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Abstract: The computing of stochastic bounds has become an efficient technique to obtain performance predictions for 

computer systems by the mean of Markovian models. However, the quality of these bounds may be affected by several 
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irreducibility of the model to show how it might influence the quality of bounds. 

 

Keywords: Stochastic bounds, multiprocessor system, availability, irreducibility, and Markov chain. 

 

Received January 15, 2009; accepted August 20, 2009 
 

 

1. Introduction 

Clusters, grids and multiprocessor systems have 

become popular computing platforms for 

computationally intensive applications with diverse 

computing needs [1].  The evaluation of such systems 

in order to tune an incorporated Quality of Service 

(QoS) control mechanism raises several problems that 

must be solved. One of the issues is to build and 

analyze stochastic models for the availability of the 

system which incorporates task deadlines, processors or 

network failures, overloading, and so on.   

In the context of Markov theory, exponential 

probability distribution functions are used. Such 

distribution functions facilitate the evaluation process 

with Markovian resolution techniques used to obtain 

exact predictions of the model. However, in most 

practical cases, a limitation due to the model state space 

size explosion occurs. To deal with this limitation, an 

issue consists in calculating a bound of the system 

availability. In fact, for such systems, we might be 

interested in knowing whether the system availability is 

larger than what is  necessary to execute an application 

and not necessary its exact value. 

The stochastic comparison of random variables has 

been introduced as an efficient technique in different 

applied probability domains [10]. In the case of 

Markovian analysis, an algorithm to compute stochastic 

bound has been developed by Fourneau et al. [5, 6]. 

Consider a Markov model with a transition matrix 

denoted P. When the exact solution of the model is too 

complex to be achieved, for reasons related principally 

to the size of P (resolution of XPP = XP, XP is a 

probability vector), the algorithm proposed by 

Fourneau et al. allows to construct another Markov 

chain (with a transition matrix Q). The new matrix, 

i.e., Q (called bounding matrix), permits to obtain 

bounds for the stationary measures of P. Moreover, the 

new chain is monotone according to the strong 

stochastic order (st) of Stoyan [10] (st-monotone), and 

can be strongly aggregated (the matrix is lumpable 

[2]) according to a user-defined partition of the state 

space. The aggregated matrix (Qagg) permits to 

analyze the chain at a reduced cost. In fact, the state 

space is then smaller and equal to the partition size. 

This procedure has been implemented in an algorithm 

called LIMSUB [6]. A variety of LIMSUB has been 

also implemented for high-level Markovian formalism 

such as Stochastic Automata Network (SAN) [7] 

where the chain is represented as a formula with 

tensor products of rather small matrices.  

However, a serious problem that is related to this 

procedure is to choose a partition that gives a good 

quality bound. The construction of the matrix Q is 

based on a transformation of the initial matrix P in 

order to ensure monotonicity and lumpability 

conditions. The bounds quality is then strongly related 

to the “quasi-monotonicity” and the “quasi-

lumpability” of the initial matrix reordered according 

to the partition. In [4], authors have studied the impact 

of monotonicity on the bounds quality. The 

lumpability is an important property because it permits 

the analysis of large Markov chains with a reduced 

state space in a very small time. However, the bounds 

quality depends on the type of states we aggregate 

together (states of heavy or lightly probability). On the 

other hand, irreducibility of Markov chain is also an 

important property that facilitates its stationary 

analysis. In [5, 6], authors present the conditions for 

the bounding matrix Q to be irreducible. These 
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conditions are related to the choice of the partition of 

the state space.  

In this paper, we show that irreducibility is an 

important factor for the choice of the partition and that 

a bad choice may lead to a poor quality of bounds. Our 

observation is illustrated by an availability model of a 

multiprocessors system, for which we calculate a bound 

for the probability of failure. This work permits to 

identify the cases where the computing of stochastic 

bound would be efficient in multiple domains of 

computer science. 

The paper organization is as follows. In section 2, 

we recall the initial concepts of the algorithm LIMSUB 

that calculates stochastic bounds. In particular, we 

present the impact of monotonicity and lumpability on 

the bounds quality. We also show the conditions 

necessary to ensure the irreducibility of the bounding 

matrix. These conditions form the basic point of our 

observation in order to show the impact of irreducibility 

on the bounds quality. In section 3, this impact is 

illustrated based on the multiprocessors model that is 

described. In section 4, we calculate bounds for the 

model focusing on the influence of irreducibility 

requested to analyze the bounding matrix. Section 5 

concludes the paper. 

 

2. Stochastic Bounds 

2.1. Algorithm LIMSUB 

In this section we consider only Discrete Time Markov 

Chain (DTMC). Continuous Time Markov Chain 

(CTMC) can be introduced similarly after an 

uniformization of the transition matrix.  Also, we are 

interested only by the stationary analysis of DTMC.  

Computing stochastic bound for the stationary 

distribution of a DTMC has been developed and 

implemented by Fourneau et al. in an algorithm called 

LIMSUB [6]. Consider an irreducible DTMC with a 

transition matrix P of size K, and denote the stationary 

distribution of the chain by XP (XPP=XP). Given a 

partition of the state space Par of size M (M ≤ K), 

LIMSUB computes a bounding matrix Q of P of size K, 

that is monotone and lumpable according to the 

partition Par. We denote the element of line “i”  and 

the column “j” of a matrix P by P[i,j]. 

The algorithm LIMSUB is composed of two 

principal phases: the first phase consists in ensuring the 

monotonicity of the bounding matrix, and the second 

phase deals with lumpability. Thus, without lack of 

generality, we present in a first step, the construction of 

the bounding matrix Q that is only monotone. In a 

second step, we describe the construction of the 

bounding monotone matrix that is lumpable. We denote 

the bounding matrix which is not lumpable by R and 

the lumpable matrix by Q (R is a special case of Q). 

 

In [5, 6], based on the strong stochastic order of 

Stoyan [10], the authors define the relation between R, 

respectively Q, and P by equation 1. 
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The first inequality implies that the matrix R is a super 

bound of P according to the strong stochastic order (P 

<st R). The second inequality means that the matrix R 

is monotonic. Denoting XR the stationary distribution 

vector of R, and if XP and XR exist, based on equation 

1 and according to the fundamental theorem of Stoyan 

then  XP <st XR, meaning that:  
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where XP(j), respectively XR(j), represents the 

probability of state “j” of the Markov chain 

represented by P, respectively R, (as shown in [6] for 

further details). 

Inequalities of equation 1 are the basic starting 

point of the algorithm LIMSUB to construct the 

matrix R. The idea consists in replacing these 

inequalities by a set of “limiting” equalities, leading to 

the algorithm. The equalities are shown in equation 3: 
 

• ∑∑ ==
=

K

jk k

K

jk k PR ],1[],1[
  ∀  Kj ,...,2,1=  

• ∑ ∑ ∑= = = ++
=

K

jk

K

jk

K

jk kikiki PRR ),max( ],1[],[],1[
    

∀ Kji ,...,2,1, =  
 

To illustrate these procedures, let us consider the 

matrices P and R of example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

In this example, the matrix R is a bound of the 

matrix P. Remark that elements of P and R respect the 

equalities given above. The matrix O represents errors 

or perturbations introduced in R relatively to P in 

order to ensure the monotonicity of R. In fact for each 

i and j, the value of O[i,j]  is given by: 
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For example, O[2,4]= (R[2,5] + R[2,4]) - (P[2,5] + 

P[2,4]) = (0.2 + 0.4) - (0.1 + 0.1) = 0.4, and O[3,2] = 

(0.3 + 0.1 + 0.4 + 0.2) - (0.3 + 0.5 + 0.1 + 0.1) = 0.  

We call this type of perturbations the monotonicity 

perturbations. In [4], authors observed that the bounds 

quality is strongly related to these perturbations. The 

authors focused on the calculation of a bound for the 

last state of the chain. They have remarked that, in 

particular, if the perturbations on the last column of the 

matrix are important, then the bounds quality would be 

poor. In our example, the probability vectors of the 

stationary distributions of R and P are given 

respectively by: XR = (0.0293, 0.2337, 0.0800, 0.4570, 

0.2000), and XP = (0.0684, 0.2248, 0.3165, 0.3223, 

0.0672). Remark that XP <st XR, meaning that XR is an 

upper bound of XP according to Stoyan stochastic order. 
 

• 0.0672 ≤ 0.2000. 

• 0.0672+ 0.3223 ≤ 0.2000+ 0.4570. 

• 0.0672 + 0.3223 + 0.3165 ≤ 0.2000 + 0.4570 +0.0800. 

• 0.0672 + 0.3223 + 0.3165 + 0.2248 ≤0.2000 + 0.4570+ 

0.0800+ 0.2337. 

• 0.0672 + 0.3223 + 0.3165 + 0.2248 + 0.0684 ≤0.2000+ 

0.4570+ 0.0800+ 0.2337+ 0.0293. 
 

Observe that the bounds quality of the last state, i.e., 

state 5, is poor relatively to its exact value (0.0672 ≤ 

0.2000).  This is related to the large monotonicity 

perturbations on the last column of R. 

On the other hand, the fundamental principle of 

LIMSUB is to compute a bounding matrix which may 

be aggregated according to a partition Par of the state 

space. The resolution of the aggregated matrix is 

performed on a smaller space whose size is equal to the 

partition size. We recall that Q will denote the 

bounding matrix that is monotonic and also lumpable. 

The notion of lumpability is recalled in definition 1. 

Definition 1: let Q be an irreducible stochastic 

matrix of a finite Markov chain, and let Par = {p1, p2… 

pM} be a partition of the state space of the chain (M is 

the size of the partition). We say that the chain is 

strongly aggregable (ordinary lumpable) according to 

Par if and only if for each states i1 and i2 of the same set 

pi of Par, we have that 
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for each set pk of Par. Consider a Markov chain, having 

a vector of stationary probabilities, denoted XQ, strongly 

aggregable according to a partition Par = {p1, p2, … , 

pM}. The transition matrix Q of the chain is then 

aggregable according to Par. Let Qagg the aggregated 

matrix and XQagg the associated vector of stationary 

probabilities. A fundamental property of this 

aggregation is [2]: 

∑ ∈
=
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Given an initial matrix of P of size K, and a partition 

of the state space Par = {p1, p2, … , pM}, the algorithm 

LIMSUB calculates implicitly a matrix Q of size K 

that is lumpable according to Par, st-monotone and 

which bounds P. However, it is the matrix Qagg of size 

M (the aggregation of Q) which is the output of the 

algorithm. Each element of Qagg is a macro-state that 

corresponds to states belonging to a set pi of Par.  

Finally, suppose that matrix P is composed of M
2
 

blocks, each block (i,j) represents transitions from the 

set pi to the set pj. The algorithm LIMSUB operates 

with decomposition per blocks of the initial matrix 

and requires two steps: the first one ensures the 

monotonicity inside a block, and the second one 

modifies the first column of the block in order to 

satisfy the constraints of lumpability. 

Recall the matrix P of example 1, and let us 

consider a partition Par = {p1, p2, p3} of the state 

space such that p1 = {1,2}, p2 = {3,4} and p5 = {5}. 

The matrix P and its bounding matrix Q which is 

lumpable according to Par are given in Example 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In this example Qagg represents the aggregated matrix 

of Q, The matrix A represents the perturbations 

introduced in order to ensure the aggregability of 

matrix Q. These perturbations are given, for each i and 

j, by: 

∑ =
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Thus, the value of A[1,3] = (0.2+ 0.3+ 0.2) - (0.1 + 0.3 

+ 0.2) = 0.1. Probability vectors of Q and Qagg are 

respectively given by XQ = (0.0260, 0.2340, 0.0826, 

0.4574, 0.2000), and XQagg = (0.2600, 0.5400, 0.2000). 

It is obvious to remark that XP <st XQ. On the other 

hand, remark that XR <st XQ, meaning that the quality 

of the bounds calculated with R is better than those 

calculated using Q. This is effectively the consequence 

of lumpability perturbations seen above. However, 

recall that the interest of using Q is that calculation is 

done with a smaller matrix (Qagg) in a reduced time. 
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2.2. Irreducibility of Bounding Matrix 

In the previous subsection, we have recalled the 

algorithm that computes stochastic bounds, and we 

have shown the impact of monotonicity and lumpability 

on the bounds quality. In this subsection, we present the 

impact of another important property on the bound 

quality. In fact, the irreducibility of the bounding 

matrix is necessary in order to resolve the Markov 

chain presented by this matrix. Nevertheless, in some 

cases, we show how insuring this property can have a 

negative influence on the quality of bounds computed 

by LIMSUB. This irreducibility property requires a 

certain structure of the partition that may lead to non-

significant bounds. We will illustrate this in our 

multiprocessor model in section 3. 

In [6], necessary and sufficient conditions have been 

defined in order to the bounding matrix to be 

irreducible. These conditions are recalled in theorem 1. 

Theorem 1: let P an irreducible stochastic matrix, 

Par = {p1, p2,..., pM} a partition of the state space of P, 

and Q the lumpable bounding matrix of P. Then, the 

matrix Q is irreducible if and only if P[1,1]≠0 and for any 

i, there exists in P a transition to a state j such that i ∈  

px and j∈  py and y < x. 

The proof of this theorem can be found in [6]. Based 

on this theorem, we will give a corollary that will be the 

center point to show the impact of irreducibility on the 

bounds quality. 

In some models, we may be interested in the 

calculation of a direct bound for the probability of some 

set of states (i.e., states of a global system failure in an 

availability model). We should then place these states 

in the last set according to the partition order, i.e., set 

pM. Remark that in example 2, a direct bound can be 

found for the probability of state 5 of P using the 

aggregated matrix Qagg. In fact XP(5) < XQagg(p3) = 

0.2000.     

Denote the set of states mentioned above by J. The 

set J may be, by choice, decomposed into multiple 

subsets J1, .., Jt (t > 0). In order to calculate a direct 

bound for the probability of J, we define the sets of the 

partition Par such that: pM = Jt, … , pM-t+1= J1, by 

placing the subsets of J at the end according to the 

partition order. Nevertheless, the structure of the 

partition should respect some conditions in order to 

ensure the irreducibility of the bounding matrix. 

Corollary 1: let P be an irreducible stochastic matrix, 

Par = {p1, p2, …, pM-1 , J1, …, Jt} a partition of the state 

space of P, and R the bounding matrix of P calculated 

by LIMSUB that is aggregable according to Par. Let i a 

state of the Markov chain represented by P and succ(i) 

the set of successor states of i in the chain (for all j, 

P[i,j] ≠ 0). If succ(i) is a subset of J, then a necessary 

condition in order to the matrix R be irreducible is that 

i∈  p1.  

Based on theorem 1, the proof of the corollary is 

simple. Consider a state i of the Markov chain of P such 

that succ(i) is a subset of J and i∈px (x > 1). Then the 

set px contains a state i from which we cannot transit 

to a state j belonging to a set py such that y < x. 

According to theorem 1, the bounding matrix is not 

irreducible. 

In the following, we present how the conditions 

described by the corollary may imply a bad bounding 

quality for some computer models. 

 

3. Multiprocessor System Model 

Multiprocessors systems have become an alternative 

frequently used to execute high performance 

applications. Very high availability rate is required in 

order to correctly execute life-critical applications. 

Some techniques, such that combinatorial analysis, 

Markov chains [8, 9, 11] and Monte-Carlo simulation 

[3] have been largely used in order to predict 

availability of multiprocessors system. However, the 

complexity of the model yields to difficulties for its 

exact resolution. An interesting alternative is to 

calculate a bound for the probability of system failure. 

In fact, for such systems, we might be interested in 

knowing whether the system availability is larger than 

the one necessary to execute applications and not 

necessary its exact value. 

Consider a multiprocessors system with N 

cooperating processors. A processor alternates 

between two states: active where it functions correctly 

and failed when it is in a failed or a repair state after 

having been affected by a failure. We suppose that an 

active processor i may fail with an exponential rate αi 

(then it passes to state failed). The exponential 

reparation rate of processor i is denoted βi. On the 

other hand, each processor has a set of neighbor 

processors (all other processors of the system).  When 

the processor i fails, its neighbors should enter in a 

state of reconfiguration of the system, in order to take 

in charge the job of the failed processor. When the 

processor is repaired, its neighbors should again enter 

the reconfiguration state in order to allow the 

processor to join back the system.  We suppose that 

after a reconfiguration, each processor goes back to its 

active state. The time spent in the reconfiguration state 

is also exponential and it is equal to 1/µi for each 

process i.  

If we suppose that the processors rates are identical 

(αi =α, βi = β, µi =µ, ∀ i), then the model can be 

aggregated and its stationary solution can be easily 

calculated. However, we consider here different 

failure rates. In reality, the failure rate of a processor 

depends on its workload that is not the same for all 

processors of the system. So, we suppose that the 

failure rate of the processors are given such that (α1 ≠ 

α2 ≠ … ≠ αi). Given this, the exact resolution of the 

model becomes difficult and depends on the size of 

the model that explodes with N.   

acit2k
Distance Measurement
0.41 in
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On the other hand, the global failure of the system 

may be defined in two different forms. The first form 

(failure A) is the state where all processors have been 

failed. The second form (failure B) is defined by the 

fact that no processor is active. In this second form, we 

consider the state where some processors are failed and 

others are in reconfiguration as a global failure state. 

This assumption may appear pessimistic but it can be 

realistic [12]. 

In the remainder of this paper, we consider that a 

global state x is a triplet (na, nr, nf), where na, 

respectively nr and nf, represents the number of 

processors in active, respectively reconfiguration and 

failure, state (na+ nr + nf = N). Failure A occurs when 

the system is in the global state (0,0,N). Failure B 

occurs when the system is in one of the states of set J = 

{x / x = (0, r, f);  r+f = N}.  Based on this model we 

present in the next section the calculation of bounds for 

the probability of system failure. Recall that our 

objective is to show the impact of irreducibility on the 

stochastic bounds quality. By the way, we show also 

the interest of this calculation in the case it is possible. 

 

4. Results Analysis 

In this section, the availability analysis of the 

multiprocessors system is presented, by computing a 

bound for the probability of system failure. Several 

choices of the failure rate are possible. We suppose, for 

example, that αi are given as αi = α + v.£ where v is a 

random variable of the set {1,..,N} and α and £ are two 

constants such that α  > £. Thus, we use a small 

deviation between the different failure rates.  

Given the actual high reliability of actual processors 

and networks, a processor failure is often a scarce 

event. Following this, the parameters values are fixed to 

α = 0.001, £ = 0.0001, β = 1 and µ = 10. Thus, the mean 

failure average time is around 1/α = 1000 minutes, the 

mean reconfiguration time is 0.1 minute and the mean 

reparation time is 1 minute. In reality, the factor 

between the failure and reparation rates is of the order 

of 10
5
 or 10

6
. We use a factor of 10

3
 for numerical 

precision requirements. Our objective being to present 

the quality of bounds calculated by LIMSUB, we have 

fixed the previous values of parameters. However, 

other values may be also used and produce similar 

results. 

In section 3, we gave two different definition of the 

global failure (A and B). In section 4.1, we show 

bounds calculated for failure A. In section 4.2, based on 

failure B, we show how the computation of stochastic 

bounds might be inefficient for reasons related to 

irreducibility. 

 

4.1. Failure A 

The system global failure occurs when all processors 

are in their failure state. We use a partition of the state 

space given by Par = {p0,…,pN-1, J} where the set pi is 

composed of states where i processors have failed. 

The set J contains the only one global failure state. 

This partition permits to calculate a direct bound for 

the probability of system failure. The initial matrix 

ordered according to this partition is close to be 

monotone, and the most important perturbations are 

then those introduced to ensure lumpability. 

For a model of N processors, the size of the initial 

matrix is of 3
N
, the size of the bounding matrix is of 

N+1. The result of Table 1 shows that the obtained 

bounds are of very good quality examining the 

absolute deviation from the exact value.   

 
Table 1.  Probability of failure A. 

 

N State Space Size Value of Bound Exact Value 

3 27 1.94 E-09 1.29 E-09 

4 81 3.05 E-12 1.39 E-12 

5 243 5.30 E-15 1.48 E-15 

6 729 1.01 E-17 1.58 E-18 

7 2187 2.09 E-20 1.67 E-21 

8 6561 4.70 E-23 1.77 E-24 

10 59049 2.95 E-28 1.95 E-30 

 

On the other hand, notice that when the value of N 

increases, the quality of the bound degrades relatively 

to the exact value.  This is related to the perturbations 

introduced to ensure the lumpability of the bounding 

matrix. In fact, the partition Par consists of certain 

blocks of the matrix to aggregate values αi together 

(while taking the maximum which is equal to max = α 

+N£). This consists in replacing values αi by max 

implying a perturbation that becomes important with a 

largest value of N.  To justify our observation, for N = 

10, the set p9 (9 processors have failed) is split in order 

to eliminate lumpability perturbations in the block-

columns belonging to p9. Thus, we have defined sets 

p9
j
 containing successively states where the processor j 

is not in its failed state. Then the new bound value is 

3.85 E-29 (instead of 2.95 E-28 without splitting p9). 

While splitting sets pi successively the bound quality 

is also improved, but slowly. 

 

4.1. Failure B 

In this case, the system failure occurs when there is no 

active processor. We will show that such definition of 

global failure imposes a partition of the state space 

that affects negatively the calculation of direct bound 

for the probability of failure. More precisely, we will 

show that failure B requires some structure of the 

partition in order to the bounding matrix to be 

irreducible.  This required structure leads to a poor 

bound quality.  

Consider a partition of the state space Par = 

{p1,…,pM-1,J}. As we have shown, the algorithm 

LIMSUB consists in positioning the set of failure 

states (J) at the end of the partition in order to get a 

direct bound.  
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On the other hand, from any state y = (a, 0, f) (∉  J) 

(a+ f = N), the possible transitions are illustrated by the 

Figure 1. 
 

• One processor among the active processors fails, 

with a rate αi. Other active processors should enter 

the reconfiguration state. The new state is then of the 

form (0,a-1,f+1) (∈  J). 

• One processor among the failed processors is 

repaired with a rate β. Other active processors should 

enter the reconfiguration state. The new state is then 

of the form (0,a+1,f-1) (∈  J). 

 

 

 

 

 

 

 

 

 

 
 

Given this, and according to the corollary 1, states y 

= (a, 0, p) should be placed in the first set of the 

partition (p1) in order to insure the irreducibility of the 

bounding matrix. Thus, respecting this condition, we 

can show that whatever the structure of the partition is, 

the bound quality is poor. To illustrate this, consider the 

initial matrix P of Figure 2, ordered according to the 

partition whose structure respects the previous 

condition. Looking at the columns of the last set of the 

partition, the greatest probabilities (the βs) belong to 

the first block (transitions from (a, 0, p) to (0,a+1,p-1)). 

This will imply large perturbations introduced to the 

columns of the bounding matrix in order to be 

monotone. Values βs will propagate vertically in the 

last columns. Recall that in [4], authors have underlined 

that this perturbations imply a bad bound quality, which 

is also visible with our experimentations. Underline the 

fact that the origin of this poor quality is the constraint 

of irreducibility. 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

The calculation of stochastic bounds is an efficient 

technique to cope with the difficulty of the exact 

resolution for very large Markov model. However, the 

bound quality depends on multiple factors. In this 

paper, the impact of irreducibility is shown, implying 

that the bound quality depends also on the system 

architecture and not only its behavior. Our 

perspectives are to propose a general heuristic giving 

the best partition allowing obtaining a good quality 

bound. We also plan to study other case study by 

taking, for example, other time distribution than 

exponential, i.e., phase type distributions. 
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