
178 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

A Survey of High-Level Programming

Languages in Control Systems

Fernando Valles-Barajas

 Faculty of Engineering, Universidad Regiomontana, México

Abstract: This paper explains how advanced programming language concepts can be used to increase the readability and

maintainability of control process software. The programming language concepts presented in this paper are: function

pointers, variable argument functions and three concepts related to object-oriented programming: polymorphism, relationship

of composition between classes and class methods. The advantage of every one of these concepts is demonstrated by using

control applications. The paper also demonstrates that intelligent control algorithms can be improved by using these concepts.

C and C++ programming languages are used to implement the code of the control systems.

Keywords: Kalman filter, intelligent control, adaptive control systems, polymorphism, function pointers, and object-oriented

programming.

Received March 6, 2009; accepted November 5, 2009

1. Introduction

Today, many systems are controlled by a control

system. Examples of control applications are: robotics,

manufacturing processes, military applications and

medical devices among others. To control a process,

control engineers must obtain a model of the process to

be controlled [13]. With this model a control law is

then designed in such a way that the entire control

system fulfils the requirements of the system users.

This control law is later implemented using a

programming language. To get robust software the

programming language must be carefully chosen by

control engineers. If this aspect is not considered when

the control system is constructed, the software will be

difficult to maintain and understand.

It is important for control engineers to have some

knowledge of the advantages of the different

programming paradigms. This will help them in the

choosing of the right language.

Motivation of the paper: there have been many

control applications reported in control engineering

literature that show a poor use of the concepts of

programming languages. Some of the applications

using some of the concepts presented in this paper do

not formally explain them. The main goal of this paper

is to explain these concepts to the control engineering

community so they are able to obtain better software.

Related works: in [11] graphical variant modelling

is introduced. This modelling technique is a kind of

object-oriented modelling where the classes are

graphically specified and the inheritance between

classes is defined by stating the differences between

the derived classes and the base classes in the

subclasses. This novel modelling technique is applied

to build an experimental tool that models systems. The

tool is based on Simulink, the graphical modeller of

MATLAB. The authors present an interesting example

which shows the benefits of the approach; an abstract

inverted pendulum is defined and then two inverted

pendulums (one linear and one non-linear) are defined.

With this example the authors demonstrate that the

common behaviour of the inverted pendulum does not

have to be repeated in the more specific cases and only

the differences must be specified.

Modelica is a modelling language designed to

specify mathematical models of complex systems [6].

Every model is represented as a class. The variables

defined inside the classes represent data related to the

system model. In object-oriented languages the

behaviour is usually specified using methods (as in

Java or member functions such as in C++); in

Modelica the behaviour is defined using equations.

Once the system is specified using variables and

equations that relate these variables, the user can

perform simulations to have a better understanding of

the system being modelled.

In [9] an exhaustive study is found on the impact of

object-oriented programming in Computer-Aided

Control System Design (CACSD). The benefits of

object-oriented programming (encapsulation, reuse of

data and classes among others) in CACSD are

demonstrated by the use of examples.

Papers [4, 5] review programming languages in

robotics. The author reviews general-purpose

languages, like Java. Specific-purpose languages such

as the Forth language are also studied. The advantages

and disadvantages of these approaches are analyzed in

the paper.

A Survey of High-Level Programming Languages in Control Systems 179

Outline of the paper: in this section the motivation

has been indicated. The following section provides an

explanation of the programming concepts that will be

used to implement control systems. Section 3 applies

these concepts to control systems. The last section

contains concluding remarks.

2. Concepts of Programming Languages

2.1. Function Pointers

A function pointer is type of pointer that exists in

programming languages that are based on the C

programming language [10]. Even though pointers to

functions are one of the most difficult uses of pointers

(this could be the reason why they are frequently

underutilized), they provide an effective form of

subprogram generality. By using function pointers, a

function to be executed can be selected on run-time

from a set of functions, thus decreasing software

complexity. The usefulness of functions pointers is

illustrated in Figure 1.

#include <math.h>

double get_integral(double a, double b,

double (*fp)(double)){

double sum = 0.0, x;

int n;

for(n = 0; n <= 100; n++){

x = a + n*(b-a)/100.0;

sum += fp(x) * (b-a)/101.0;

}

return sum;

}

int main(int argc, char **argv){

double (*fp)(double);

double a, b, result;

fp = &cos;

// get the values of a and b from the user

result = get_integral(a, b, fp);

return 0;

}

Figure 1. Getting the defined integral using function pointers.

The first line of the main function (double (*fp)(double);)

declares a function pointer called fp. The third line of

the main function (fp = &cos;) initializes the pointer fp.

To achieve this task the address of some function using

the reference operator & must be given; in this case the

address of the cosine function is given. The

get_integral function, which implements the

equation ∫
a

b
dxxf)(, is called in the main function by

passing the address of the function pointer fp. Any

function with one double parameter and returning a

double type can be passed as the third argument of the

function get_integral. This function can be made in a

module and distributed to potential users who do not

have to change any line of code of this function. This

means that by using function pointers the level of

reusability can be increased.

2.2. Variable Argument Functions

Variable argument list functions (also known as

variadic functions) are functions that can accept a

variable number of arguments. Even the data type of

the arguments is unknown. This type of function is

useful when the number of parameters to be passed is

unknown.

Figure 2 shows an example of variadic functions. To

declare that a function has a variable list of parameters,

fixed parameters are written as usual and then three

dots are written to indicate the possibility of variable

parameters.

#include <stdargs.h>

void variadic_function(int a, int b,...){

va_list l_arg;

//b is the last fixed parameter

va_start(l_arg, b);

double d1 = va_arg(l_arg, double);

int i1 = va_arg(l_arg, int);

// processing of d1 and i1

va_end(l_arg);

}

Figure 2. Example of a variadic function.

To access the list of variable parameters, variable

argument macros defined in the stdarg.h library are

used. These macros are: va_arg, va_start and va_end.

The macro va_start initializes the list pointer l_arg to

the beginning of the list of variable arguments. Then

the macro va_arg(l_arg, data_type) is called every

time one element of the variable argument list needs to

be recovered. The data type of the list of variable

arguments should be known prior to using it in a

variable argument function, as the second argument of

this macro implies. After getting the elements from the

variable list, the macro va_end is used which ends the

use of the list pointer l_arg.

2.3. Object-Oriented Programming

Object-Oriented Programming (OOP) is a

programming technique in which entities that exist in a

180 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

system are modelled by using classes [9, 16]. Inside a

class, attributes and behaviour common to all the

elements that belong to a class are specified. One of the

advantages of using a class is the protection of

attributes; these are only accessed using the methods

defined inside a class. This characteristic of classes is

called encapsulation and it is used to maintain the

consistency of class data.

The following relationships between the entities of a

system can be modelled: composition, association,

dependency and generalization.

The concept of polymorphism, which is one of the

fundamental concepts of OOP, is explained as follows.

2.3.1. Polymorphism

Polymorphism means multiple implementations one

interface [3]. This is a mechanism used in

programming languages to provide more readable

code. There are two types of polymorphism,

polymorphic types and polymorphism related to

functions. Operator overloading and function

overloading are both types of function polymorphism.

By using operator overloading the meaning of one

operator can be expanded. As an example, let us

analyze the sum operator + which is defined in

programming language to work with integer and real

numbers.

It is well known that a valid operation for complex

numbers is the sum of complex numbers, but in many

programming languages this data type is not included

and therefore this operation is not defined.

class Complex{

private:

 float real, imag;

public:

 Complex();

 Complex(float, float);

 Complex operator+(Complex);

 // other operations

};

int main(int argc, char **argv){

 Complex c1(1, 2), c2(2, 4), c3;

 c3 = c1 + c2;

 return 0;

}

Figure 3. An example of operator overloading.

By using operator overloading, not only the sum

operation for complex numbers can be defined but also

other valid operations of the complex numbers. Fig. 3

presents one example that implements the operations of

complex numbers. Without using this characteristic the

operations would have being implemented with

functions, resulting in a more difficult code to read.

2.3.2. Instance and Class Methods

A class can be defined as a template to create objects.

All the objects created from a template share attributes

and behaviour. The behaviour of objects is

implemented by using methods. To perform an

operation on an object, a method has to be defined.

Sometimes an operation is not related to one specific

object. Methods that only apply to one object are called

instance methods and methods that apply to the whole

class are called class or static methods. An example of

a class method is a method that returns the number of

objects created from a class.

3. Application of Advanced Programming

Concepts to Implement Control

Algorithms

In this section the advanced concepts of programming

languages described in the previous section are applied

to build software related to control systems. The

following list explains how these concepts are applied

to control systems:

• Operator overloading, which is a kind of

polymorphism, is explained using the Kalman filter.

It will be shown that this concept is not exclusive of

object-oriented programming; it also exists in

procedural programming.

• Function pointers will be applied to neural networks

and genetic algorithms. These algorithms were

included in this paper because of their strong

application in control engineering. For example,

genetic algorithms have been applied in control

engineering to identify processes and to tune

controllers [12]. On the other hand, the use of neural

networks in control engineering is also intensive.

Neural networks have been applied to detect faults

in control systems, to model processes and to control

non-lineal processes [14].

• Variable argument functions will be applied in the

calculation of the control signal u of a PID

controller.

• The concept of inner classes is applied to model the

composition relationship between an adaptive

control system and its components (supervisor,

process, controller, parametric adaptation algorithm

and controller design).

• The concept of class methods will be illustrated by

building a class assigned to check the stability of

processes.

3.1. Implementing Kalman Filters Using

Operator Overloading

To illustrate the concept of operator overloading, which

is a kind of polymorphism, let us suppose that the

states of a process needs to be estimated. Also, suppose

A Survey of High-Level Programming Languages in Control Systems 181

that the states are not directly available but can be

inferred from noisy measurements. A solution for this

problem is the Kalman filter. A Kalman filter is an

online-recursive algorithm that estimates the states of a

system based on noisy measurements [8]. The system

is modelled by the discrete-time linear equation:

11 −− ++= kkkk wBuAxx (1)

using noisy measurements represented by the equation.

kkk vHxy += (2)

where:

• x∈R
n
 is a vector containing the state of the process.

• A∈R
n×n

 is the state transition matrix and it relates

the state of the system at a instant k-1 to the state at

instant k.

• The B∈R
n×l
 matrix relates the control input u∈R

l
 to

the state x.

• w∈R
n
 represents the uncertainty in the process and

is modeled as white noise having a normal

probability distribution),0()(QNwp ∼ . v models

the noise in the measurement and is also modeled as

white noise),0()(RNvp ∼ .

• y∈R
m
 is the process measurement vector.

• H∈R
m×n

 is the measurement matrix and it relates the

state of the system with the measurements.

In the Kalman filter,
−
kx̂ is a priori state estimate at

time k and is calculated based on past values of the

output y. kx̂ as a posteriori state estimate at time k and

is calculated based on past and current values of the

output y.

initialize k←0

set initial estimates for 1ˆ −kx , 1−kP

loop

 I.- predictor step

 1.- project the state ahead

 2.- project the error covariance ahead

 II.- corrector step

1.- compute the Kalman gain kK

 2.- measure the process to obtain ky

3.- update the a posteriori state estimate kx̂

4.- update the a posteriori error covariance kP

 increase k

end loop

Figure 4. N-dimensional Kalman filter algorithm.

Using
−
kx̂ and kx̂ a priori estimate error covariance

−
kP and a posteriori estimate error covariance kP can be

obtained. This is done by first getting a priori and a

posteriori estimate error (
−− −≡ kkk xxe ˆ and

kkk xxe ˆ−≡). The a priori estimate error covariance is

then defined as][T

kkk eeEP −−− = and the a posteriori

estimate error covariance is defined as][T

kkk eeEP = .

A Kalman filter algorithm has two steps. A predictor

step and a corrector step. Fig. 4 contains the algorithm

to implement the N-dimensional Kalman filter.

 where steps I-1, I-2, II-1, II-3 and II-4 are given

respectively by equations 3-7.

kkk BuxAx += −
−

1
ˆˆ (3)

QAAPP T

kk += −
−

1 (4)

[] 1−−− += RHHPHPK T

k

T

kk
 (5)

()−− −+= kkkkk xHyKxx ˆˆˆ (6)

() −−= kkk PHKIP (7)

To implement the Kalman filter algorithm a matrix

library can be made as shown in Figure 5.

In the main function of Figure 5 the code to

implement equation 5 is presented. As the reader may

notice, this implementation is cumbersome and does

not resemble equation 5. It will be difficult to

understand what this program does.

// matrix.h

float** multiply(float **, float**);

float** inverse(float **);

float** transpose(float **);

float** sum(float**, float **);

// definition of other prototypes

#include matrix.h

int main(int argc, char** argv){

 float **P, **H, **R;

 // other definitions and operations

 PHt = multiply(P, inverse(H));

 HPHt = multiply(H, PHt);

 // compute the Kalman gain

 K = multiply(PHt, inverse(sum(HPHt, R));

 return 0;

}

Figure 5. Implementation of equation 5 of the Kalman filter

algorithm without using operator overloading.

182 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

Another way to implement eq. 5 is to use operator

overloading. To do this, a class Matrix is defined in

Figure 6.

#ifndef MATRIX H

#define MATRIX H

using namespace std;

class Matrix{

 friend Matrix operator*(float, Matrix);

 friend Matrix operator*(Matrix, float);

 friend ostream&

 operator<<(ostream&, const Matrix&);

private:

 float **data;

 int n, m;

public:

 Matrix();

 Matrix(const Matrix&); // copy constructor

 ˜Matrix();

 Matrix operatorˆ(char);// transpose

 Matrix operatorˆ(int); // inverse

 Matrix& operator=(const Matrix&);

 Matrix operator+(const Matrix&) const;

 Matrix operator*(const Matrix&) const;

};

#endif

#include ‘‘Matrix.h’’

int main(int argc, char **argv){

 Matrix K, // Kalman gain

 P, // priori estimate error covariance

 H, // measurement matrix

 R;

 char T; //dummy

 // definition of other variables

 // operations to fill the necessary variables

 K = P*(HˆT)*((H*P*(HˆT)+R)ˆ-1);

 return 0;

}

Figure 6. Implementation of equation 5 of the Kalman filter

algorithm using operator overloading.

This example shows that by using operator

overloading, more readable code can be obtained; the

code of fig. 6 closely resembles eq. 5 so it is very easy

to understand this version of the Kalman filter

algorithm. And 2 are changed respectively to eq. 8 and

9 Here, one question may arise: is operator overloading

a new concept developed in the object-oriented

theory?. Amazingly the answer is negative. Let us

demonstrate this statement.

Let us modify the previous problem in such a way

that only one state is estimated as in equation 1.

kkkk wbuaxx ++= −1 (8)

kkk vhxy += (9)

The Kalman filter algorithm is changed to

initialize k←0

set an initial estimates for 1ˆ −kx , 1−kp

loop

a. predictor step

 1. project the state ahead

 2. project the error covariance ahead

 b. corrector step

 1. compute the Kalman gain
kk

 2. measure the process to obtain ky

 3. update the a posteriori state estimate kx̂

 4. update the a posteriori error covariance kp

 increase k

end loop

Figure 7. Scalar Kalman filter algorithm.

where steps I-1, I-2, II-1, II-3 and II-4 are given

respectively by equations 10-14.

kkk buxax += −
−

1
ˆˆ (10)

Qpap kk += −
−

1

2
 (11)

Rph

hp
k

k

k
k +
=

−

−

2

 (12)

()−− −+= kkkkk xhykxx ˆˆˆ (13)

()kkk hkpp −= − 1 (14)

The scalar Kalman filter algorithm can be

implemented in a procedural language, for example in

the C programming language. If equations 13 and 14

are carefully examined, it can be seen that the minus

operator is overloaded; this operator works with two

real numbers in equation 13 (ky and the result of
−
kxhˆ) and in equation14 this operator also works with

one integer (the number 1) and the result of khk .

The reader is referred to [8] to have a more

complete description of the Kalman filter.

A Survey of High-Level Programming Languages in Control Systems 183

3.2. How Intelligent Control Software Can be

Improved by Using Function Pointers

3.2.1. Genetic Algorithms

Genetic algorithms are search based algorithms used in

optimization [7]. These algorithms generate a set of

possible solutions represented as strings of bits. Every

string represents a chromosome of a particular

individual. The algorithm selects the best individuals

based on the strength reflected in the chromosomes.

This reveals that genetic algorithms are inspired in

natural selection.

Because the process of getting a model process and

designing a controller can be represented as

optimization problems, genetic algorithms have been

used to attack these problems [12].

struct individual{

/* chromosome string for an individual */

 String chromosome;

/* fitness of an individual */

 double fitness;

/* definition of other variables */

};

void obj_fun(struct individual *i,

 double (*fp)(double)))

 /* definition of variables */

 float x;

 /*

 * code to convert a string to a

 * number between [0,1].

 */

 i->fitness = fp(x);

}

Figure 8. Part of the implementation of a genetic algorithm by

using a function pointer.

The implementation of a genetic algorithm can be

improved by using function pointers. To understand

how function pointers can be used in genetic

algorithms, let us define the representation of an

individual using a structure and the function that

evaluates this individual, as is shown in Figure 8

The obj_fun converts an individual chromosome

from a string into a number between 0 and 1 (this is

stored in variable x). Then variable x is passed as an

argument to a function that evaluates the strength of the

individual. This function has to be specified by the user

and it depends on the problem to be optimized. In the

case of Figure 8, the function is passed as an argument

to the obj_fun. The main advantage of using a function

pointer in the obj_fun is that the user does not have to

modify this function to specify which function she/he

wants to optimize.

As can be seen from this example, function pointers

are used to select a function at run-time.

3.2.2. Neural Networks

Neural Networks (NN) are algorithms that imitate the

learning process of the human brain [15]. The most

important applications in control engineering are

identification and control of processes [14]. Let us

suppose that it is required to model a process which

can be modelled by using a first-order differential

equation. The transfer function of the equation is:

1
)(

+
=

−

s

Ke
sG

s

p λ

θ

 (15)

The discrete version of this equation is given by the

equation.

1

1

2

2

1

1

1

1
1

1

)(

)(

)(
)(−

−−−

−

−−
−

+
+

==
za

zbzbz

zA

zBz
zG

dd

p

 (16)

where:

τ/
1

sTea
−−= (17)

()τ/1 1 sTL
eKb

−−= (18)

()1//

2 −= − ττ LT
eKeb s (19)

Equation 16 can also be represented using the

recurrence equation:

)2()1()1()(211 −−+−−+−−= dkbdkubkyaky (20)

As can be observed, the value of output variable y at

instant k depends on its previous value and it also

depends on the values of the input variable u at the

instants k-d-1 and k-d-2. With this information a first-

order model can be obtained by using an NN. Fig. 9

shows the structure of the NN to model a first-order

process.

Figure 9. A neural network modelling a first-order process.

Each of the circles in this figure represents a

processing unit. The behaviour of this processing unit

depends of an activation function. Examples of

activation functions are: linear, log-sigmoid, step and

saturating linear.

184 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

The function that evaluates the output of a processing

unit could receive as an argument a function pointer

that points to an activation function; in this way the

code that evaluates a processing unit can be hidden to

the user. This would increase the level of usability.

3.3. Getting the Control Signal u by Using

Variable Argument Functions

A PID controller is one of the most widely used

controllers in industry [1]. This controller has the

following structure:

++= d

i

c s
s

sEKsU τ
τ
1

1)()((21)

where te is the control error and tu is the control signal

and Kc, iτ and dτ are respectively the proportional

gain, the integral time constant and the derivative time

constant. Kc, iτ and dτ are the controller parameters.

A PID controller is often called a three-term

controller because it consists of three terms: a

proportional term P, an integral term I and a derivative

term D .
In practical situations, the structure of equation 21 is

not used; instead the following structure is used:

+
−+−=)(

1

)(
)()()(sY

N

s

s

s

sE
sYsbRKsU

d

d

i

c τ
τ

τ
 (22)

This structure helps to mitigate strong variations in the

control signal due to noise and peaks in the control

signal are also avoided when a change in the set-point

occurs. To implement this control law it is necessary to

approximate the derivative and integral parts. The

proportional term ()ybrKP −= is implemented by

replacing the continuous variables by their sample

versions

()kkk ybrKP −= (23)

where k denotes the sampling instants.

The integral term is approximated by the equation

k

i

kk e
T

Kh
II +=+1

 (24)

in which the derivative is approximated by a forward

difference.

In equation 24 h represents the sampling time. The

derivative term is obtained by approximating the

derivatives by a backward difference:

)(11 −− −
+

−
+

= kk

d

d
k

d

d
k yy

NhT

NKT
D

NhT

T
D (25)

Figure 10 shows a way to implement the control law

of a PID controller using variable argument functions.
An identification of the process is made in the main

function before getting the control signal u and then

with the parameters of the process the PID controller

tuning is done. Here, the interesting point is that the

user can select the kind of controller; the user can

select a P, PI, PD or PID controller. The get_u function

only receives the necessary parameters to obtain the

control signal u. This function is made in such a way

that the necessary parameters are passed as fixed

parameters and the parameters that are not always

needed are passed using the variable argument function

syntax [10].

3.4. Implementation of an Adaptive Control

System Using Object-Oriented

Programming

In this section two concepts of object-oriented

programming languages are used to implement an

adaptive control system: inner classes and class

methods.

The configuration of an indirect adaptive control

system is shown in Figure 11. In this kind of adaptive

control, a model of the process)(1−zGp
is obtained

based on a set of input-output measurements ()(ku ,

)(ky) and then the controller)(1−zGc
 is designed with

this model [2]. The Parameter Adaptation Algorithm

(PAA) block is responsible for obtaining the parameter

vector of the process (see)(ˆ kPAAθ in fig. 11).

The controller design block specifies the parameters

of the controller)(1−zGc
based on the model obtained

by the PAA and on the desired performance specified

by the system operator.

An adaptive control system must control a process

in spite of disturbances)(1 kd ,)(2 kd , noise)(kn and

parametric variations of the process. The supervisor

block is in charge of detecting any event that may

provoke a decrease in the performance of system.

In fig. 11,)(kyref
 is the reference,)(ke is the control

error,)(ku is the manipulated variable and k is the
thk

sampling time.

A Survey of High-Level Programming Languages in Control Systems 185

#define P_Gc 0

#define PI 1

#define PD 2

#define PID 3

struct GcPID{

 double Kc, Ti, Td;

 double b, N;

};

double get_u(int PID_type, double Kc, double b,

 double y, double r, ...){

 va_list ap;

 va_start(ap, r);

 double T, Ti, P;

 static double I = 0.0, D = 0.0, yold =0.0;

 double a1, a2;

 switch(PID_type){

 case P_Gc:

 P = Kc*(b*r-y);

 I = D = 0.0;

 break;

 case PI:

 Ti = va_arg(ap, double);

 T = va_arg(ap, double);

 P = Kc*(b*r-y);

 I = I + ((Kc*T)/Ti) * (r-y);

 D = 0.0;

 break;

 case PD:

 a1 = va_arg(ap, double);

 a2 = va_arg(ap, double);

 P = Kc*(b*r-y);

 D = a1*D-a2*(y-yold);

 break;

 case PID:

 Ti = va_arg(ap, double);

 T = va_arg(ap, double);

 a1 = va_arg(ap, double);

 a2 = va_arg(ap, double);

 P = Kc*(b*r-y);

 I = I + ((Kc*T)/Ti) * (r-y);

 D = a1*D-a2*(y-yold);

 break;

 default:

 break;

 }

 yold = y;

 return (P + I + D);}

int main(int argc, char **argv){

 struct GcPID pid;

 double y, u, r;

 double T;

// tune the controller to get its parameters

// (Kc, Td, Ti)

// the user selects the type of controller

// calculate auxiliar variables for the D term

 double a1 = pid.Td/(pid.Td + pid.N*T);

 double a2 = pid.Kc*pid.Td*pid.N/(pid.Td +

 pid.N*T);

 // read y from the process and r form the user

 u = get_u(P_Gc, pid.Kc, pid.b, y, r);

 return 0; }

Figure 10. Implementing the control law of a PID controller using

variable argument functions.

Figure 11. Configuration of an adaptive control system.

3.4.1. Inner Classes

When a system is modelled using the object-oriented

paradigm, the first step for doing this is to identify the

entities in the system and then the relationships

between these entities must be established.

class ACS{

 class Gc{

 private: float *R, *S, *T;

 };

 class PAA{

 private: float forgeting_factor;

 };

 class Gp{

 private: float *A, *B, d;

 };

 class GcDesigner{

 public: tuneGc(){}

 };

 ACS(){} // constructor

};

Figure 12. Using inner classes to implement the adaptive control

system of Figure 11.

Five entities were identified in the control system of

Figure 11the supervisor, the controller, the process, the

controller design and the parameter adaptation

algorithm.

The first relationship established between these

entities is the composition relationship which is used to

model the relation between one component and the

parts that compose this component. In this case the

component is the Adaptive Control System (ACS) and

its parts are the blocks of Figure 11. In Figure 12 the

concept of inner classes was used to model the

relationships between the ACS and its parts.

186 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

3.4.2. Class Methods

Usually the methods defined inside a class are designed

so that the status of an object is recovered or modified.

For example the method tuneGc defined inside the

class GcDesigner of fig. 12 designs the controller Gc.

Sometimes a method that does not necessarily apply to

a particular object is needed; this type of method is

called class method. For example, in fig. 13 a class to

check the stability of a transfer function is defined. m1

and m2 are methods to check the stability of a process.

These methods could be based on the Liapunuv

stability or on the poles position of a characteristic

equation, for example.

class Gp{}

class Stability{

private:

 // definition of variables

public:

 static void m1(Gp);

 static void m2(Gp);

 // other declarations

};

int main(int argc, char **argv){

 Gp gp;

 Stability::m1(gp);

 return 0;

}

Figure 13. Using class methods to create a stability class.

4. Conclusions

In this paper five programming concepts were used to

implement control systems. The concept of

polymorphism was used to implement the n-

dimensional Kalman filter. By using the scalar Kalman

filter it was demonstrated that polymorphism also

exists in procedural languages like the C programming

language. Function pointers were used to make an

efficient implementation of genetic algorithms and

NN. A variable argument function was used to

implement a PID controller. The last concepts

presented in this paper were composition and class

methods which are two of the fundamentals of object-

oriented programming. The author of this paper

believes that the understanding of these concepts will

help to develop a code that is more readable and easier

to maintain.

References

[1] Astrom J. and Hagglund T., PID Controllers:

Theory, Design and Tuning, Hagglund Publisher,

1995.

[2] Astrom J. and Wittenmark B., Adaptive Control,

Dover Publications, 2008.

[3] Eckel B. and Allison C., Thinking in C++,

Volume 2: Practical Programming, Prentice

Hall, 2003.

[4] Frenger P., “Robot Control Techniques, Part

One: A Review of Robotics Languages,”

Computer Journal of SIGPLAN Notices, vol. 32,

no. 4, pp. 27-31, 1997.

[5] Frenger P., “Robot Control Techniques, Part

Two: Forth as a Robotics Language,” Computer

Journal of SIGPLAN Notices, vol. 32, no. 6, pp.

19-22, 1997.

[6] Fritzson P., Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1,

Wiley-IEEE Press, 2003.

[7] Goldberg E., Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-

Wesley Professional, 1989.

[8] Grewal M., Kalman Filtering-Theory and

Practice Using MATLAB, Press Wiley, 2001.

[9] Jobling W., Grant A., Barker W., and Townsend

P., “Object-Oriented Programming in Control

System Design: A Survey,” Computer Journal of

Automatica, vol. 30, no. 8, pp. 1221-1261, 1994.

[10] Kernighan W. and Ritchie M., The C

Programming Language, Prentice Hall, 1998.

[11] Kinnucan P. and Mosterman P., “A Graphical

Variant Approach to Object-Oriented Modeling

of Dynamic Systems,” in Proceedings of the

Summer Computer Simulation Conference, USA,

pp. 513-521, 2007.

[12] Kristinsson K. and Dumont A., “System

Identification and Control Using Genetic

Algorithms,” Computer Journal of IEEE

Transactions on Systems, Man, and Cybernetics,

vol. 22, no. 5, pp. 1033-1046, 1992.

[13] Landau D. and Zito G., Digital Control Systems:

Design, Identification and Implementation.

(Communications and Control Engineering),

Springer, 2006.

[14] Narendra S. and Parthasarathy K., “Identification

and Control of Dynamical Systems Using Neural

Networks,” Computer Journal of IEEE

Transactions on Neural Networks, vol. 1, no. 1,

pp. 4-27, 1990.

[15] Norgaard M., Ravn O., Poulsen K., and Hansen

K., Neural Networks for Modelling and Control

of Dynamic Systems: A Practitioner's Handbook,

Springer, 2008.

[16] Stroustrup B., The C++ Programming

Language: Special Edition, Addison-Wesley,

2000.

A Survey of High-Level Programming Languages in Control Systems 187

Fernando Valles-Barajas obtained

a graduate degree in computer

science at Center for Research and

Graduate Programs of La Laguna

Institute of Technology in 1991. He

received an MS in control

engineering in 1997, and a PhD in

artificial intelligence in 2001, from Monterrey Institute

of Technology (ITESM) campus Monterrey. He was a

research assistant at Mechatronics Department of

ITESM Campus Monterrey (1997-2001). He received

certification as a PSP developer from the Software

Engineering Institute of Carnegie Mellon University in

2008. He is member of the IEEE and ACM. His

research interests include topics in software

engineering and control engineering. Currently, he is

full time professor in the Department of Information

Technology at Universidad Regiomontana, Monterrey,

Nuevo León, México.

