
The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010 395

JAM: Justifiable Allocation of Memory with

Efficient Mounting and Fast Crash Recovery

 for NAND Flash Memory File Systems

Sanam-Shahla Rizvi and Tae-Sun Chung

School of Information and Computer Engineering, Ajou University, Korea

Abstract: Flash memory is small size, lightweight, shock-resistant, non-volatile, and consumes little power. Flash memory

therefore shows promise for use in storage devices for consumer electronics, mobile computers and embedded systems. Even

though, flash memory has many attractive features but issues on performance and data integrity are becoming more critical to

address by researchers. First, the rapidly increasing capacity of flash memory imposes long mount time delay for normal

start-up and in case of crash recovery. Second, large main memory requirement for keeping file system mapping data

structure becoming significant issue with growth in size of flash memory. In this paper, we discuss related problems in detail,

and propose novel mechanism for high performance and system reliability by effective metadata management, efficient

mounting, fast crash recovery, and reduced RAM footprints for log structured NAND flash memory based file systems, called

justifiable allocation of memory. The trace driven simulation results show the significantly improved performance for

mounting and crash recovery time with reduced main memory space required by our proposed justifiable allocation of

memory scheme compared to well-known JFFS2 and YAFFS2 flash file systems.

Keywords: Consumer electronics, embedded systems, memory management, system crash recovery, system reliability, and

system performance.

Received December 18, 2008; accepted July 26, 2009

1. Introduction

Flash memory is a non-volatile solid state memory,

which has many attractive features such as small size,

fast access speed, shock resistance, high reliability, and

light weight. Because of these attractive features, and

decreasing price and increasing capacity, flash memory

is becoming ideal storage media for consumer

electronics, embedded systems, and wireless devices.

Furthermore, its density and I/O performance have

improved to a level at which it can be used as an

auxiliary storage for mobile computing devices, such as

PDA and laptop computers.

NAND flash memory is partitioned into equal size of

erase units called blocks and each block is composed of

fixed number of read/write units called pages. Every

page has two sections, data area and spare area. Spare

area, as shown in Figure 1, stores metadata like Logical

Block Number (LBN), Logical Page Number (LPN),

Erase Count Number (ECN), Error Correction Code

(ECC), cleaning flag for indicating garbage collection

process in block, used/free flag to show page is used or

still free, and information of being valid/obsolete about

data in data area. The size of page and block differs by

products.

Flash blocks are logically divided by the type of data

stored in them. Figure 2 shows the complete logical

structure of memory blocks. There are five types of

blocks. Data blocks hold ordinary user data and log

blocks store update writes to data blocks. Dirty blocks

hold obsolete data and ready to be erased. Free blocks

are used to be assigned for new data. Finally, map

blocks store system metadata about all above types of

blocks. Blocks holding user data, as data blocks and

log blocks, split in hot and cold blocks by the

frequency of data modification. The hot blocks hold

data with frequently updating nature and the cold

blocks hold data with infrequently updating or of read

only nature.

Figure 1. Flash memory (32MB) architecture.

At the time of normal booting, system fetches the

metadata from map blocks and builds the address

mapping structure in main memory for fast access of

flash storage media. The main memory size in mobile

devices does not follow the trend of increasing size of

Data area

(512B)

Spare area

(16B) Valid/Obsolete Flag

Cleaning Flag
Used/Free Flag

ECC

LBN
LPN
ECN

Reserved

Block 0

Block 1

Block 2

Block 2047

…
.

Flash Array

Page 0

Page 1

Page 2

Page 31

…
.

Block Page
Spare Area

Data area

(512B)

Spare area

(16B) Valid/Obsolete Flag

Cleaning Flag
Used/Free Flag

ECC

LBN
LPN
ECN

Reserved

Block 0

Block 1

Block 2

Block 2047

…
.

Flash Array

Page 0

Page 1

Page 2

Page 31

…
.

Block Page
Spare Area

 396 The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010

flash memory. Thus keeping large size of mapping data

structure in RAM is becoming big challenge.

Figure 2. Logical structure of flash memory blocks.

Metadata from main memory stores back to map

blocks whenever it changes. Many of embedded

systems rely on battery backed power, and sudden

power-off results in system crash. It flushes all data

from volatile main memory, and leaves the metadata

unreliable in flash map blocks as well. After power-

recovery, previous schemes as [4, 8] regain reliable

state by scanning entire media. Such scan-to-initialize

approach is neither time nor power efficient, and also

not practical for large size flash memories.

In this paper, we propose novel idea for efficient

mounting and fast crash recovery for high performance

and system reliability for log structured NAND flash

memory based file systems, called Justifiable

Allocation of Memory (JAM). The objectives of our

present research are to implement an effective metadata

management strategy to minimize the required time for

mapping table construction, both for normal start-up

and in case of crash recovery, and to achieve small

main memory footprints.

The remainder of this paper is organized as follows.

We review the existing work in section 2. Proposed

mounting and crash recovery schemes are presented in

section 3, and evaluation results are discussed in

section 4. Finally, paper concludes in section 5.

2. Related Work

JFFS2 [8] and YAFFS2 [4] are well-known general-

purpose log-structured flash file systems. JFFS2

developed for embedded Linux and YAFFS2 is

designed specifically for NAND flash memories for

embedded devices and has been using in products

running both Linux and Windows consumer electronics.

Both JFFS2 and YAFFS2 are freely available under the

GNU Public License (GPL).

Both file systems store data in flash array

sequentially in incremental order irrespective of data

nature. JFFS2 stores data and its corresponding

metadata together in data area when writing data to

flash memory. At mounting time, it scans the entire

flash array to construct the mapping structure in main

memory.

Unlike JFFS2, YAFFS2 considers the

characteristics of flash memory as read/write units and

their corresponding spare regions. It stores the

metadata in spare areas and at the mounting time it

scans only the spare regions for collecting mapping

information. Therefore, it outperforms JFFS2 with

respect to mount time and amount of main memory

consumption. Both file systems supporting lengthy

and time consuming scan-to-initialize technique to

construct mapping data structure at every mounting

time. Therefore, time required for crash recovery is

same as normal booting time. The initialization time,

I/O computation time and main memory usage by both

file systems significantly increases with stored data

size and with growth of flash memory capacity.

Other previously proposed, mounting and crash

recovery schemes for flash memory, as [1, 5, 9, 10]

are not effective for small size; time, energy and main

memory constrained embedded systems and wireless

devices. As, such schemes require large space in main

memory, heavy I/O operations, and maintain extra

space in flash for supporting their techniques.

3. Proposed JAM Scheme

3.1. Proposed Mounting Technique

In this section, we achieve efficient and fast mounting

with reduced main memory footprints by our proposed

monitoring module, as shown in system architecture in

Figure 3.

Figure 3. Proposed system architecture.

The proposed monitoring module is responsible for

measuring the memory accessibility ratio on the level

of granularity of blocks. Module applies on every data

block, both hot and cold nature, and monitors the

request arrival rate by function as equation 1.







=λ
<
≥

THIni
THIni

)(:0
)(:1 (1)

 Flash memory blocks

Hot blocks

Cold blocks

Dirty blocks

Free blocks

Map blocks

Data blocks Log blocks

Data blocks Log blocks

Applications / Operating System

File System (e.g. DOS / FAT)

Device Driver

Flash Memory Array

Request Arrival

Address Translation

Monitoring Module

FTL

Applications / Operating System

File System (e.g. DOS / FAT)

Device Driver

Flash Memory Array

Request Arrival

Address Translation

Monitoring Module

FTL

JAM: Justifiable Allocation of Memory with Efficient Mounting and Fast Crash Recovery for NAND Flash Memory File Systems 397

If the number of request arrivals “ni” crosses the

predefined threshold of workload “TH” in particular

time interval “I” than the metadata of block is marked

feasible to access in main memory from map blocks at

the next mounting time else block will not be fetched.

The blocks those are fetched in RAM later on demand

will also be under monitoring to decide if some block

becomes accessible for next mounting. We keep the

final block mo nitoring status ""λ in RAM and also

store this information in spare areas of map blocks to

identify the frequently accessed blocks on next time

mounting.

Based on monitoring module results, we achieve

reduced main memory footprints by following two

techniques.

• Initial RAM footprints: mounting only frequently

accessed metadata initially in main memory on

system start-up.

We are particularly motivated to consider the

monitoring module estimation status for cold blocks

and read only blocks, because those blocks are

observed in majority, so mounting such blocks

without monitoring increases the main memory

consumption without sufficient use. Therefore,

infrequently accessed blocks are fetched on demand

by using dynamic memory allocation. The dynamic

memory allocation is used not to reserve the constant

space in main memory. It provides opportunity to

allocate RAM space dynamically on run time when

it is required. Therefore, the infrequently accessed

metadata can be called from map blocks when some

request arrives. This approach may take some times

frequent read operations to map blocks but real time

workload proves that majority of data is accessed

once in a while. This approach highly reduces the

consumption of RAM space.

• RAM footprints reduction on run time: Discarding

the mapping information of blocks those have not

been accessed for long time.

The status of monitoring module is saved

consecutively in RAM with every block to show its

accessibility ratio. Therefore, we extend our idea to

reduce the required RAM space for keeping mapping

information by removing the mapping structures of

blocks those have not been accessed during previous

monitoring interval. This idea not only preserves the

main memory space but also reduces the write

operations required to update the metadata on map

blocks. This strategy proves effective for the devices

those have very limited RAM resources like wireless

sensor nodes. Therefore, this approach may cause

some times frequent read operations to map block.

3.2. Proposed Crash Recovery Technique

In this section, we propose a technique to minimize the

data loss due to unexpected power-off, and we offer

fast and efficient crash recovery by “intelligent”

procedural computation in main memory based on

latest available snapshot of file system. In case of

sudden power-off, crash may leave the system in one

of three states. These states are related to user data,

metadata, and erase operation. We discuss all possible

flash states with different crash scenarios, and

gradually define the proposed recovery approaches.

3.2.1. User-Data Crash Recovery

Crash scenario: in case of sudden power-off, crash

can happen during writing user data either on data

blocks or on log blocks. The write operation usually

has following steps:

a. Write data on exact offset page in data block, or on

available page in log block.

b. Write corresponding LPN in spare area.

c. Mark new data page as valid.

d. Mark old data page with same logical address, if

any, as invalid.

Flash stands in one of following states, when

unexpected power-off occurs:

• During writing data in data area, as shown in Figure

4(i).

• After writing data in data area, but before writing

LPN in spare area, as shown in Figure 4(ii).

• After writing data and LPN, but before marking

page as valid in spare area, as shown in Figure

4(iii).

• After writing data, LPN and marking new page as

valid, as shown in Figure 4(iv), but before marking

old page, if any, as invalid in spare area.

Figure 4. Crash states for user data.

Recovery: while booting after power recovery, the

victim page is identified by ECC flag. ECC flag is

used against error during write operation in data area

or spare area. Recovery is provided to above discussed

crash states as follows:

a. In case of first and second state, as the data would

be unrecognizable due to LPN not written in spare

area, so the new page is marked as invalid and its

obsolete flag set high to mark it ready for erasure.

b. For third state recovery, as data is properly written

in data area and it is recognizable by its LPN in

Data with Crash State

Data with Reliable State

Data

Data

Data

LPN

LPN

LPN

Data

Valid

Valid

Data Area Spare Area

No Data

(i)

(ii)

(iii)

(iv)

Data with Crash StateData with Crash State

Data with Reliable StateData with Reliable State

Data

Data

Data

LPN

LPN

LPN

DataData

Valid

Valid

Data Area Spare Area

No DataNo Data

(i)

(ii)

(iii)

(iv)

 398 The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010

spare area, so new page is considered as valid to

minimize the data loss and to provide appropriate

reliability.

c. Same as in fourth state but then the ambiguity

between old and new page is resolved by marking

old page with same logical address as invalid.

3.2.2. Metadata Crash Recovery

Crash scenario: in log based flash file systems under

block device emulation, memory mapping information

in main memory and in map blocks changes with the

allocation of new data block or log block as in [2, 3] by

following conditions.

• Block allocation for completely new data: system

allocates new data block when completely new data

first time arrives to be stored in memory. New log

block assigns to store updates to data in data blocks.

• Split operation: when assigning new log block

crosses the predefined limit of log blocks, system

triggers the garbage collection on log blocks. System

selects the victim log block according to its victim

selection policy. Reclamation applies by Split

operation, as in [6], where valid data from old log

block copies to new allocated log block, then former

block marks obsolete and moves to dirty blocks pool

for erasure. Then the further updates to data blocks

forward to new log block.

• Merge operation: when system crosses the

predetermined threshold as maximum allowable

utilization of media, it triggers the garbage collection

on data blocks. System selects the victim data block

according to its victim selection policy. The victim

data blocks is reclaimed by Merge operation as in

[3], where valid data from old data block and its

corresponding log blocks copies to new allocated

free block and marks former data and log blocks as

obsolete and moves to dirty blocks pool for erasure.

Then the new allocated block responses as data

block for future transactions.

New block allocation involves four updates as free

block becomes new data or log block, and old data or

log block becomes dirty block, and that dirty block turn

into part of free blocks after erasure. It requires

updating metadata, as data blocks list, log blocks list,

dirty blocks list, and free blocks list, according to

condition.

The state of map blocks becomes unreliable if power

loss occurs after new block allocation but before

updating metadata on map blocks.

Recovery: while booting after power revival, the

verification and recovery of the consistency of latest

available snapshot in map blocks is obtained step by

step as follows.

• Verify consistency of mapping structure.

a. Fetch latest available file system snapshot from

map blocks in main memory by function as

equation 2.

 FetchFileStructure() (2)

b. Extract PBNs of high and low ECN blocks from

free blocks list, as PBN15 and PBN16, as shown

in Figure 5.

Assumption: in this paper, we assume that flash

blocks consist of four pages for simplicity of

examples in figures.

c. Check the free flag status high of extracted blocks

in their block header by function as equation 3.

 IsFree (PBNLowECN, PBNHighECN) (3)

d. If both blocks with high and low ECNs are still

free than the latest available file system snapshot

is consistent.

e. Skip further checking and use same information

for future transactions.

f. Else, if the latest available mapping structure is

not consistent than verify the lastly allocated and

obsolete blocks intelligently based on old

snapshots, as described in following steps.

Figure 5. Lastly allocated block recovery.

• Verify lastly allocated block

a. Extract PBNs of high and low ECN blocks from

free blocks list, as PBN15 and PBN16, as shown

in Figure 5.

b. Identify lastly allocated block by its used flag

status high in its block header by function as

equation 4 and mark it in corresponding hot or

cold blocks pool.

 IsUsed (PBNLowECN, PBNHighECN) (4)

Assumption: in our present scheme, we assume that

a new data or log block allots with high erase count

for cold nature data and with low erase count for

hot nature data for the sake of wear-levelling.

Therefore, wear-levelling is a process to evenly

distribute the erasure on all blocks to prolong the

life of flash media against limited number of

allowed erase operations.

 Free Blocks List

15 14 13 16

ECN

PBN

PBN 15

Used:Yes

PBN 16

Used:No

Used Block Free Block

Free:No Free:Yes

21 40 71 100

Free Blocks List

15 14 13 1615 14 13 16

ECN

PBN

PBN 15

Used:Yes

PBN 16

Used:No

Used Block Free BlockUsed BlockUsed Block Free BlockFree Block

Free:No Free:Yes

21 40 71 10021 40 71 100

JAM: Justifiable Allocation of Memory with Efficient Mounting and Fast Crash Recovery for NAND Flash Memory File Systems 399

In Figure 5, PBN15 is newly allocated block as per

its used flag status high and it assigns to hot blocks

pool by its low erase count.

c. Reorganize mapping information in main memory,

as hot blocks pool increases and free blocks pool

decreases, and update up-to-date file structure in

map blocks by function as equation 5.

 CommitFileStructure() (5)

• Verify lastly obsolete blocks.

After designating the lastly allocated block in its

corresponding block nature pool, check the consistency

of dirty blocks pool by following steps.

a. Extract the LBN of lastly allocated block from its

block header as LBN15 of PBN15, as shown in

Figure 6.

b. Search the blocks with same LBN from metadata of

data and log blocks lists as PBN1 and PBN5. This

search leads to the blocks lastly obsolete due to

Split or Merge operation.

c. Verify their status by their obsolete flags high in

their block headers by function as equation 6, as

shown in Figure 6, and mark them in dirty blocks

pool.

IsObsolete (PBNaLBN, PBNBLBN) ∴ a ≠ b (6)

d. Reorganize mapping information in main memory

and update up-to-date structure in map blocks by

function as equation 5, as shown in Figure 6 old data

block PBN1 and old log block PBN5 become part of

dirty blocks pool and data and log blocks pool

decreases by both obsolete blocks.

Figure 6. Lastly obsolete blocks recovery.

3.2.3. Erase Operation Crash Recovery

Crash Scenario: system keeps obsolete blocks in dirty

blocks pool and erases in idle time of system or when

system crosses the threshold of free blocks. System

maintains the ECN of block in block header and on

map blocks with corresponding LBN.

Assumption: in our present scheme, we assume that

system always selects a victim block for erasure with

low ECN from dirty blocks pool for the sake of wear-

levelling.

After erasure of victim block, system rewrites

increased ECN in block header and block is moved to

free blocks pool. The process of erasure requires

updating two entries in metadata to commit, as free

blocks list increases and dirty blocks list decreases.

System stands in one of the following states, when

light-off occurs:

a. During erase process, so ECN of victim block is

unrecoverable as block header is also erased along

with volatile main memory.

b. After block erased properly, and it's increased

ECN have been written in block header, but before

updating meta-information in map blocks.

In case of unexpected power loss during erase

process, causes the loss of ECN on block was being

erased and from mapping information in main

memory. It also results in unreliable metadata on

map blocks. In first state of system crash, when

power-off occurs during erase process, only dirty

blocks list effected, but in second state, when block

is properly erased but mapping information may

not updated due to unexpected power-off, the

metadata of both dirty blocks and free blocks

becomes unreliable.

Recovery: while booting after power recovery, the

ECN plus stable metadata achieves based on latest

available snapshot in map blocks by performing

following steps.

• Recover erase count number: to recover the reliable

state of system crash when power-off occurs during

erase process, and the victim block was not

properly erased:

a. It needs to erase the victim block again, as shown

in Figure 7(i).

b. Fetch the latest available file system snapshot

from map blocks in main memory by function as

equation 2.

c. The previous ECN of victim block is recovered by

selecting the low ECN block available in dirty

blocks pool; as shown in Figure 7(ii).

Figure 7. Erase operation recovery.

The victim block and the block with low ECN from

dirty blocks pool both points out the same block

Used block
Obsolete block

Old obsolete

log block

PBN 1

Obsolete:Yes

PBN 5
Obsolete:Yes

PBN 15

Used:Yes

LBN 15

LBN

1 2 3 4

5 6 7 8

LBN

PBN

PBN

15 20 11 12

15 20 11 12

Data Blocks List

Log Blocks List

New allocated

data block
Old obsolete

data block

Used block
Obsolete block

Used blockUsed block
Obsolete blockObsolete block

Old obsolete

log block

PBN 1

Obsolete:Yes

PBN 1

Obsolete:Yes

PBN 5
Obsolete:Yes

PBN 5
Obsolete:Yes

PBN 15

Used:Yes

LBN 15

LBN

1 2 3 4

5 6 7 8

LBN

PBN

PBN

15 20 11 12

15 20 11 12

Data Blocks List

Log Blocks List

New allocated

data block
Old obsolete

data block

Dirty Blocks List

9 10 11 12

ECN

PBN

PBN 9

Not properly erased

Unreliable block

Properly erased

Reliable block

Erase

PBN 9 Free:Yes

ECN:22

Recover ECN
Recover lastly

erase block

(i)

(ii)

(iii)

(iv)

21 40 71 99

Dirty Blocks List

9 10 11 129 10 11 12

ECN

PBN

PBN 9

Not properly erased

Unreliable block

Properly erased

Reliable block

Not properly erased

Unreliable block

Not properly erased

Unreliable block

Properly erased

Reliable block

Properly erased

Reliable block

Erase

PBN 9 Free:Yes

ECN:22

Recover ECN
Recover lastly

erase block

(i)

(ii)

(iii)

(iv)

21 40 71 9921 40 71 99

 400 The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010

because the selection of block for erasure is based on

low erase count.

d. Store the increased ECN in recently erased block

header, as shown in Figure 7(iii), and move block

to free blocks pool.

e. Reorganize the mapping information in main

memory accordingly, as dirty blocks list decreases

and free blocks list increases, and update in map

blocks by function as equation 5.

• Recover mapping structure: to recover the

sustainable state of system crash when power-off

occurs after block is properly erased but before

updating mapping information in map block:

a. Fetch the latest available file system snapshot from

map blocks in main memory by function as

equation 2.

b. Compare the low erase count block from dirty

blocks list by its PBN to free blocks list.

c. If block is not available in free blocks list, confirm

the block information by reading its free flag status

high from block header by function as equation 3,

as shown in Figure 7(iv).

d. Reorganize the mapping information in main

memory accordingly, as dirty blocks list decreases

and free blocks list increases, and update in map

blocks by function as equation 5.

4. Performance Evaluation

4.1. Simulation Methodology

To evaluate the performance characteristics of JFFS2

[8], YAFFS2 [4], and our proposed JAM scheme, we

developed simulator for each scheme and performed

trace-driven simulations. We built a simulator with 32

megabytes of flash space that is divided into equal size

of erase blocks. Each block size is 16 kilobytes and

every block is composed of 32 pages as read/write

units. Every page data area size is 512 bytes with 16

bytes spare area. We use 15µs for a page read, 200µs

for a page write, and 2ms for a block erase from [7]

product.

We use five data traces in this experiment, as shown

in Table 1. These traces have been obtained from the

author of [3]. Traces A, B and C are generated from

digital cameras and thus contain both small random

inputs and large sequential inputs. Traces D and E

contains many small random inputs than large

sequential inputs.

For each given trace, system compares our proposed

scheme JAM with JAFFS2 and YAFFS2 for required

main memory space and time for normal mounting and

in case of crash recovery. We believe that these traces

are complex enough to show the characteristics of our

proposed scheme for more general flash memory based

systems.

The total elapsed time is calculated by equation 7 for

effective comparison between all schemes. Time

required for read in unit of page from flash memory to

data register is calculated by equation 8. Time

required for read in unit of byte from data register to

main memory is calculated by equation 9. Time

required for computation in main memory for building

mapping structure is calculated by equation 10.

Usually main memory time is very small to neglect for

small size operations. Time required for write back, if

any, the mapping structure from main memory to flash

media is calculated by equation 11.

Table 1. Simulation traces.

Traces Workload Description Number of Inputs

A Digital camera (A company) 23518

B Digital camera (B company) 74687

C Digital camera (C company) 139152

D Linux O/S 56700

E Symbian O/S 32392

Total time =TRFR+ TRRR+Ta+TWRF (7)

TRFR = read count (page)x read time) (8)

TRrR = read count (byte)x read time) (9)

Ta= Time for Computation in RAM (10)

TWRF =(writecount(page)x writetime) (11)

4.2. Experimental Results

Figures 8 and 9 present the results of amount of space

consumed in RAM in unit of kilobytes while

mounting for normal start-up and in case of crash

recovery, respectively. Results show that our proposed

scheme JAM highly outperforms to both native

approaches, as JFFS2 and YAFFS2. Both schemes

store logical/physical mapping information on page

granularity level and the time and space required for

address translation structures highly depends on stored

data size. Our JAM scheme examines the request

arrival ratio by smaller threshold on every logical

block by monitoring module to reduce the number of

blocks required to fetch in RAM on the time of

mounting. Threshold “TH=3” shows that the

metadata of blocks from map blocks are fetched, those

were accessed atleast three times in last monitoring

time interval. Dynamic block allocation considerably

reduces the RAM footprints. We can recognize the

efficiency of our metadata management based on data

nature, which shows the demand to handle data by

their accessibility ratio. In real workload, usually data

access patterns changes with time, in that case

monitoring module is best choice to identify the

blocks those are not accessed for long period of time

to save the expansive RAM space and I/O

computation while fetching the metadata in main

memory. Our proposed JAM scheme ensures recovery

highly based on metadata and intelligent procedures.

Therefore, for recovery, JAM consumes space in main

memory to keep only system data and few more

JAM: Justifiable Allocation of Memory with Efficient Mounting and Fast Crash Recovery for NAND Flash Memory File Systems 401

pages, if required, from flash media. We offer less

RAM space consumption overall 99.4% and 98.8%

while mounting and 99% and 98% while crash recovery

compared to JFFS2 and YAFFS2, respectively.

Figure 8. Space consumed in RAM (KB) for system mounting.

Figure 9. Space consumed in RAM (KB) for system recovery.

Figures 10 and 11 present the results of required

time in unit of millisecond while mounting for normal

start-up and in case of crash recovery. Our proposed

scheme JAM outperforms both schemes as JFFS2 and

YAFFS2. The reason of high performance is that we

fetch mapping information from dedicated map blocks

while booting rather than scanning whole flash media.

But JFFS2 scans entire flash media to extract mapping

information as both data and metadata are saved

together in data section, and YAFFS2 scans the spare

areas of all used data sectors on whole flash media to

reconstruct the file system on every booting time.

Therefore, due to same scan-to-initialize way, both

schemes give same results for start-up in both cases as

for normal start-up and in case of crash recovery, and

highly decrease system performance. Even though,

YAFFS2 gives better results compared to JFFS2 but

they both suffers compared to our proposed scheme

JAM. To efficiently handle the problem of data

reliability, JAM scheme uses the already available old

metadata in map blocks and reconstructs the file system

by effective computations in RAM, intelligently, as

discussed in detail in Section 3.2. Growth in data

storage increases the mounting and recovery time for

JFFS2 and YAFFS2 but our JAM scheme offers

constant recovery time for all situations. We offer

faster mounting performance overall 99.9%, and prove

faster recovery performance overall 99.7%, compared

to both schemes as JFFS2 and YAFFS2.

Figure 10. Time (ms) for system mounting.

Figure 11. Time (ms) for system recovery.

5. Conclusions

This research proposes the novel JAM system

software scheme to ensure the high performance and

system reliability by innovative metadata

management, efficient mounting, fast crash recovery,

and reduced main memory footprints for NAND flash

memory file systems. Our present research relates to

minimize the required time and main memory data

structure for mapping table construction, both for

normal start-up and in case of crash recovery.

Monitoring module used to ensure the effective

metadata management. Reduced main memory

consumption achieved by efficient mounting based on

data accessibility ratio. Data consistency issues

discussed in detail and provided effective fast crash

recovery. The file system reliability improved mostly

on behalf of metadata rather than scanning whole flash

media. Through comprehensive evaluations, we

proved that JAM has outstanding performance

compared to JFFS2 and YAFFS2.

 402 The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010

We demonstrated that our proposed JAM scheme is

more time, energy and space efficient. Therefore, it

proves an ideal technique for small size; time, energy

and run time memory constrained devices like wireless

nodes, ubiquitous devices, pervasive applications and

other embedded systems and consumer electronics.

Acknowledgements

We wish to thank Mr. Muneer Ali Shah Rizvi,

professor and dean, Greenwich University, Karachi

Pakistan, and Mr. Vaqar Ayub Khamisani, Customer &

Partner Experience Lead, Microsoft Ltd., UK, and Mr.

S. M. Saif Shams, PhD Candidate, Simula School of

Research and Innovation, Norway for their valuable

time for reviewing the whole manuscript and

responding with their helpful comments.

This work was supported by Defense Acquisition

Program Administration and Agency for Defense

Development under the contract (UD060048AD).

References

[1] Chung S., Lee M., Ryu Y., and Lee K., “PORCE:

An Efficient Power off Recovery Scheme for

Flash Memory,” Computer Journal of Systems

Architecture: Embedded Systems Design, vol. 54,

no. 10, pp. 935-943, 2008.

[2] Kim J., Kim M., Noh H., Min L., and Cho Y., “A

Space-Efficient Flash Translation Layer for

Compact Flash Systems,” Computer Journal of

IEEE Transactions on Consumer Electronics, vol.

48, no. 2, pp. 366-375, 2002.

[3] Lee W., Park J., Chung S., Lee H., Park S., and

Song J., “A Log Buffer Based Flash Translation

Layer Using Fully Associative Sector

Translation,” Computer Journal of ACM

Transactions on Embedded Computing Systems,

vol. 6, no. 3, pp. 68-83, 2007.

[4] One A., “Yet Another Flash Filing System,”

Electronic Document, http://www.aleph1.co.uk

/yaffs/index.html, Cambridge, UK.

[5] Ryu J. and Park C., “Fast Initialization and

Memory Management Techniques for Log-Based

Flash Memory File Systems,” in Proceedings of

the International Conference on Embedded

Software and Systems, Korea, pp. 219-228, 2007.

[6] Ryu Y., Chung S., and Lee M., “A Space-

Efficient Flash Memory Software for Mobile

Devices,” in Proceedings of International

Conference on Computational Science and its

Applications, USA, pp. 72-78, 2005.

[7] Samsung Electronics, “NAND Flash Memory,”

K9F5608X0D Data Book, 2009.

[8] Woodhouse D., “JFFS: the Journaling Flash File

System,” Ottawa Linux Symposium,

http://sources.redhat.com/jffs2/jffs2.pdf, 2001.

[9] Wu H., Kuo W., and Chang P., “Efficient

Initialization and Crash Recovery for Log based

File Systems over Flash Memory,” in

Proceedings of the ACM Symposium on Applied

Computing, France, pp. 896-900, 2006.

[10] Yim S., Kim J., and Koh K., “A Fast Start-Up

Technique for Flash Memory Based Computing

Systems,” in Proceedings of the ACM

Symposium on Applied Computing, USA, pp.

843-849, 2005.

Sanam-Shahla Rizvi received the

BCS degree in computer science

from Shah Abdul Latif University,

Khairpur, Pakistan, in 2003, and the

MCS degree in computer science

from KASBIT University, Karachi,

Pakistan, in 2004, and MS degree in

computer science from Mohammad Ali Jinnah

University, Karachi, Pakistan, in 2006. She is

currently candidate of PhD at School of Information

and Computer Engineering at Ajou University, Korea.

Tae-Sun Chung received the BS

degree in computer science from

KAIST, in February 1995, and the

MS and PhD degree in computer

science from Seoul National

University, in February 1997 and

August 2002, respectively. He is

currently an associate professor at School of

Information and Computer Engineering at Ajou

University. His current research interests include flash

memory storages, XML databases, and database

systems.

