
The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011 1

A Constraint Programming Based Approach to

Detect Ontology Inconsistencies

Moussa Benaissa and Yahia Lebbah

Faculté des Sciences, Université d’Oran Es-Senia, Algeria

Abstract: This paper proposes a constraint programming based approach to handle ontologies consistency, and more

precisely user-defined consistencies. In practice, ontologies consistency is not still well handled in the current software

environments. This is due to the algorithmic and language limitations of the tools developed to handle the consistency

constraints. The idea of this paper is to tackle this problem by exploiting constraint programming which is proved to be

efficient and provides various techniques to handle many types of constraints on different domains.

Keywords: Constraint programming, filtering, ontologies, consistency checking, ontology evolution.

Received January 8, 2008; accepted May 17, 2008

1. Introduction

Ontologies have been widely adopted both in

academic and industrial applications. They are

entities evolving continuously. One of the main

aspects to consider during this evolution process is to

detect their consistencies. Consistency can be defined

as a set of constraints that should be verified. Below,

we distinguish three types of consistencies [6, 14]:

• Structural consistency: this consistency considers

constraints required by the underlying model of

the ontology and the representational language.

• Logical consistency: this consistency considers

logical constraints. Ontology must not contain

contradictory information.

• User-defined consistency: this consistency

considers constraints defined by the user.

Here, we are concerned with user defined

consistency. Ontology development environments

such as Protégé [10] include tools based on first order

logic. For example Protégé Axiom Language (PAL)

for Protégé enables to express consistency axioms as

a set of axioms. The work described in [7] consists of

studying existing ontologies and proposing a set of

axioms templates in order to facilitate composing the

user constraints. Nevertheless, algorithmic issues of

handling theses constraints are problematic.

Operational research and constraint (logic)

programming techniques provide efficient algorithms

which can be used to handle this problem. Except

Constraint Programming (CP), other techniques are

very specific. It is very difficult to process new

constraints with them. For example linear

programming can process only linear constraints.

Logic programming handles clauses in the Herbrand

space [5]. However the task of processing constraints

holding both on reals and Herbrand space is very

difficult since there are no algorithmic connections

between logic and linear programming.

Constraint programming overcomes this limitation

by allowing several constraints to be expressed on

various domains. It uses existing mathematical

techniques to process general constraints with generic

methods. In other terms, constraint programming is

not better than other techniques, but exploits and

combines them to process general constraints for

which there are no specific techniques.

This is exactly the purpose of this paper: how can

we exploit constraint programming to handle user-

defined consistency? We propose a constraint

programming based framework for processing the

constraints presented in [5].

The paper is organized as follows. We begin by

motivating this work and illustrating the proposed

approach with an example. In section 4, we present

user axioms classification developed in an empirical

study [5]. Section 5 introduces constraint

programming and more particularly the Constraint

Satisfaction Problems (CSP) notation and its generic

algorithms. In section 6, we present our contribution.

It is a constraint programming model for the

classification presented in section 4. In section 7, we

introduce two approaches to handle consistency.

Next, in section 8, we provide two approaches to

exploit the model elaborated in section 6. Conclusion

and some perspectives conclude the paper.

2. Motivation and Contribution

Ontologies are nowadays ubiquitous. Their number,

their complexity and the domains they model are

increasing considerably. Ontology management

systems should be developed to support the user.

2 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

Ontology languages cannot capture all the

knowledge embedded in various application domains.

So, it is necessary to extend them to make easy the

expression and the treatment of other aspects of

knowledge such as constraints. In fact, some

expressiveness issues have been considered by some

works [7], but, to our knowledge, there are no

efficient systems for handling large ontologies with

constraints in real contexts. This complexity aspect is

particularly critical in dynamic industrial applications

where system performance is required.

Our contribution consists in adopting constraint

programming as the framework to process ontology

constraints. This is a natural extension to the current

trend which uses logic programming to handle

ontology constraints. Actually, constraint

programming is recognized as the appropriate

framework for studying combinatorial problems. It

offers more general and powerful tools than those of

logic programming.

3. Tasks Assignment Problem

In order to illustrate our approach, we consider a

tasks assignment problem. We have two sets: the

tasks T and the persons P. T is defined as T = {A, M,

C, O, D}; A for Administration, M for Maintenance,

C for Commercial, O for Conception, and D for

Development. The instances of P are the set {Pierre,

Michel, Corinne, Julie, Bernard, Jean, Patrice}

which denotes the enterprise employees.

We aim to assign tasks to persons so that the

following constraints are verified:

• The employee must execute at least one task.

• The employee cannot execute more than one task.

• The number of assignments of some task should

be greater than some minimal value and lower

than some maximal value. For example A[1,2]

means that the task A is affected to at least one

person and to at most two persons. The

cardinalities constraints for the different tasks are

A[1, 2], M[1, 3], C[1, 1], O[1, 2], and D[1, 5].

Let be the following preferences:

• Pierre prefers the tasks A, M and C.

• Michel prefers the tasks D, M and C.

• Corinne prefers the tasks A and M.

• Julie prefers the tasks A and M.

• Bernard prefers the tasks A, M and C.

• Jean prefers the tasks O and D.

• Patrice prefers the tasks O and D.

A solution that verifies the above constraints is:

Pierre, Michel, Corinne, Julie, Bernard, Jean,

Patrice realize respectively the tasks A, M, A, M, C,

O and D.

3.1. Ontological Modeling of the Tasks

Assignment Problem

The above problem can be modeled with the

following ontology as shown in Figure 1. We have

two concepts: T whose instances are the tasks and P

whose instances are enterprise employees.

We have two slots: The slot can-do: this slot has P

and T as respectively the domain and the range. It

captures employee preferences. We represent it as

follows:

Can-do ={(Pierre, A), (Pierre, M), (Pierre, C),

(Michel, M), (Michel, C), (Michel, D), (Corinne, A),

(Corinne, M), (Julie, A),(Julie, M), (Bernard, A),

(Bernard, M), (Bernard, C), (Jean, O), (Jean, D),

(Patrice,O) ,(Patrice, D)}.

The slot is-realized-by: This slot has T and P as

respectively the domain and the range. It represents

the problem solution. With cardinality constraints, we

associate the following user-defined axioms:

Figure 1. Ontology model.

The value A, of the class T, has a number of

occurrences ranging from 1 to 2 within the slot is-

realized-by. And with the same manner:

1. The value M ranges from 1 to 3.

2. The value C ranges from 1 to 1.

3. The value O ranges from 1 to 2.

4. The value D ranges from 1 to 5.

We can abstract the above axioms by the following

template: the value ___ of class __ has a minimal

number of occurrences equal to __ and a maximal

number of occurrences equal to __ for the slot __.

3.2. The Problem

Let us suppose that some changes occur in this

environment by introducing new data (e.g., new

employees, new tasks, or new constraints on

employee preferences). It is necessary to maintain

ontology consistency after these changes. Obviously,

this task is hard to realize manually. The manager

may not find easily the solution. The question is: how

can we help the manager?

3.3. The Proposed Solution

The solution we propose is based on constraint

programming. More precisely, we translate the above

ontology to a Constraint Satisfaction Problem (CSP)

Concept : P

can-do Is-realized-by

Concept : T

A Constraint Programming Based Approach to Detect Ontology Inconsistencies 3

and use filtering techniques to reduce the search

space.

The CSP is defined as follows (for the details see

the following sections):

• The persons are denoted as variables.

• The slot can-do defines variables domains.

• The axioms template defined above can be

modeled with global constraints such as Global

Cardinality Constraint (GCC) [12]. The filtering

algorithm proposed in [11] determines the set of

all inconsistent values with GCC. This reduces the

search space and makes easy finding a consistent

solution.

4. User Axioms Classification

The constructs of ontology languages such as

Ontology Web Language (OWL), though they cover

the global definition of ontological knowledge base,

do not allow the expression of some constraints

between different ontology components.

Figure 2. Example of a template.

For example, constraints on roles values of the

same class instances cannot be expressed. To

overcome this deficiency and help the users, ontology

development environments such as Protégé [10]

include tools, generally based on first order logic

such as PAL (Protégé Axiom Language), to capture

these axioms.

However, it is pointed out [8] that these tools are

not exploited and only few ontologies contain user

defined axioms. The reason behind this weakness is

the complexity [7] of languages underlying these

tools.

To solve this problem, some works [7, 13] suggest

specific user interfaces that make easy axioms

expression without using these languages. Below we

describe briefly the approach proposed in [7] on

which we have elaborated our contribution.

The approach described in [7] consists of studying

significant existing ontologies and deriving templates

from user defined axioms. About twenty templates

that cover 85% of user defined axioms have been

abstracted in this study.

An environment has been developed as a plug-in

of the protégé environment. It consists in an interface

that allows the users to compose axioms by “filling in

the blanks”. In Figure 2, we give an example of such

templates [7].

5. Constraint Programming

Constraint Programming (CP) is a problem solving

environment exploiting various techniques coming

from artificial intelligence, and operational research.

It has been successfully applied to many problems in

various domains such as planning and scheduling. It

is particularly efficient to solve combinatorial

problems.

Within CP, a specific framework called Constraint

Satisfaction Problem (CSP) is defined. Below we

present briefly this framework and we recommend

the specialized references for further details [1, 3].

5.1. Definition of CSP

Formally, a CSP P is defined as a triple (X, D, C)

where:

• X a set of n variables x1,…, xn.

• D a set of finite domains D(x1), …, D(xn) where

D(xi) is the domain of the variable xi.

• C = {C1, ..., Cm} a set of constraints defined on

some variables. A constraint Ci is defined on a

subset of variables. A solution is an assignment of

values to the variables such that all the constraints

are satisfied.

• For example, let be the following CSP:

X = {x, y, z}

D = {D(x), D(y), D(z)} where

 D(x) = D(y) = {1, 2}, D(z) = {1, 2, 3, 4}.

C = {C1(x, y), C2(y, z), C3(x, z)}, where

 C1(x, y): x ≠ y,

 C2(y, z): y ≠ z,

 C3(x, z) : x + 1 ≥ z.

5.1.1. Solving CSPs

CSP solving techniques are organized according to

the following algorithmic components: filtering,

exploration and enumeration. Filtering reduces the

search space induced by the CSP. Exploration

explores intelligently the search space. Let be some

CSP. If filtering cannot reduce the domains to a

single solution or cannot prove the non-existence of

solutions, then the values of the variables domain are

enumerated.

The exponential complexity of this solving process

is due essentially to enumeration. Filtering has

usually a weak polynomial complexity.

More precisely [12], each constraint has a specific

filtering algorithm. It removes, from the domains of

constraints variables, all the values for which some

constraint cannot be satisfied. These values are called

non-locally consistent.

Arc-consistence [9] is the most used general

property of filtering algorithms. Below, we give an

informal introduction and some illustrations and we

Every instance of class__ appears at least once in slot __ for

any instance of class __.
Example: Every student has at least one advisor.

Every instance of Class Student appears at least once in slot

advice: Class Professor for any instance of Class Professor.

4 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

refer the reader to specialized references [1, 3] for

more details.

When a value v of some variable xi violates a

constraint Cj, this value cannot participate to a

solution; so it must be removed. We say that the

value v of the variable xi has no support in the

constraint Cj, or more commonly: we say that v is not

arc-consistent. In opposite, a value v of xi, for which

we can find values in the other variables of the

constraint Cj, is called arc-consistent. Let be the CSP

given above. We can notice that the value 1 for x has

the support 2 in y in the constraint C1; in the same

way for 2. However, in C3, the value 4 for z has not a

support in C3, and then it is removed. It is the unique

value that must be removed with the arc-consistency

property. The arc-consistency can be verified on

various types of binary constraints (where each

constraint holds on at most two variables) in a time

weakly polynomial. There does not exist an efficient

global algorithm for n-ary constraints; however

algorithms exist for specific constraints such as the

constraint of difference x1 ≠ x2 ≠ … ≠ xn.

If a value v of some variable xi leads to a solution

for all constraints, we say that this value is globally

consistent, otherwise it is removed. Reaching the

global consistency of some value is NP-complete. So,

filtering with the global consistency is naturally of

exponential complexity. For example in the above

CSP we see that the values 1 and 2 for z cannot be

completed in x and y to form a solution, so they are

removed. However the value 3 finds 2 in x and 1 in

y.

Hence, the arc-consistency filtering leads to the

following domains D(x) = D(y) = {1, 2}, D(z) = {1,

2, 3}. And the global consistence filtering leads to the

following domains D(x) = D(y) = {1, 2}, D(z) = {1,

2, 3}.

In the following sections, we detail how to use

filtering algorithms to detect ontology

inconsistencies.

5.2. Dynamic CSPs

The CSP presented above is static. Its different

components (e.g., variables, domains and constraints)

do not change during solving. Nevertheless, in

practice [15], this assumption is not usually verified,

particularly when we are confronted to dynamic

problems.

The dynamic CSP model [4] has been introduced

to manage the changes occurring during solving.

Below, we give a formal definition of dynamic CSPs.

Definition [15], a Dynamic CSP (DCSP) is a

sequence (P1, P2, …, Pn) where for each i ∈ 1 .. n:

• Pi = (X, D, C
i
) denotes a CSP.

• Cai denotes a set of added constraints.

• Csi denotes a set of removed constraints.

• Csi ⊆ C
i-1

 and C
i
 = C

i-1
 + Cai - Csi.

Note that this definition is so general that it can

consider any CSP. It is the case when Csi are all

constraints of Pi-1. In fact, we suppose that only a

portion of constraints are added or removed at each

step i. (The approach described in section 7.2 can be

modeled with a dynamic CSP where the changes

model is known a priori. Indeed, the CSP Pi+1 results

from the CSP Pi by reducing the domain Di of the

variable xi to a single value vi.)

6. CP Model for Ontologies Axioms

We show how the axioms templates elaborated in [7]

can be translated to constraints within the CSP

framework. This translation allows efficient

algorithms developed in constraint programming to

be used. The objective is to verify the user-defined

constraints efficiently. We propose two schemes to

translate axioms to CSP constraints [2].

Below, we give some translations of some axioms

presented in [8]. The others are detailed in the

appendix section.

Scheme 1: let be the class C. We note:

• I1, …, In: The instances of class C.

• R1, …, Rm: The roles associated to the class C.

• Range(Ri): The set of values associated to the role

Ri.

For the role R, we consider the following

correspondence:

• xi corresponds to Ii, i=1...n: the instances Ii are

considered as the CSP variable xi.

• Di = D(xi) = Range(R): The domain Di of the

variable xi is equal to the range of R.

The user defined axioms can then be expressed as

CSP constraints. We give below an example.

Example

• Axiom: every instance of the class C must have a

unique value for the role R.

• Corresponding CSP constraint: The axiom

mentioned above can be expressed by the

constraint: Alldiff(x1, …, xn) [11].

Scheme2

Let be some class C.

• I1, …, In: The instances of class C.

• R1, …, Rm: The roles associated to the class C.

We consider the following correspondence:

• xi corresponds to Ri, i=1,..., m: the roles Ri are

considered as CSP variable xi.

• Di = D(xi) = Range(Ri): the domain D(xi) of the

variable xi is equal to the range of Ri.

The user defined axioms can then be expressed as the

CSP constraints. We give below an example.

A Constraint Programming Based Approach to Detect Ontology Inconsistencies 5

Example

• Axiom: for every instance of the class C the roles

Ri and Rj cannot have the same value.

• Corresponding CSP constraint: The axiom

mentioned above can be expressed by the

constraint xi ≠ xj.

7. Processing the Constraints

Let be a CSP modeling axioms coming from the

scheme of some ontology. In order to detect

inconsistent values we propose two approaches:

1. An incomplete approach: in this approach, the

filtering algorithms associated to the constraints

are executed iteratively until all constraints are

locally consistent. This process detects and

computes all values of the variables that are

locally inconsistent with each constraint

separately. Obviously, this procedure does not

detect the global inconsistencies, i.e. the

inconsistencies concerning all the constraints

simultaneously.

2. A complete approach: in this approach we proceed

with two phases. The first phase consists in

applying a global solving algorithm to find all

solutions. The second one examines the solutions

set and detects the globally inconsistent values.

Obviously, the complete approach is the ideal one as

it detects all the inconsistencies. However, it is

computationally very expensive because of its NP-

Hard nature. Here, the enumeration is forced by the

guarantee that all values lead to solutions.

The incomplete approach, due to its low

complexity, can be a reasonable approach as it

enables finding inconsistencies as the user fixes the

ontology variables without, however, ensuring that

these values lead to solutions.

In the following, we propose architectures to

integrate CP in inconsistencies detection. In practice,

we can use the complete approach if it is not

computationally very expensive; otherwise we opt for

the incomplete one.

8. Consistent Handling of Changes

In this section we propose two approaches to support

the user in managing consistently the ontology

changes. These approaches go beyond the simple

detection of inconsistencies. They offer user means

ensuring the ontology evolution towards a consistent

state. In the first approach, qualified with systematic,

we describe the system architecture. For the second

approach, qualified with interactive, we propose an

interaction model between a user and a CP solver.

This interaction leads to the final consistent ontology.

8.1. Systematic Approach

This approach consists in generating, a priori, all

inconsistent values with ontology constraints. This

set will be exploited to analyze the user input. Below,

we describe the system architecture and the

inconsistency checking process.

8.1.1. System Architecture

The proposed system contains the following

components as shown in Figure 3.

1. The EZPAL interface: this interface is developed

by [7] as a plug-in in the Protégé editor. It allows

the user introducing his axioms simply by

instantiating predefined templates. The axioms are

then stored in axioms base.

2. The translator: this component translates the

axioms in CSP Constraints. It uses the

transformation base and generates the CSP

constraints.

3. Inconsistent values generator: this component

executes a set of filtering algorithms developed in

constraint programming. It generates all the

inconsistent values with CSP constraints generated

by the translator.

4. Inconsistency checker: this component uses the

inconsistent values base generated above and

generates all the inconsistent values in the user

data flow. A feedback is returned to the user.

8.1.2. The Process of Consistency Checking

The process of consistency checking proposed here

can be divided into two phases as shown in Figure 3.

 Figure 3. Specification of the environment.

Phase 1: the ultimate objective of this phase is to

generate inconsistent values that enable detection of

Inconsistent

values base

Inconsistent

values generator.

Inconsistent

values

User Input

Transformation

Base

Consistency

checker

CSP

Constraints

Translato

Interface

EZPAL

Axioms

Base

6 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

inconsistent values in the user data flow introduced in

phase 2. This phase can be divided into two steps:

• Step 1: CSP constraints generation. The user

composes his axioms by instantiating appropriate

templates. He uses the EZPAL interface [7]. Then,

these axioms are transformed into CSP constraints

by the translator.

• Step 2: inconsistent values generation. The values

that violate the CSP constraints, developed in the

previous step, are generated. At this level, the

filtering algorithms generate efficiently, a priori,

all the values inconsistent with CSP constraints

generated in step 1 above.

Phase 2: The ultimate objective of this phase is to

detect the inconsistent values introduced in the user

data flow. This phase can be divided into two steps:

• Step 1: formulation of the user request. The user

request is assumed here to be of high complexity,

in the sense that it contains a significant amount of

data:

• The different classes to be modified.

• For every class, the different instances values for

different roles. This information can be new, for

instance, when adding instances or updating

data.

• Step 2: Inconsistency detection. The inconsistency

checker detects all the inconsistent values

introduced in the user data flow in step 1 of phase

2 mentioned above. For this purpose, it uses the

inconsistent values base.

The inconsistent values set are then returned to the

user as a system feedback.

8.2. Interactive Approach

We give the interaction model between the user and a

CP solver. This interaction has the particularity of

conducting to a final consistent state as shown in

Figure 4.

 Figure 4 . Dialogue model.

8.2.1. The Interaction Model

Let be a CSP of n variables, the interaction model

consists of a succession of n cycles. Each cycle

consists of two successive phases described below.

Phase 1: the user sends a message to the solver.

This message consists of a request. The purpose of

the request is the computation of all values of xi

domain, Di, that are consistent with the constraint C.

At this level the request embodies the following

information:

• The domains D1, …, Di-1 reduced to values v1, …,

vi-1 determined in previous cycles.

• Di, …, Dn as defined in the initial CSP.

Phase 2: The solver sends a message to the user,

which consists in an answer to the request formulated

in Phase 1. The solver computes the set Ei (the set of

all values of the variable xi belonging to Di that are

consistent with the constraint C) which is transmitted

to the user.

• In Phase 1 of cycle 1, the CSP transmitted is the

initial one.

• The end of interaction occurs when the user sends

an end message to the solver.

• At the end of each cycle, the user selects a value

from the set returned by the solver and restarts the

following cycle.

8.3. Comparison

The interactive approach has the following

advantages:

1. The performance of filtering algorithms developed

in constraint programming enables a real time

interaction.

2. Interaction between the user and the solver

converges to a consistent ontology.

3. The interaction model makes easy to the user

selecting the affected value.

In the other hand, the systematic approach has the

advantage of reducing the search space to only

consistent values. This allows the user managing

consistently the ontology changes. However, this

approach requires also user intervention.

9. Conclusions and Perspectives

In this paper we showed that constraint programming

can really serve ontologies consistency management.

More precisely, filtering algorithms developed in

constraint programming can contribute efficiently to

the ontology user defined consistency checking. We

proposed a translation model of axioms to constraints

which is the core of an environment for supporting

the user in managing consistently the ontology

changes.

({x1,…,xn}, {D(x1),…,D(xn)}, C)

E1

({x1,…,xn}, {D(x1)={v1},D(x2),…,D(xn)}, C)

Ei

En

 Dialogue end.

({x1,…,xn}, {D(x1)={v1},…,D(xi),={vi},…,,D(xn)}, C)

Solver User

A Constraint Programming Based Approach to Detect Ontology Inconsistencies 7

Large CSPs (with many variables), however,

should be generated by the system. This is the main

limit of the approach presented here. We are

considering this issue by studying the boundary upon

which the dialogue model will be hardly practicable.

The first perspective of this work is to implement

our framework as a Protégé plug-in. In fact, the

system is under development. The second perspective

is to consider more general axioms not mentioned in

[7].

The system presented here is built upon axioms

which are abstractions of constraints expressed in

much significant ontologies belonging to various

domains. Hence, the system applications range is

large: bioinformatics, management, etc., It can be

plugged in every ontology management system.

References

[1] Apt K., Principles of Constraint Programming,

Cambridge University Press, 2003.

[2] Beldiceanu N., Carlson M., Demassey S., and

Petit T., “Global Constraints Catalog: Past,

Present and Future,” Computer Journal of

Constraints, vol. 12, no. 1, pp. 21-62, 2007.

[3] Dechter R., Constraint Processing, Morgan

Kaufmann Press, 2003.

[4] Dechter R. and Dechter A., “Belief

Maintenance in Dynamic Constraint

Networks,” in Proceedings of 7
th
 National

Conference on Artificial Intelligence, USA, pp.

37-42, 1988.

[5] Fages J., Programmation Logique et Par

Contraintes, Ellipses Presse, 1996.

[6] Haase P. and Stojanovic L., “Consistent

Evolution of OWL Ontologies,” Lecture Notes

in Computer Science, 2005.

[7] Hou J., Musen A., and Noy F., “EZPAL:

Environment for Composing Constraint

Axioms by Instantiating Templates,”

International Journal of Human Computer

Studies, vol. 62, no. 5, pp. 578-596, 2005.

[8] Hou J., Noy F., and Musen A., “A Template-

Based Approach Toward Acquisition of Logical

Sentences,” in Proceedings of the Conference

of Intelligent Information Processing

Montréal, Canada, pp. 25-28, 2002.

[9] Mackworth A., “Consistency in Networks of

Relations,” Computer Journal of Artificial

Intelligence, vol. 8, no. 1, pp. 99-118, 1997.

[10] The Protégé Project, http://protege.stanford.edu.

[11] Régin C., “A Filtering Algorithm for

Constraints of Difference Constraint

Satisfaction Problems,” in Proceedings of

Association for the Advancement of Artificial

Intelligence, USA, pp. 362-367, 1994.

[12] Régin C., “Modélisation et Contraintes

Globales en Programmation Par Contraintes,”

Habilitation à Diriger des Recherches,

Université de Nice Sophia Antipolis, 2004.

[13] Staab S. and Maedeche A., “Axioms are

Objects too Ontology Engineering Beyond the

Modelling of Concepts and Relations,” in

Proceedings of The 14
th
 Electronic Cultural

Atlas Initiative, Workshop on Ontologies and

Problem Solving Methods, Berlin, pp. 159-163,

2000.

[14] Stojanovic L., “Methods and Tools for

Ontology Evolution,” PHD Thesis, University

of Karlshue, 2004.

[15] Verfaillie G. and Jussien N., “Constraint

Solving in Uncertain and Dynamic

Environment a Survey,” Computer Journal of

Constraints, vol. 10, no. 3, pp. 253-281, 2005.

Moussa Benaissa received his

engineering degree and his Master

degree in computer science from

the University of Es-Senia Oran,

Algeria, in 1988 and 1992,

respectively. He is actually a

lecturer at University of Oran Es-

Senia. His research interest includes e-learning,

ontologies, and constraint programming.

Yahia Lebbah received his

engineering degree in 1995 from

the University of Es-Senia Oran,

Algeria, and his MS degree in 1996,

from the University of Paris 13, and

PhD degree in 1999 from Ecole des

Mines de Nantes, France. All

degrees are in computer science. He is currently a

professor in the Computer Science Department at the

University of Es-Senia Oran, Algeria.

Appendix

C denotes some class. I denotes an instance. R

denotes a slot.

Axiom 1. Every instance of class C must have a

unique value in slot R.

 Constraint: ∀ I1, I2 ∈ C, R(I1) ≠ R(I2).

Axiom 2. For every instance of class C, slots Ri and

Rj cannot have the same value.

 Constraint: ∀ I ∈ C, Ri(I) ≠ Rj.

Axiom 3. At least one instance of class C contains

value v in slot R.

Constraint: ∃ I ∈ C, v ∈ R(I).

Axiom 4. If an instance of class C contains value v1

in slot Ri it must contain value v2 in slot Rj.

Constraint: ∀ I ∈ C, v ∈ Ri(I) ⇒ v2 ∈ Rj(I).

8 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

Axiom 5. Every instance of class C1 appears at least

once in slot R of any instance of Class C2.

Constraint: ∀ I1 ∈ C1, I1 ∈ R(C2).

Axiom 6. For every instance of class C, value of slot

Ri is > (or =, <), than the value of slot Rj.

Constraint: ∀ I ∈ C, Ri(I) op Rj(I) where op ∈

{>, =, <}.

Axiom 7. For every instance of class C, slot Ri and

slot Rj must have instances of the same class.

Constraint: ∀ I ∈ C, ∃ C1, Ri(I) ∈ C1 and Rj(I) ∈

C1.

Axiom 8. For every instance I1 of class C1, there

must be an instance I2 of class C2 which contains

I1 in R.

 Constraint: ∀ I1 ∈ C1, ∃ I2 ∈ C2, I1 ∈ R(I2).

Axiom 9. Every instance of class C that shares the

same value in slot Ri can not (resp. must) have

identical values in Rj.

Constraint: ∀ I1, I2 ∈ C, Ri(I1) = Ri(I2) ⇒ Rj(I1)

≠ Rj(I2) (resp. ∀ I1, I2 ∈ C, Ri(I1) = Ri(I2) ⇒

Rj(I1) = Rj(I2)).

Axiom 10. For every instance of class C1, value

of slot Ri must also be a value of slot Rj of an

instance of class C2.

 Constraint: ∀ I1 ∈ C1, ∃ I2 ∈ C2, Ri(I1) = Rj(I2).

Axiom 11. For every instances of class C slot Ri

cannot contain both instances of class C2 and

class C3.

 Constraint: ∀ I ∈ C, R(I) ∉ C2 ∩ C3.

Axiom 12. For every instance I1 of class C1 if the

value of slot Ri is an instance I2 of class C2, they

must share the same value in slot Rj for I1 and

slot Rk for I2.

 Constraint: ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ Rj(I1) =

 Rk(I2).

Axiom 13. For every instance I1 of class C1 slot

Ri must have values that are instances of classes

specified by slot Rj of class C2.

Constraint: ∀ I1 ∈ C1, Ri(I1) ∈ Rj(C2).

Axiom 14. If an instance I1 of class C1 has slot Ri

that contains value v then I2 of class C2 cannot

(resp. must) contain I1 in slot Rj.

Constraint: ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ I1 ∉ Rj(I2)

(resp. ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ I1 ∈ Rj(I2)).

Axiom 15. Every instance of class C1, which has

a value in slot Ri > (or =, <) than every (resp. at

least one) value of slot Rj of class C2.

Constraint: ∀ I1 ∈ C1, ∀ I2 ∈ C2, Ri(I1) op Rj(I2)

(resp. ∀ I1 ∈ C1, ∃ I2 ∈ C2, Ri(I1) op Rj(I2)) where

op ∈ {>, =, <}.

Axiom 16. For every instance I1 of class C1, if

the value of slot Ri has an instance I2 of class C2,

I2 must have value v in slot Rj.

Constraint: ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ Rj(I1) = v.

Axiom 17. For every instance I1 of class C1, if

the value of slot Ri has an instance I2 of class C2,

then there is an instance I3 of class C3 that

contains I2 in slot Rj of class C3.

Constraint: ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ ∃ I3 ∈ C3, I2

∈ Rj(I3).

Axiom 18. For every instance I1 of class C1, if

the value of slot Ri is an instance I2 of class C2,

then there is an instance I3 of class C3 that

contain I1 in slot R1 and I2 in slot R2.

Constraint: ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ ∃I3 ∈ C3,

Rj(I3) = I1, R2(I3) = I2.

Axiom 19. For every instance I1 of class C1, if

the value of slot Ri has an instance I2 of class

C2, then slot R1 of I1 has value > (or =,<) than

value of slot R2 of I2.

 Constraint: ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ R1(I1) op

R2(I2) where op ∈ {>, = >}.

Axiom 20. If an instance I1 of class C1 has

instance I2 of class C2 in slot R1 of I1 and I2 of

class C2 has instance I3 of class C3 in slot R2 of I2

then I3 must (resp. cannot) have I1 in slot R3.

Constraint: R1(I1) = I2 and R2(I2) = I3 ⇒ R3(I3) =

I1 (resp. R2(I2) = I3 ⇒ R3(I3) ≠ I1).

Axiom 21. For every instance I1 of class C1, if

the value of slot R1 has an instance I2 of class C2,

then if slot R1 of I1 has value v1 slot R2 of I2 has

value v2.

 Constraint: ∀ I1 ∈ C1, Ri(I1) = I2 ⇒ (R1(I1) = v1

 ⇒ R2(I2) = v2).

Axiom 22. Every instance I1 of class C1 which

contains value v in slot R1 must have values in

slot R2 which are instances of class C2.

Constraint: ∀ I1 ∈ C1, v ∈ R1(I1) ⇒ R2(I1) ∈ C2.

