
 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011 59

Novel Robust Multilevel 3D Visualization

Technique for Web Based GIS

Mohamed Sherif
 1

 and Hatem Abdul-Kader
 2

1
Faculty of Computers and Informatics, Suez Canal University, Egypt
2
Faculty of Computers and Information, Menofiya University, Egypt

Abstract: Number of recent technologies take Geographic Information Systems to new levels of power and usability. One of

the most promising technologies that empower Geographic Information Systems is the 3D GIS modeling. In this paper, a novel

robust multilevel data structure model called EBOT model (block octree tetrahedron mode Geographic Information Systems l)

is presented on the basis of BOT visualization model. This model combines octree and Tetrahedral Network structures. In this

paper a performance simulation for implementing EBOT (Enhanced block octree tetrahedron model) algorithm into the

browser using X3D Visualization is presented. A Simulation results is introduced to demonstrate the robustness of the

proposed algorithm.

Index Terms: Geographic information systems, Geometric modeling, octrees, visualization.

Received December 13, 2008; accepted August 3, 2009

1. Introduction

The challenge of 3D Web Geographic Information

Systems (GIS) lies in creating software systems that

are platform independent and run on any computer

capable of connecting to the Internet and running a

Web browser [1, 8, 9].

X3D (Extensible 3D); is a powerful language for

describing interactive 3D worlds. The nodes contained

in X3D describe the geometry of the 3D world, and a

powerful messaging system that can generate

animation and allow the world to respond to user input.

Now what about 3D GIS modeling techniques? 3D

GIS have been studied thoroughly on the basis of the

successful application of the two-dimensional GIS [7].

How to organize and manage the 3D data efficiently

and to construct 3D GIS spatial model has become the

key to the successful application of 3D GIS. In present

3D GIS studies, the spatial data models fall into two

categories: surface data model and solid data model.

The former category is mainly used to represent the

boundary of the spatial object, while the latter one is to

represent the spatial object with solid information. In

the solid data model, the spatial entity is abstracted into

the collection of a series of adjacent but non-intersect

3D basic units. In the field of geology, the commonly

used entity models include the block model, octree,

TEtrahedral Network (TEN) and so on. However, each

method has its own advantages and disadvantages. For

example, the block model, adopting implicit locating

technique, saves the memory space and runtime but

makes model edge in contradiction with partition

granularity at the same time; while TEN model can

keep the original observation data and has the ability to

precisely represent spatial objects and complicated

topological relations, but its structure is too

complicated; octree [5] is obviously simple and easy to

use, but with the increase of the partition granularity,

model data will multiply greatly. Besides, what octree

represents is always approximate rather than accurate.

Therefore, on the basis of analyzing octree model and

TEN model structure, a hybrid data structure model

(BOT) based on geological block model is used, which

combines octree and TEN structures. The block model

is subdivided with octree as general shape description

and TEN as partial precise description. With the merits

of both octree and TEN, BOT model can represent 3D

objects more effectively and precisely.

In section II related work is presented where

different relative simulation technologies is descried;

section II.A is about X3D programming language, II.B

Octree model structure 3D visualization algorithm, II.C

TEN representation 3D visualization algorithm, then

section II.D is about Data structure design and

realization for BOT model where a description and

flowchart of the BOT algorithm is presented . In

section III simulation result is introduced where an

Enhancement over BOT algorithm (EBOT) is

proposed, described, flowcharted and implemented to

gain better performance time. In section IV Conclusion

and future work is proposed based on simulation

results. Lastly different references introduced.

2. Related Work

Number of technologies cooperated to generate our 3D

web GIS simulation (X3D, Octree model structure,

60 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

TEN representation and BOT mode), therefore a

description of each technology is presented in this

section prior to introducing our simulation and results.

2.1. X3D

X3D is a browser based high level object-oriented

language for the description of scenes and the behavior

of objects. The language has passed through several

stages, i.e., VRML 1.0, VRML 2.0 VRML97, before

its endorsement as a Web standard. The syntax of X3D

is based on objects (nodes) with parameters (fields)

 [7].

A number of nodes are responsible for the design of

the scene: description of geometry (regular and

irregular shapes, grids, and text), illumination of the

model (directional, spot, point and ambient lights),

materials and textures (draping and mapping of JPEG,

GIF, PNG image file formats). Combinations of other

nodes, i.e., sensors, routes and interpolators introduce

dynamics. Sensors detect viewer actions (e.g., mouse

move, click, and drag), time changes and viewer

positions (visibility, proximity, collision). Routes

direct captured events to interpolators to alter some

fields (color, position, orientation, and scale). While

appropriate for direct animations, the mechanism is

insufficient for descriptions of complex actions, e.g.

the control of sequential clicks with the mouse on an

object. In case of complicated movements and

manipulations, the script node referring to Java applets

and Java Scripts, may be employed. The proto node

supplies the user with a tool to design his/her own

sensors and interpolators.

Common Gateway Interface (CGI) scripts

embedded in the body of the X3D document allow

establishment of connections to any application on the

server. All the X3D nodes can be aggregated in various

complex hierarchical composites and altered together.

The scene designed according to X3D is stored in an

ASCII file. Specific visualization software, i.e., Virtual

Reality (VR) browser is necessary to display data on

the screen. The role of X3D document and VR

browsers is different. The VRML document supplies

the parameters for scene design and the dynamics of

objects while the VR browser takes care of scene

rendering and the interface to navigate through and

interact with the model. Initially, the basic function of

the VR browser, besides visualization, was only real

time navigation through the model, i.e., provision of

virtual reality techniques: examine fly-over, walk-

trough, pan, zoom, and detection of user interactions

with objects.

X3D can integrate to the 3D Geospatial component,

providing support for geographic and geospatial

applications. This support includes the ability to embed

geospatial coordinates in certain X3D nodes, to support

high-precision geospatial modeling, and to handle

large multi-resolution terrain databases.

2.2. Octree Model Structure

Octree representation is a hierarchical form of

tessellation in which a volume occupied by a 3D model

is subdivided and approximated with cubes of various

sizes [4]. These cubes are known as octants and each

of them is identified by a location code that gives its

exact location in the octree as shown in Figure 1(a, b).

The relationship among octants can also be viewed as a

hierarchical tree structure as shown in Figure 1(c)

where each branch is identified by the relative position

of the octants in its parent node according to the six

orientations R(right), L (left), U (up), D (down), F

(front), and B (back).

Figure 1. Octree model.

Given a 3D solid model, the first step to create its

octree decomposition is to find the object’s minimal

bounding cube. This cube is then subdivided into eight

octants by halving it along each axis direction, and the

resultant octants are known as level-one octants. The

octants are classified as full, empty or partially full,

depending on their relative location in the 3D model.

The main advantage of octree lies in that it can be

adopted to realize complex set operation that is just

what the other methods can hardly deal with or need

more computation resources to handle. With octree

structure, it is easy to redivide the above-mentioned

block model, and then to realize efficient data

rearrangement. The blocks can be classified in terms of

attribute value of each block: The block whose

attribute value is more than the upper limit corresponds

to the full node in octree structure; Otherwise, the

block whose attribute value is less than the lower limit

corresponds to the empty node; And the block whose

attribute value is between the two limits parallels to the

partially full node which needs subdivision. In the

process of data rearrangement, the tetrahedral network

constructed with original observation data can be used

to realize partial precise description for the area where

the structures (or attribute value) are complicated and

changeful [3].

3

1 0

2

2

3
3

1
5

7
7

6

(a)

(b)

(c)

Empty node

partially Full node

full node

Novel Robust Multilevel 3D Visualization Technique for Web Based GIS 61

2.3. Tetrahedral Network Representation

TEN represents the 3D objects with tightly arrayed but

not overlapped irregular tetrahedrons, essentially being

the extension of two-dimensional Triangle Irregular

Network (TIN) in three dimensional space. In concept,

the two dimensional Voronoi network is developed to

the three dimensional Voronoi polyhedron, then the

TIN structure to the tetrahedral network in three

dimension.

TEN composes four basic factors of dot, line, facet

and body, and it is able to precisely represent 3D

objects In practical application, the key problem is

automatic creating algorithm of the TEN structure. In

this paper, a tetrahedralization Algorithm is proposed

based on the theory of Delaunay triangulation. This

theory is featured by that the decomposition result is in

consistency with empty sphere principle, that is to say,

each tetrahedron’s circumcircle includes no point in

order to make the tetrahedron as likely to be regular

tetrahedron as possible. Thus the existence of long and

narrow tetrahedron can be avoided at the utmost. The

principle of TEN generation algorithm is to create the

first tetrahedron in the data field firstly, and then to

create new tetrahedrons with one of the first

tetrahedron’s facets as one of their own facets until all

the discrete points are connected into the network in

this way. The detailed algorithm is described as

follows:

1) Select two nearest points and draw a line segment as

one side of a triangle;

2) Select a third point to form the first triangle;

3) select the fourth point to form the first tetrahedron;

4) Let I=1, J=1 (I is the number of the tetrahedrons

formed already and J is for the number of the

tetrahedrons being formed);

5) Extend the Jth tetrahedron to form 0 to 4

tetrahedrons;

6) I=I+K (K=0, 1, 2, 4), J=J+1;

7) If I is bigger than J, go to step 5;

8) End.

In step 2 of the algorithm above, the rules for choosing

a third point are based on two features of Delaunay.

First, the center of the circle made by the original two

points and the chosen point is nearest to the line

formed by the two original points. Second, the angle

formed by the two lines from the chosen point to each

of the two original points is the biggest. In step 3,

when choosing a fourth point, one must meet a

requirement that the center of the sphere formed by the

chosen fourth point and the three points above should

be nearest to the plane decided by the triangle [6].

2.4. Data Structure Design for BOT Model

In BOT model, the octree is taken as general shape

description and TEN as partial precise description

where the structures (or attribute value) are

complicated and changeful. First of all, with the

principle as what is stated above, the geological block

model can be created with the original observation data

(drill whole data). With the consideration of the

purpose for modeling, the block size is generally

defined as small granularity and the attribute value are

calculated through distance weighted mean and

preponderance principle, and then the model space is

subdivided with octree structure. The data structure of

block model and octree can be well matched during

data rearrangement because the number of sub-blocks

in every side is 2 to the power of an integer as well as

the number of nodes created by subdivision.

Secondly, every sub divisional octant is classified

into three types according to the weighted average of

the attribute value of the sub-blocks in the octant. The

octants whose weighted average are bigger than the

upper limit correspond to full node; the octants whose

weighted average are smaller than lower limit are

empty node, and between the two limits correspond to

partially full node which need subdivision. At the same

time, the attribute value variances of the octants are

calculated to decide when to construct TEN. If the

variance is bigger than the set value, it means that the

structure (or attribute value) of this octant is

complicated and changeful and it is necessary to make

partial precise description with TEN model. Finally,

the nodes of BOT model are encoded and assigned

with attribute value. To save memory space, a linear

encoding technology is proposed based on the octree

encoding principles, in which only the address code,

attribute value and pointer code of the full nodes are

recorded. In the BOT model, the partial TEN is equal

to a full node which is located by a pointer.

For general full nodes, the attribute value can

directly reproduce the attribute value of the

corresponding sub-blocks in the block model, while for

the full nodes formed by TEN structures; the attribute

value can be obtained by distance weighted mean and

preponderance principle. The linear BOT encoding

technology, owing to leaving out large numbers of

empty nodes and pointers, saves memory space

effectively and reduces the complexity of this

algorithm [3]. The algorithm diagram of BOT model is

shown in Figure 2.

3. The Proposed Enhanced BOT Algorithm

Before EBOT visualization algorithm starts both the

sub block size and the resolution-factor (r) must be

predetermined by the user. Witch affects the resolution

of the generated visualization by the algorithm; the sub

block size and resolution-factor (r) affects the

redivision-factor (µ) where: µ = (1/r) * (sub-block size)

BOT model needs further improvement for better time

performance [3]. The Octree block modeling has a very

good modeling time compared with TEN [6] modeling.

On the contrary, Octree modeling has a bad

62 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

visualization in its sparse generality and a better

visualization in its dense generality; but we know that

the more dense generality the more data to be saved,

transferred and visualized.

Figure 2. Algorithm diagram for BOT model.

TEN modeling in the other hand have a bad

modeling time compared with Octree Block modeling;

but TEN has a very good visualization result compared

with Octree Block modeling even in its dense

generality. Now how can we solve such a problem? If

we use Octree with very sparse granularly, we face the

problem of low visualization quality but high

performance time. Octree with very dense granularly

result in low performance time, but high visualization

quality. TEN modeling has a quality high performance

time, Also very high visualization quality. Our

enhancement of BOT performance basically rely on

reducing the use of TEN modeling as possible, and

using Octree as a general shape descriptor with a low

generality.

The EBOT algorithm have a main check to

determine the type of EBOT node (empty, full or

partially full) empty node generated when no points are

in current block. The other two types were depending

on the computed coefficient of variance of that block.

Then comparing it with threshold (full_threshold), if it

is grater than full_threshold we have a full node. Else

we have a partially full node which mean it ether have

a dense or sparse details, we use TEN_threshold to

differentiate between more block subdivision and

model current block as TIN. If variance is grater than

TEN_threshold then we model the current block as a

TEN (as TEN preserve dense details) else it require

more subdivision. Figure 3 summarize the EBOT

algorithm in flow chart form.

3.1. Terrain Models Visualization Using EBOT

When to model terrain GIS. We observe that terrain GIS

has a main special characteristic: "Terrain shape

determined by the shape of its surface (the terrain top)".

From this observation, we suppose our enhancement of

BOT algorithm by increasing the TEN_threshold to all

blocks lower than a TEN block (a block modeled as a

TEN) as shown in Figure 1 (b); TEN modeling blocks

2,3,6,7 increase TEN_threshold for blocks 0,1,4,5

respectively. In other words; Reducing the probability of

the lower blocks to be modeled as TIN as possible which

reduce the whole performance time of BOT algorithm

and grantee a good visualization quality. A full flowchart

of EBOT algorithm is presented in Figure 3

Figure 3. Algorithm diagram for EBOT model.

3.1. EBOT Visualization of a Mountain (Low

Resolution)

In the first mountain simulation; a cuboid volume

(160m x 160m x 160m) is used as model space; simple

data set of 256 points, the geological block model is set

No Yes

No

Original observation data

Create block model

Subdivide block model

 with octree structure

Which type

the node

belongs to?

Partially full

node

Empty node

Full node

Create TEN

Is the

decomposition

condition met?

Encode the BOT

Assign attribute value to the BOT

End

Start

If the variance

>=given value

No

Yes No

No Yes

Yes No

Yes

Original observation data

Create block model

Subdivide block model with octree

structure

Is there is no

points in current

block

Partially full node

Empty node

Full node

If the variance

>=full_threshold

Create TEN

Encode the EBOT

Assign attribute value to the EBOT

End

Start

If the variance

>=TEN_threshold

Increase the TEN_threshold to all blocks lower

than the current TEN block

Is the

decomposition

condition met?

Novel Robust Multilevel 3D Visualization Technique for Web Based GIS 63

up with a block size of 10m x 10m x 10m, resolution

factor (r = 16). With the generation algorithm for

EBOT model, the block model is then re-divided until

all the blocks are smaller than µ where: µ =

(1/16)*(10*10*10) =62.5 m3, material attribute and

normal vector are assigned to the EBOT model for

visualization, as well as light position and lighting

condition to the modeling scene (as described at Table

1), the EBOT visualization model of the low-resolution

mountain is shown at Figure 4.

Table 1. BOT-EBOT simulations parameters.'

Operating System windows XP

Web Browser Mozilla Firefox

X3D Player Octaga Player

Processor Pentium IV

Ram 1 mega

Video Graphic Adaptor Card 128 RAM

Lighting Condition Ambient lighting

Material Attribute Solid material

Color Attribute Gray scale coloring

Figure 4. EBOT visualization of a mountain (low resolution).

3.2. EBOT Visualization of a Mountain

(Medium Resolution)

In the second mountain simulation; a cuboid volume

(320m x 320m x 320m) is used as model space; data

set of 1024 points, the geological block model is set up

with a block size of 10m x 10m x 10m resolution

factor(r = 32). With the generation algorithm for

EBOT model, the block model is then re-divided until

all the blocks are smaller than µ where: µ =

(1/32)*(10*10*10) =31.25 m3

Material attribute and normal vector are assigned to

the EBOT model for visualization, as well as light

position and lighting condition to the modeling scene

as described at Table 1, the EBOT visualization model

of the medium resolution mountain is shown at Figure

5 .

Figure 5. EBOT visualization of a mountain (medium resolution).

3.3. EBOT Visualization of Mountain (High

Resolution)

In the third mountain simulation; a cuboid volume

(1280m x 1280m x 1280m) is used as model space;

using large data set of 16,384 points, the geological

block model is set up with a block size of 10m x 10m x

10m resolution factor(r = 128). With the generation

algorithm for EBOT model, the block model is then re-

divided until all the blocks are smaller than µ where:

µ = (1/128)*(10*10*10) =7.8 m3

Material attribute and normal vector are assigned to

the EBOT model for visualization, as well as light

position and lighting condition to the modeling scene

as described at Table 1, the EBOT visualization model

of the medium resolution mountain is shown at Figure

3.

Figure 6. EBOT visualization of mountain (high resolution).

4. EBOT Performance Evaluation

Comparing 3D Web-based GISs is difficult because

their functionality varies significantly. For example,

native Web-based 3D viewers are faster because they

run directly from the client, whereas Java applets are

slightly slower because they run from a Java virtual

machine The JavaVM runs on the client, resulting in a

three-tier model instead of the two-tier native model.

Since EBOT simulations are ran directly by native

X3D players through web browsers which achieve

faster visualization result [7].

64 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

In order to determine whether the proposed algorithm

offers acceptable system performance, the evaluation is

based on the widely accepted 10-second limit for keeping

users’ attention on a task [2]. The evaluation aimed to

show that EBOT performs tasks within this 10-second

limit. Because data load directly affects system

performance, we also evaluated EBOT with different

sized data sets. The data sets included a range of both

terrain and urban geospatial data, varying in size and

extent, to simulate complete geospatial visualization. As

an additional performance indicator, the evaluation also

included monitoring the frame rate as the user navigated

through the visualization.

The client machines were Windows PCs with 3.0 GHz

Intel processors. The simulations are visualized using

Octaga Player plug-in imbedded in Mozilla Firefox web-

browser. We separated the tasks into data upload and

visualization operations. The upload timer started at the

moment a client sent a data set request to the server. The

visualization timer started when the user told the system

to start creating the 3D geometry (EBOT). Figure 7

shows the results from the upload and visualization of

geospatial data using EBOT. The data file sizes ranged

from 0.4 Mbytes for 1,000 points to 15.2 Mbytes for

14,000 points.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of points (thousands)

R
e
s
p
o
n
s
e
 t
im
e
 (
m
il
li
s
e
c
o
n
d
s
) Upload

visualization

Figure 7. Upload and Visualization time chart.

Table 2. BOT-EBOT Comparison between simulations results.

Simulation 3 Eٍction (3.3)

High Res.
Mediu

m Res.

Low

Res.

16,384 1024 256 No. of Points

1280m x 1280m x
1280m

320m x
320m x

320m

160m x
160m x

160m

Cuboid

Volume

7.8 m3
31.25

m3
62.5 m3

Re-division

Factor (µ)

5056 1264 316
No. of

Tetrahedrons

519 129 32
No. of

Octrees

B
O

T

16,384 1024 256 No. of Points

1280m x 1280m x

1280m

320m x

320m x

320m

160m x

160m x

160m

Cuboid

Volume

7.8 m3
31.25

m3
62.5 m3

Re-Division

Factor (µ)

3456 864 216
No. of

Tetrahedrons

598 149 37
No. of

Octrees

E
B

O
T

5. Conclusions

Simulation results imply that the proposed EBOT

algorithm give and enhanced performance that the

classical BOT algorithm. Figure 7 illustrates that for

data files up to 12,500 points (10 Mbytes in size), the

EBOT algorithm visualization perform within the

accepted 10-second (10,000 millisecond) limit. The

performance of EBOT file uploading is also slightly

faster than visualization, particularly as the number of

points increases (the uploading stage exceeds the limit

specified only when the number of points is greater

than 13,000 points, or 11 Mbytes). Expectedly in

complex polygons that can took longer to upload or

visualize because of its higher numbers of vertices.

The frame rate at the previous simulations is set during

data rendering ranged from 19 to 34 frames per second

(fps). The lower frame rate is recorded only when

displaying whole scene at once. The higher value is

recorded when flying through the scene. This range in

frame rate is acceptable because, as Selman notes in

Java 3D Programming.

Tetrahedrons modeling are most costly part of

BOT/EBOT processing, so the proposed EBOT model

is trying to minimize number of tetrahedrons as

possible to gain the less performance profit than the

original BOT. Error! Reference source not found.

Summarizes different simulations parameters' along

with both BOT and EBOT algorithms. This table

shows that the more points to be visualized the less the

EBOT processing time over the original BOT, as the

number of tetrahedrons of EBOT to model is less than

the alternative tetrahedrons number of BOT.

References

[1] Del V., Paolino L., and Pittarello F., “A

Usability-Driven Approach to the Development

of A 3D Web-GIS Environment,” Computer

Journal of Visual Languages and Computing,

vol. 18, no. 3, pp. 280-314, 2007.

[2] Geoffrey R. and Colin A., “Introspective

Approach to Marking Graphical User Interfaces,”

in Proceedings of The 11
th
 Annual SIGCSE

Conference on Innovation and Technology in

Computer Science Education, pp. 43-47, 2006.

[3] Huixin W. and Huifeng X., “A New Hybrid Data

Structure for 3D GIS,” in Proceedings of the

First International Conference on Innovative

Computing, Information and Control, pp. 256-

259, 2006.

[4] Jiange T., “3D GIS Integrated Model Simulation

Algorithm Based on Block Model,” Pacific-Asia

Workshop, 2008.

[5] Medellin H. and Corney J., “Algorithms for the

Physical Rendering and Assembly of Octree

Models,” Journal of Computer-Aided Design,

vol. 38, no. 7, pp. 69-85, 2006.

Novel Robust Multilevel 3D Visualization Technique for Web Based GIS 65

[6] Qingquan L. and Deren L., “Algorithms for

Tetrahedral Network Generation,” Computer

Journal of Geo-Spatial Information Science, vol.

3, no. 1, pp. 11-16, 2000.

[7] Rong L., Yan L., Yufeng Z., and Zhuguo X.,

“Research on Application of VRML in Virtual

City Construction,” Computer Journal of

Information Technology and Applications, vol.

1, no. 5, pp. 532-535, 2009.
[8] Wang M., “A 3D Web GIS System Based on

VRML and X3D,” in Proceedings of 2nd
International Conference of Genetic and

Evolutionary Computing, pp. 197-200, 2008.

[9] Zlatanova S., Rahman A., and Pilouk M., “3D

GIS: Current Status and Perspectives,” in

Proceedings of the Joint Conference on Geo-

Spatial Theory, Processing and Applications,

Ottawa, pp. 6-10, 2002.

Mohamed Sherif is a PhD student

and teaching assistant in Information

System Department, Faculty of

Computers and Informatics, Suez

Canal University, Egypt. He holds

MSc degree in geograpic information

systems from Menofiya University,

Egypt in 2009.

Hatem Abdul-Kader obtained his

BS and MSc both in electrical

engineering from the Alexandria

University, Faculty of Engineering,

Egypt in 1990 and 1995,

respectively. He obtained his PhD

degree in electrical engineering also

from Alexandria University, Faculty of Engineering,

Egypt in 2001.

8 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

