% 

GPE, which is almost double comparing to white 

noise. This is quite understandable with the fact that 

the background speakers present in restaurant noise 

contribute some pitch as shown in Figure 7 and this 

causes false detection of pitch of the main speaker. The 

false pitch is very difficult to remove even with the 

post-processing, unless we apply some multi-pitch 

tracking procedures. 

 

7. Conclusions 
 

A noise robust pitch detection method based on 

EAMDF was presented. First, EAMDF was introduced 

to overcome the shortcomings of the original AMDF 

and its existing improvements. The EAMDF spread 

over previous and next frames along with current 

frame, and thereby possesses greater smoothing power. 

Then post processing was applied on the EAMDF. An 

experiment shows efficient noise robustness of the 

proposed method both in white and color (restaurant) 

noise. This method can significantly contribute to 

speech/music discrimination, voice-enabled security, 

among others. 
      

Table 5. Comparison of different methods in terms of %GPE. The 

results are on male speech contaminated with restaurant noise at 

different SNR. 
 

 
 

Table 6. Comparison of different methods in terms of %GPE. The 

results are on female speech contaminated with restaurant noise at 

different SNR. 
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