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1. Introduction 

Ontologies have been widely adopted both in 

academic and industrial applications. They are 

entities evolving continuously. One of the main 

aspects to consider during this evolution process is to 

detect their consistencies. Consistency can be defined 

as a set of constraints that should be verified. Below, 

we distinguish three types of consistencies [6, 14]: 

• Structural consistency: this consistency considers 

constraints required by the underlying model of 

the ontology and the representational language. 

• Logical consistency: this consistency considers 

logical constraints. Ontology must not contain 

contradictory information. 

• User-defined consistency: this consistency 

considers constraints defined by the user. 

Here, we are concerned with user defined 

consistency. Ontology development environments 

such as Protégé [10] include tools based on first order 

logic. For example Protégé Axiom Language (PAL) 

for Protégé enables to express consistency axioms as 

a set of axioms. The work described in [7] consists of 

studying existing ontologies and proposing a set of 

axioms templates in order to facilitate composing the 

user constraints. Nevertheless, algorithmic issues of 

handling theses constraints are problematic.  

Operational research and constraint (logic) 

programming techniques provide efficient algorithms 

which can be used to handle this problem. Except 

Constraint Programming (CP), other techniques are 

very specific. It is very difficult to process new 

constraints with them. For example linear 

programming can process only linear constraints. 

Logic programming handles clauses in the Herbrand 

space [5]. However the task of processing constraints 

holding both on reals and Herbrand space is very 

difficult since there are no algorithmic connections 

between logic and linear programming. 

Constraint programming overcomes this limitation 

by allowing several constraints to be expressed on 

various domains. It uses existing mathematical 

techniques to process general constraints with generic 

methods. In other terms, constraint programming is 

not better than other techniques, but exploits and 

combines them to process general constraints for 

which there are no specific techniques. 

This is exactly the purpose of this paper: how can 

we exploit constraint programming to handle user-

defined consistency?  We propose a constraint 

programming based framework for processing the 

constraints presented in [5]. 

The paper is organized as follows. We begin by 

motivating this work and illustrating the proposed 

approach with an example. In section 4, we present 

user axioms classification developed in an empirical 

study [5]. Section 5 introduces constraint 

programming and more particularly the Constraint 

Satisfaction Problems (CSP) notation and its generic 

algorithms. In section 6, we present our contribution. 

It is a constraint programming model for the 

classification presented in section 4. In section 7, we 

introduce two approaches to handle consistency. 

Next, in section 8, we provide two approaches to 

exploit the model elaborated in section 6. Conclusion 

and some perspectives conclude the paper.  

 

2. Motivation and Contribution 

Ontologies are nowadays ubiquitous. Their number, 

their complexity and the domains they model are 

increasing considerably. Ontology management 

systems should be developed to support the user. 
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Ontology languages cannot capture all the 

knowledge embedded in various application domains. 

So, it is necessary to extend them to make easy the 

expression and the treatment of other aspects of 

knowledge such as constraints. In fact, some 

expressiveness issues have been considered by some 

works [7], but, to our knowledge, there are no 

efficient systems for handling large ontologies with 

constraints in real contexts. This complexity aspect is 

particularly critical in dynamic industrial applications 

where system performance is required. 

Our contribution consists in adopting constraint 

programming as the framework to process ontology 

constraints. This is a natural extension to the current 

trend which uses logic programming to handle 

ontology constraints. Actually, constraint 

programming is recognized as the appropriate 

framework for studying combinatorial problems. It 

offers more general and powerful tools than those of 

logic programming. 

 

3. Tasks Assignment Problem 

In order to illustrate our approach, we consider a 

tasks assignment problem. We have two sets: the 

tasks T and the persons P.  T is defined as T = {A, M, 

C, O, D}; A for Administration, M for Maintenance, 

C for Commercial, O for Conception, and D for 

Development. The instances of P are the set {Pierre, 

Michel, Corinne, Julie, Bernard, Jean, Patrice} 

which denotes the enterprise employees. 

We aim to assign tasks to persons so that the 

following constraints are verified: 

• The employee must execute at least one task. 

• The employee cannot execute more than one task. 

• The number of assignments of some task should 

be greater than some minimal value and lower 

than some maximal value. For example A[1,2] 

means that the task A is affected to at least one 

person and to at most two persons. The 

cardinalities constraints for the different tasks are 

A[1, 2], M[1, 3], C[1, 1], O[1, 2], and D[1, 5].  

Let be the following preferences: 

• Pierre prefers the tasks A, M and C. 

• Michel prefers the tasks D, M and C. 

• Corinne prefers the tasks A and M. 

• Julie prefers the tasks A and M. 

• Bernard prefers the tasks A, M and C. 

• Jean prefers the tasks O and D. 

• Patrice prefers the tasks O and D. 

A solution that verifies the above constraints is: 

Pierre, Michel, Corinne, Julie, Bernard, Jean, 

Patrice realize respectively the tasks A, M, A, M, C, 

O and D. 

 

3.1. Ontological Modeling of the Tasks 

Assignment Problem 

The above problem can be modeled with the 

following ontology as shown in Figure 1. We have 

two concepts: T whose instances are the tasks and P 

whose instances are enterprise employees. 

We have two slots: The slot can-do: this slot has P 

and T as respectively the domain and the range. It 

captures employee preferences. We represent it as 

follows: 

Can-do ={(Pierre, A), (Pierre, M), (Pierre, C), 

(Michel, M), (Michel, C), (Michel, D), (Corinne, A), 

(Corinne, M), (Julie, A),(Julie, M), (Bernard, A), 

(Bernard, M), (Bernard, C), (Jean, O),  (Jean, D), 

(Patrice,O) ,(Patrice, D)}. 

The slot is-realized-by: This slot has T and P as 

respectively the domain and the range. It represents 

the problem solution. With cardinality constraints, we 

associate the following user-defined axioms: 

 
Figure 1. Ontology model. 

 

The value A, of the class T, has a number of 

occurrences ranging from 1 to 2 within the slot is-

realized-by. And with the same manner:  

1. The value M ranges from 1 to 3. 

2. The value C ranges from 1 to 1. 

3. The value O ranges from 1 to 2. 

4. The value D ranges from 1 to 5. 

We can abstract the above axioms by the following 

template:  the value \_\_\_ of class \_\_ has a minimal 

number of occurrences equal to \_\_ and a maximal 

number of occurrences equal to \_\_ for the slot \_\_. 

 

3.2. The Problem 

Let us suppose that some changes occur in this 

environment by introducing new data (e.g., new 

employees, new tasks, or new constraints on 

employee preferences). It is necessary to maintain 

ontology consistency after these changes. Obviously, 

this task is hard to realize manually. The manager 

may not find easily the solution. The question is: how 

can we help the manager?  

 

3.3. The Proposed Solution  

The solution we propose is based on constraint 

programming. More precisely, we translate the above 

ontology to a Constraint Satisfaction Problem (CSP) 

Concept : P 

can-do Is-realized-by 

Concept : T 
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and use filtering techniques to reduce the search 

space. 

The CSP is defined as follows (for the details see 

the following sections): 

• The persons are denoted as variables. 

• The slot can-do defines variables domains. 

• The axioms template defined above can be 

modeled with global constraints such as Global 

Cardinality Constraint (GCC) [12]. The filtering 

algorithm proposed in [11] determines the set of 

all inconsistent values with GCC. This reduces the 

search space and makes easy finding a consistent 

solution. 

 

4. User Axioms Classification 

The constructs of ontology languages such as 

Ontology Web Language (OWL), though they cover 

the global definition of ontological knowledge base, 

do not allow the expression of some constraints 

between different ontology components.  

 
Figure 2. Example of a template. 

 

For example, constraints on roles values of the 

same class instances cannot be expressed. To 

overcome this deficiency and help the users, ontology 

development environments such as Protégé [10] 

include tools, generally based on first order logic 

such as PAL (Protégé Axiom Language), to capture 

these axioms. 

However, it is pointed out [8] that these tools are 

not exploited and only few ontologies contain user 

defined axioms. The reason behind this weakness is 

the complexity [7] of languages underlying these 

tools. 

To solve this problem, some works [7, 13] suggest 

specific user interfaces that make easy axioms 

expression without using these languages. Below we 

describe briefly the approach proposed in [7] on 

which we have elaborated our contribution. 

The approach described in [7] consists of studying 

significant existing ontologies and deriving templates 

from user defined axioms. About twenty templates 

that cover 85% of user defined axioms have been 

abstracted in this study. 

An environment has been developed as a plug-in 

of the protégé environment. It consists in an interface 

that allows the users to compose axioms by “filling in 

the blanks”. In Figure 2, we give an example of such 

templates [7]. 

 

5. Constraint Programming 

Constraint Programming (CP) is a problem solving 

environment exploiting various techniques coming 

from artificial intelligence, and operational research. 

It has been successfully applied to many problems in 

various domains such as planning and scheduling. It 

is particularly efficient to solve combinatorial 

problems. 

Within CP, a specific framework called Constraint 

Satisfaction Problem (CSP) is defined. Below we 

present briefly this framework and we recommend 

the specialized references for further details [1, 3]. 

 

5.1. Definition of CSP 

Formally, a CSP P is defined as a triple (X, D, C) 

where:  

• X a set of n variables x1,…, xn. 

• D a set of finite domains D(x1), …, D(xn) where 

D(xi) is the domain of the variable xi. 

• C = {C1, ..., Cm} a set of constraints defined on 

some variables. A constraint Ci is defined on a 

subset of variables. A solution is an assignment of 

values to the variables such that all the constraints 

are satisfied.  

• For example, let be the following CSP: 

X = {x, y, z} 

D = {D(x),  D(y), D(z)} where 

 D(x) = D(y) = {1, 2}, D(z) = {1, 2, 3, 4}. 

C = {C1(x, y), C2(y, z), C3(x, z)}, where  

 C1(x, y): x ≠ y, 

 C2(y, z): y ≠ z, 

 C3(x, z) : x + 1 ≥ z. 

 

5.1.1. Solving CSPs  

CSP solving techniques are organized according to 

the following algorithmic components: filtering, 

exploration and enumeration. Filtering reduces the 

search space induced by the CSP. Exploration 

explores intelligently the search space. Let be some 

CSP. If filtering cannot reduce the domains to a 

single solution or cannot prove the non-existence of 

solutions, then the values of the variables domain are 

enumerated. 

The exponential complexity of this solving process 

is due essentially to enumeration. Filtering has 

usually a weak polynomial complexity. 

More precisely [12], each constraint has a specific 

filtering algorithm. It removes, from the domains of 

constraints variables, all the values for which some 

constraint cannot be satisfied. These values are called 

non-locally consistent. 

Arc-consistence [9] is the most used general 

property of filtering algorithms. Below, we give an 

informal introduction and some illustrations and we 

Every instance of class__ appears at least once in slot __ for 

any instance of class __. 
Example: Every student has at least one advisor. 

Every instance of Class Student appears at least once in slot 

advice: Class Professor for any instance of Class Professor. 
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refer the reader to specialized references [1, 3] for 

more details. 

When a value v of some variable xi violates a 

constraint Cj, this value cannot participate to a 

solution; so it must be removed. We say that the 

value v of the variable xi has no support in the 

constraint Cj, or more commonly: we say that v is not 

arc-consistent. In opposite, a value v of xi, for which 

we can find values in the other variables of the 

constraint Cj, is called arc-consistent. Let be the CSP 

given above. We can notice that the value 1 for x has 

the support 2 in y in the constraint C1; in the same 

way for 2. However, in C3, the value 4 for z has not a 

support in C3, and then it is removed. It is the unique 

value that must be removed with the arc-consistency 

property. The arc-consistency can be verified on 

various types of binary constraints (where each 

constraint holds on at most two variables) in a time 

weakly polynomial. There does not exist an efficient 

global algorithm for n-ary constraints; however 

algorithms exist for specific constraints such as the 

constraint of difference x1 ≠ x2 ≠ … ≠ xn. 

If a value v of some variable xi leads to a solution 

for all constraints, we say that this value is globally 

consistent, otherwise it is removed. Reaching the 

global consistency of some value is NP-complete. So, 

filtering with the global consistency is naturally of 

exponential complexity. For example in the above 

CSP we see that the values 1 and 2 for z cannot be 

completed in x and y to form a solution, so they are 

removed. However the value 3 finds 2  in x and 1  in 

y. 

Hence, the arc-consistency filtering leads to the 

following domains D(x) = D(y) = {1, 2}, D(z) = {1, 

2, 3}. And the global consistence filtering leads to the 

following domains D(x) = D(y) = {1, 2}, D(z) = {1, 

2, 3}. 

In the following sections, we detail how to use 

filtering algorithms to detect ontology 

inconsistencies. 

 

5.2. Dynamic CSPs 

The CSP presented above is static. Its different 

components (e.g., variables, domains and constraints) 

do not change during solving. Nevertheless, in 

practice [15], this assumption is not usually verified, 

particularly when we are confronted to dynamic 

problems. 

The dynamic CSP model [4] has been introduced 

to manage the changes occurring during solving. 

Below, we give a formal definition of dynamic CSPs. 

Definition [15], a Dynamic CSP (DCSP) is a 

sequence (P1, P2, …, Pn) where for each i ∈ 1 .. n: 

• Pi = (X, D, C
i
) denotes a CSP. 

• Cai denotes a set of added constraints. 

• Csi denotes a set of removed constraints.  

• Csi ⊆ C
i-1

 and C
i
 = C

i-1
 + Cai - Csi. 

Note that this definition is so general that it can 

consider any CSP. It is the case when Csi are all 

constraints of Pi-1. In fact, we suppose that only a 

portion of constraints are added or removed at each 

step i. (The approach described in section 7.2 can be 

modeled with a dynamic CSP where the changes 

model is known a priori. Indeed, the CSP Pi+1 results 

from the CSP Pi by reducing the domain Di of the 

variable xi to a single value vi.) 

 

6. CP Model for Ontologies Axioms 

We show how the axioms templates elaborated in [7] 

can be translated to constraints within the CSP 

framework. This translation allows efficient 

algorithms developed in constraint programming to 

be used. The objective is to verify the user-defined 

constraints efficiently. We propose two schemes to 

translate axioms to CSP constraints [2].  

Below, we give some translations of some axioms 

presented in [8]. The others are detailed in the 

appendix section.  

Scheme 1: let be the class C.  We note: 

• I1, …, In: The instances of class C. 

• R1, …, Rm: The roles associated to the class C. 

• Range(Ri): The set of values associated to the role  

Ri. 

For the role R, we consider the following 

correspondence: 

• xi corresponds to Ii, i=1...n: the instances Ii are 

considered as the CSP variable xi. 

• Di = D(xi) = Range(R): The domain Di of the 

variable xi is equal to the range of R. 

The user defined axioms can then be expressed as 

CSP constraints. We give below an example. 

Example  

• Axiom: every instance of the class C must have a 

unique value for the role R. 

• Corresponding CSP constraint: The axiom 

mentioned above can be expressed by the 

constraint: Alldiff(x1, …, xn) [11]. 

Scheme2 

Let be some class C.  

• I1, …, In: The instances of class C. 

• R1, …, Rm: The roles associated to the class C. 

We consider the following correspondence: 

• xi corresponds to Ri, i=1,..., m: the roles Ri are 

considered as CSP variable xi. 

• Di = D(xi) = Range(Ri): the domain D(xi) of the 

variable xi is equal to the range of Ri. 

The user defined axioms can then be expressed as the 

CSP constraints. We give below an example. 
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Example  

• Axiom: for every instance of the class C the roles 

Ri and Rj cannot have the same value. 

• Corresponding CSP constraint: The axiom 

mentioned above can be expressed by the 

constraint xi  ≠ xj. 

 

7. Processing the Constraints   

Let be a CSP modeling axioms coming from the 

scheme of some ontology. In order to detect 

inconsistent values we propose two approaches:  

1. An incomplete approach: in this approach, the 

filtering algorithms associated to the constraints 

are executed iteratively until all constraints are 

locally consistent. This process detects and 

computes all values of the variables that are 

locally inconsistent with each constraint 

separately. Obviously, this procedure does not 

detect the global inconsistencies, i.e. the 

inconsistencies concerning all the constraints 

simultaneously. 

2. A complete approach: in this approach we proceed 

with two phases. The first phase consists in 

applying a global solving algorithm to find all 

solutions. The second one examines the solutions 

set and detects the globally inconsistent values. 

Obviously, the complete approach is the ideal one as 

it detects all the inconsistencies. However, it is 

computationally very expensive because of its NP-

Hard nature. Here, the enumeration is forced by the 

guarantee that all values lead to solutions. 

The incomplete approach, due to its low 

complexity, can be a reasonable approach as it 

enables finding inconsistencies as the user fixes the 

ontology variables without, however, ensuring  that 

these values lead to solutions. 

In the following, we propose architectures to 

integrate CP in inconsistencies detection. In practice, 

we can use the complete approach if it is not 

computationally very expensive; otherwise we opt for 

the incomplete one.  

 

8. Consistent Handling of Changes 

In this section we propose two approaches to support 

the user in managing consistently the ontology 

changes. These approaches go beyond the simple 

detection of inconsistencies. They offer user means 

ensuring the ontology evolution towards a consistent 

state. In the first approach, qualified with systematic, 

we describe the system architecture. For the second 

approach, qualified with interactive, we propose an 

interaction model between a user and a CP solver. 

This interaction leads to the final consistent ontology. 

 

8.1. Systematic Approach 

This approach consists in generating, a priori, all 

inconsistent values with ontology constraints. This 

set will be exploited to analyze the user input. Below, 

we describe the system architecture and the 

inconsistency checking process. 

 

8.1.1. System Architecture 

The proposed system contains the following 

components as shown in Figure 3.  

1. The EZPAL interface: this interface is developed 

by [7] as a plug-in in the Protégé editor. It allows 

the user introducing his axioms simply by 

instantiating predefined templates. The axioms are 

then stored in axioms base. 

2. The translator: this component translates the 

axioms in CSP Constraints. It uses the 

transformation base and generates the CSP 

constraints. 

3. Inconsistent values generator: this component 

executes a set of filtering algorithms developed in 

constraint programming. It generates all the 

inconsistent values with CSP constraints generated 

by the translator. 

4. Inconsistency checker: this component uses the 

inconsistent values base generated above and 

generates all the inconsistent values in the user 

data flow. A feedback is returned to the user. 

 

8.1.2. The Process of Consistency Checking 

The process of consistency checking proposed here 

can be divided into two phases as shown in Figure 3. 
 

 
         Figure 3. Specification of the environment. 

 

Phase 1: the ultimate objective of this phase is to 

generate inconsistent values that enable detection of 

Inconsistent 

values base 

Inconsistent 

values generator. 

Inconsistent 

values 

User Input 

 

Transformation  

Base 

Consistency 

checker 

CSP 

Constraints 

 

Translato

 

Interface 

EZPAL 

Axioms 

Base 
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inconsistent values in the user data flow introduced in 

phase 2. This phase can be divided into two steps:  

• Step 1: CSP constraints generation. The user 

composes his axioms by instantiating appropriate 

templates. He uses the EZPAL interface [7]. Then, 

these axioms are transformed into CSP constraints 

by the translator. 

• Step 2: inconsistent values generation. The values 

that violate the CSP constraints, developed in the 

previous step, are generated. At this level, the 

filtering algorithms generate efficiently, a priori, 

all the values inconsistent with CSP constraints 

generated in step 1 above.  

Phase 2: The ultimate objective of this phase is to 

detect the inconsistent values introduced in the user 

data flow. This phase can be divided into two steps: 

• Step 1: formulation of the user request. The user 

request is assumed here to be of high complexity, 

in the sense that it contains a significant amount of 

data: 

• The different classes to be modified. 

• For every class, the different instances values for 

different roles. This information can be new, for 

instance, when adding instances or updating 

data. 

• Step 2: Inconsistency detection. The inconsistency 

checker detects all the inconsistent values 

introduced in the user data flow in step 1 of phase 

2 mentioned above. For this purpose, it uses the 

inconsistent values base. 

The inconsistent values set are then returned to the 

user as a system feedback. 

 

8.2. Interactive Approach 

We give the interaction model between the user and a 

CP solver. This interaction has the particularity of 

conducting to a final consistent state as shown in  

Figure 4.  

 
          Figure 4 . Dialogue model. 

 

8.2.1. The Interaction Model 

Let be a CSP of n variables, the interaction model 

consists of a succession of n cycles. Each cycle 

consists of two successive phases described below. 

Phase 1: the user sends a message to the solver. 

This message consists of a request. The purpose of 

the request is the computation of all values of xi 

domain, Di, that are consistent with the constraint C. 

At this level the request embodies the following 

information: 

• The domains D1, …, Di-1 reduced to values v1, …, 

vi-1 determined in previous cycles. 

• Di, …, Dn as defined in the initial CSP. 

Phase 2: The solver sends a message to the user, 

which consists in an answer to the request formulated 

in Phase 1. The solver computes the set Ei (the set of 

all values of the variable xi belonging to Di that are 

consistent with the constraint C) which is transmitted 

to the user. 

• In Phase 1 of cycle 1, the CSP transmitted is the 

initial one. 

• The end of interaction occurs when the user sends 

an end message to the solver. 

• At the end of each cycle, the user selects a value 

from the set returned by the solver and restarts the 

following cycle. 

 

8.3. Comparison 

The interactive approach has the following 

advantages: 

1. The performance of filtering algorithms developed 

in constraint programming enables a real time 

interaction. 

2. Interaction between the user and the solver 

converges to a consistent ontology. 

3. The interaction model makes easy to the user 

selecting the affected value. 

In the other hand, the systematic approach has the 

advantage of reducing the search space to only 

consistent values. This allows the user managing 

consistently the ontology changes. However, this 

approach requires also user intervention.  

 

9. Conclusions and Perspectives 

In this paper we showed that constraint programming 

can really serve ontologies consistency management. 

More precisely, filtering algorithms developed in 

constraint programming can contribute efficiently to 

the ontology user defined consistency checking. We 

proposed a translation model of axioms to constraints 

which is the core of an environment for supporting 

the user in managing consistently the ontology 

changes.  

({x1,…,xn}, {D(x1),…,D(xn)}, C) 

E1 

({x1,…,xn}, {D(x1)={v1},D(x2),…,D(xn)}, C) 

Ei 

 

En 

 
 Dialogue end. 

({x1,…,xn}, {D(x1)={v1},…,D(xi),={vi},…,,D(xn)}, C) 

Solver  User 
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Large CSPs (with many variables), however, 

should be generated by the system. This is the main 

limit of the approach presented here. We are 

considering this issue by studying the boundary upon 

which the dialogue model will be hardly practicable. 

The first perspective of this work is to implement 

our framework as a Protégé plug-in. In fact, the 

system is under development. The second perspective 

is to consider more general axioms not mentioned in 

[7]. 

The system presented here is built upon axioms 

which are abstractions of constraints expressed in 

much significant ontologies belonging to various 

domains. Hence, the system applications range is 

large: bioinformatics, management, etc., It can be 

plugged in every ontology management system.  
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Appendix 

C denotes some class. I denotes an instance. R 

denotes a slot. 

Axiom 1. Every instance of class C must have a 

unique value in slot R.  

      Constraint: ∀ I1, I2 ∈ C, R(I1) ≠ R(I2). 

Axiom 2. For every instance of class C, slots Ri and 

Rj cannot have the same value. 

       Constraint: ∀ I ∈ C,  Ri(I) ≠ Rj. 

Axiom 3. At least one instance of class C contains 

value v in slot R.  

Constraint: ∃ I ∈ C, v ∈ R(I). 

Axiom 4. If an instance of class C contains value v1 

in slot Ri it must contain value v2 in slot Rj.  

Constraint: ∀ I ∈ C, v ∈ Ri(I)  ⇒ v2 ∈ Rj(I). 
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Axiom 5. Every instance of class C1 appears at least 

once in slot R of any instance of Class C2.   

Constraint: ∀ I1 ∈ C1, I1 ∈ R(C2). 

Axiom 6. For every instance of class C, value of slot 

Ri is > (or =, <), than the value of slot Rj.  

Constraint: ∀ I ∈ C, Ri(I) op Rj(I) where op ∈ 

{>, =, <}. 

Axiom 7. For every instance of class C, slot Ri and 

slot Rj must have instances of the same class.  

Constraint:  ∀ I ∈ C, ∃ C1, Ri(I) ∈ C1 and Rj(I) ∈ 

C1. 

Axiom 8. For every instance I1 of class C1, there 

must be an instance I2 of class C2 which contains 

I1 in R. 

       Constraint: ∀ I1 ∈ C1, ∃ I2 ∈ C2, I1 ∈ R(I2). 

Axiom 9. Every instance of class C that shares the 

same value in slot Ri can not (resp. must) have 

identical values in Rj.  

Constraint: ∀ I1, I2 ∈ C, Ri(I1) = Ri(I2)  ⇒ Rj(I1) 

≠ Rj(I2) (resp. ∀ I1, I2 ∈ C, Ri(I1) = Ri(I2)  ⇒ 

Rj(I1) = Rj(I2)). 

Axiom 10. For every instance of class C1, value 

of slot Ri must also be a value of slot Rj of an 

instance of class C2.  

       Constraint: ∀ I1 ∈ C1, ∃ I2 ∈ C2, Ri(I1) = Rj(I2). 

Axiom 11. For every instances of class C slot Ri 

cannot contain both instances of class C2 and 

class C3. 

       Constraint: ∀ I ∈ C, R(I) ∉ C2 ∩ C3. 

Axiom 12. For every instance I1 of class C1 if the 

value of slot Ri is an instance I2 of class C2, they 

must share the same value in slot Rj for I1 and 

slot Rk for I2. 

      Constraint: ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ Rj(I1) =  

      Rk(I2). 

Axiom 13. For every instance I1 of class C1 slot 

Ri must have values that are instances of classes 

specified by slot Rj of class C2.  

Constraint: ∀ I1 ∈ C1, Ri(I1) ∈ Rj(C2). 

Axiom 14. If an instance I1 of class C1 has slot Ri 

that contains value v then I2 of class C2 cannot 

(resp. must) contain I1 in slot Rj.  

Constraint: ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ I1 ∉ Rj(I2) 

(resp. ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ I1 ∈ Rj(I2)). 

Axiom 15. Every instance of class C1, which has 

a value in slot Ri > (or =, <) than every (resp. at 

least one) value of slot Rj of class C2.  

Constraint: ∀ I1 ∈ C1, ∀ I2 ∈ C2, Ri(I1) op Rj(I2) 

(resp. ∀ I1 ∈ C1, ∃ I2 ∈ C2, Ri(I1) op Rj(I2)) where 

op ∈ {>, =, <}. 

Axiom 16. For every instance I1 of class C1, if 

the value of slot Ri has an instance I2 of class C2, 

I2 must have value v in slot Rj.  

Constraint: ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ Rj(I1) = v. 

Axiom 17. For every instance I1 of class C1, if 

the value of slot Ri has an instance I2 of class C2, 

then there is an instance I3 of class C3 that 

contains I2 in slot Rj of class C3.  

Constraint:  ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ ∃ I3 ∈ C3, I2 

∈ Rj(I3). 

Axiom 18. For every  instance I1 of class C1, if 

the value of slot Ri is an instance I2 of class C2, 

then there is an instance  I3 of class C3 that 

contain I1 in slot R1 and I2 in slot R2.  

Constraint: ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ ∃I3 ∈ C3, 

Rj(I3) = I1, R2(I3) = I2. 

Axiom 19. For every  instance I1 of class C1, if 

the value of slot Ri has an instance  I2 of class 

C2, then slot R1 of  I1 has value > (or =,<)  than 

value of slot  R2 of I2. 

       Constraint: ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ R1(I1) op 

R2(I2) where op ∈ {>, = >}. 

Axiom 20. If an instance I1 of class C1 has 

instance I2 of class C2 in slot R1 of I1 and I2 of 

class C2 has instance I3 of class C3 in slot R2 of I2 

then I3 must (resp. cannot) have I1 in slot R3.  

Constraint: R1(I1) = I2 and R2(I2) = I3  ⇒ R3(I3) = 

I1 (resp. R2(I2) = I3  ⇒ R3(I3) ≠ I1). 

Axiom 21. For every instance I1 of class C1, if 

the value of slot R1 has an instance I2 of class C2, 

then if slot R1 of I1 has value v1 slot R2 of I2 has 

value v2. 

       Constraint: ∀ I1 ∈ C1, Ri(I1) = I2  ⇒ (R1(I1) = v1     

       ⇒ R2(I2) = v2). 

Axiom 22. Every instance I1 of class C1 which 

contains value v in slot R1 must have values in 

slot R2 which are instances of class C2. 

Constraint: ∀ I1 ∈ C1, v ∈ R1(I1) ⇒ R2(I1) ∈ C2. 

 

 

 


