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Abstract: Finite Radon Transform mapper has the ability to increase orthogonality of sub-carriers, it is non sensitive to 

channel parameters variations, and has a small constellation energy compared with conventional Fast Fourier Transform 

based orthogonal frequency division multiplexing. It is also able to work as a good interleaver which significantly reduces the 

bit error rate. Due to its good orthogonality, discrete wavelet transform is used for orthogonal frequency division multiplexing 

systems which reduces inter symbol interference and inter carrier interference. This eliminates the need for cyclic prefix and 

increases the spectral efficiency of the design. In this paper both Finite Radon Transform and Discrete Wavelet Transform are 

implemented in a new design for orthogonal frequency division multiplexing. The new structure was tested and compared with 

conventional Fast Fourier Transform -based orthogonal frequency division multiplexing, Radon-based orthogonal frequency 

division multiplexing, and discrete wavelet transform -based orthogonal frequency division multiplexing for additive white 

Gaussian noise channel, flat fading channel, and multi-path selective fading channel. Simulation tests were generated for 

different channels parameters values. The obtained results showed that proposed system has increased spectral efficiency, 

reduced inter symbol interference and inter carrier interference, and improved bit error rate performance compared with 

other systems. 

 

Keywords: Discrete Wavelet Transform, Finite Radon Transform, radon based OFDM, DWT based OFDM, and OFDM. 

 

Received April 8, 2009; accepted August 4, 2009 
 

 

1. Introduction 

Orthogonal frequency division multiplexing system is 

one of the most promising technologies for current and 

future wireless communications. It is a form of multi-

carrier modulation technologies where data bits are 

encoded to multiple sub-carriers, while being sent 

simultaneously [1]. Each sub-carrier in an Orthogonal 

Frequency Division Multiplexing (OFDM) system is 

modulated in amplitude and phase by the data bits. 

Modulation techniques typically used are binary phase 

shift keying, Quadrature Phase Shift Keying (QPSK), 

Quadrature Amplitude Modulation (QAM), 16-QAM, 

64-QAM etc., The process of combining different sub-

carriers to form a composite time-domain signal is 

achieved using Fast Fourier Transform (FFT) and 

Inverse FFT (IFFT) operations [25]. 

The main problem in the design of a 

communications system over a wireless link is to deal 

with multi-path fading, which causes a significant 

degradation in terms of both the reliability of the link 

and the data rate [20]. Multi-path fading channels have 

a severe effect on the performance of wireless 

communication systems even those systems that 

exhibits efficient bandwidth, like OFDM [12]. There is 

always a need for developments in the realization of 

these systems as well as efficient channel estimation 

and equalization methods to enable these systems to 

reach their maximum performance [26]. The OFDM 

receiver structure allows relatively straightforward 

signal processing to combat channel delay spreads, 

which was a prime motivation to use OFDM 

modulation methods in several standards [11, 13, 19, 

21]. 

In transmissions over a radio channel, the 

orthogonality of the signals is maintained only if the 

channel is flat and time-invariant, channels with a 

Doppler spread and the corresponding time variations 

corrupt the orthogonality of the OFDM sub-carrier 

waveforms [6]. In a dispersive channel, self-

interference occurs among successive symbols at the 

same sub-carrier casing Inter Symbol Interference 

(ISI), as well as among signals at different sub-carriers 

casing Inter Carrier Interference (ICI). For a time-

invariant but frequency-selective channel, ICI, as well 

as ISI, can effectively be avoided by inserting a cyclic 

prefix before each block of parallel data symbols at the 

cost of power loss and bandwidth expansion [25].  

The Radon Transform (RT) was first introduced by 

Johann Radon (1917) and the theory, basic aspects, and 

applications of this transform are studied in [4, 7] 

while the Finite RAdon Transform (FRAT) was first 

studied by [3]. RT is the underlying fundamental 

concept used for computerized tomography scanning, 

as well for a wide range of other disciplines, including 
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radar imaging, geophysical imaging, nondestructive 

testing and medical imaging [11]. Recently FRAT was 

proposed as a mapping technique in OFDM system [2].  

Conventional OFDM/QAM systems are robust for 

multi-path channels due to the cyclically prefixed 

guard interval which is inserted between consequent 

symbols to cancel ISI. However, this guard interval 

decreases the spectral efficiency of the OFDM system 

as the corresponding amount [24]. Thus, there have 

been approaches of wavelet-based OFDM which does 

not require the use of the guard interval [10, 14, 15, 23, 

27, 28, 29]. It is found that OFDM based on Haar 

orthonormal wavelets (DWT-OFDM) are capable of 

reducing the ISI and ICI, which are caused by the loss 

in orthogonality between the carriers.   

In this paper the idea of one dimensional serial 

Radon based OFDM proposed in [2] is developed 

farther towards increasing spectral efficiency and 

reducing BER. Further performance gains and higher 

spectral efficiency were made by combining both 

FRAT and DWT in the design of OFDM system. 

Simulation results show that proposed system has 

better performance than Fourier, Radon, and wavelet 

based OFDM under different channel conditions. 

The paper is organized as follows. In section 2 we 

describe the serial one-dimensional OFDM system and 

provide the algorithm for computing the mapping data; 

in section 3 we describe and provide a fast discrete 

wavelet transform computation algorithm used in 

proposed system design; in section 4 we describe the 

proposed Radon-wavelet-OFDM system and in section 

5 we provide the simulation analyze and discussions of 

the obtained results; Finally in section 6, a conclusion  

is presented to summarize the main outcomes of this 

paper.  

 

2. The Radon-Based OFDM  

Radon-based OFDM was recently proposed in [2], it 

was found that as a result of applying FRAT, the Bit 

Error Rate (BER) performance was improved 

significantly, especially in the existence of multi-path 

fading channels. Also, it is found that Radon-based 

OFDM structure is less sensitive to channel parameters 

variation, like maximum delay, path gain, and 

maximum Doppler shift in selective fading channels as 

compared with standard OFDM structure.  

In Radon based OFDM system, FRAT mapping is 

used instead of QAM mapping [2] as shown in Figure 

1. The other processing parts of the system remain the 

same as in conventional QAM OFDM system. It is 

known that FFT based OFDM obtain the required 

orthogonality between sub-carriers from the suitability 

of IFFT algorithm [12, 25, 26]. Using FRAT mapping 

with the OFDM structure increases the orthogonality 

between sub-carriers since FRAT computation uses 

one-Dimensional (1-D) IFFT algorithm. Also FRAT is 

designed to increase the spectral efficiency of the 

OFDM system through increasing the bit per Hertz of 

the mapping. Sub carriers are generated using N points 

Discrete Fourier Transform (DFT) and Guard Interval 

(GI) inserted at start of each symbol is used to reduce 

ISI.  

The procedure steps of using the Radon based 

OFDM mapping is as follows:  

Step 1: suppose )(kd  is the serial data stream to be 

transmitted using OFDM modulation scheme. 

Converting )(kd from serial form to parallel form will 

construct a one dimensional vector containing the data 

symbols to be transmitted, 

                 ( )T
nddddkd  ......   )( 210=                       (1) 

where, k and n are the time index and the vector length 

respectively. 
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Figure 1. Serial Radon based OFDM transceiver. 

 

Step 2: convert the data packet represented by the 

vector d(k) from one-dimensional vector to a pxp two 

dimensional matrix D(K), where p should be a prime 

number according to the matrix resize operation. 

Step 3: take the 2-D FFT of the matrix D(K) to obtain 

the matrix, F(r, s). For simplicity it will be labeled by 

F.  
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Step 4: redistribute the elements of the matrix F  

according to the optimum ordering algorithm given in 

[17], so, the dimensions of the resultant matrix will be 

)1( +× pp  and will be denoted by the symbol optF . 

The two matrixes for FRAT window= 7 are given by: 
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Step 5: take the 1D-IFFT for each column of the matrix 

optF  to obtain the matrix of Radon coefficients, R : 
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               (5) 

Step 6:  construct the complex matrix R  from the real 

matrix R  such that its dimensions will be 

2/)1( +× pp  according to: 

1,,, ++= jijiml rjrr , pjpi ≤≤≤≤ 0,0                  (6) 

where, mlr ,  refers to the elements of the matrix R , 

while jir ,  refers to the elements of the matrix R . 

Matrixes R  and R  are given by: 
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Complex matrix construction is made for a purpose of 

increasing bit per Hertz of mapping before resizing 

mapped data. 

Step 7: resize the matrix R  to a one dimensional 

vector )(kr  of length 2/)1( +× pp . 

             ( )T)/p(p ...... r rrrkr 21210 )( +=                      (9) 

Step 8: take the 1D-IFFT for the vector, )(kr  to obtain 

the sub-channel modulation. 
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where Nc number of carriers.  

Step 9: finally, convert the vector )(ks  to serial data 

symbols: ns ......  s ss ,,,, 210 .  

 

3. Fast Discrete Wavelet Transform 

Computation  

If we regard the wavelet transform as a filter bank then 

we can consider wavelet transforming a signal, as 

passing it through this filter bank. The outputs at 

different filter stages are the wavelet and scaling 

function transform coefficients, this is known as sub-

band coding. 

The following two equations state that the wavelet 

and scaling function coefficients on a certain scale can 

be found by calculating a weighted sum of the scaling 

function coefficients from the previous scale [5, 8].  

  ( ) ( ) ( )∑ +−=
m

jj makmhka 1 2                     (11) 

 ( ) ( ) ( )∑ +−=
m

jj mbkmgkb 1 2                    (12) 

This means that equations 11 and 12 together form one 

stage of an iterated digital filter bank and it is referred 

to the coefficients h(k) as the scaling filter and to the 

coefficients g(k) as the wavelet filter. It is shown that 

the orthogonality requires that the wavelet coefficients 

are related to the scaling function coefficients by [5]: 

( ) ( ) ( )khkg
k −−= 11 , for a finite even length-n h(k). 

              ( ) ( ) ( )knhkg
k −−−= 11                       (13)  

In wavelet analysis we often speak of approximations 

and details. The approximations are the high-scale low-

frequency components of the signal and the details are 

the low-scale high-frequency components [9, 16]. The 

implementation of equations 11 and 12 is illustrated in 

Figure 2.  In this figure two levels of decomposition 

are depicted, h and g are low-pass and high-pass filters 

corresponding to the coefficients h(k) and g(k) 

respectively. The down-pointing arrows denote a 

decimation or down-sampling by two. This splitting, 

filtering and decimation can be repeated on the scaling 

coefficients to give the two-scale structure.  

The first stage of two banks divides the spectrum 

of aj+1,k into a low-pass and high-pass band, resulting 

in the scaling coefficients and wavelet coefficients at 

lower scale aj,k and bj,k. The second stage then divides 

the low-pass band into another lower low-pass band 

and a band-pass band.  

If the number of coefficients is two, then for 

computing FDWT consider the following 

transformation matrix: 
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Here the blank entries are zero, and if the number  

of coefficients is four, then for computing FDWT 

consider the following transformation matrix: 
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Figure 2. The filter bank for calculating the wavelet coefficients. 
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By examining the transformation matrices of the 

scalar wavelet as shown in equations 14 and 15     

respectively, it can be seen that the first row generates 

one component of the data convolved with the low-

pass filter coefficients {h(0), h(1), …}. Likewise the 

second, third, and other upper half rows are formed. 

The lower half rows perform a different convolution, 

with high pass filter coefficients {g(0),g(1), …}. The 

overall action of the matrix is to perform two related 

convolutions, then to decimate each of them by half 

(throw away half the values), and interleave the 

remaining halves. By using equation 13 the 

transformation matrices becomes: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )































−

−

−
=

010000

0100

0001

100000

1000

0010

hh

hh

hh

hh

hh

hh

Tr

LL

LLMMMM

MMLL

LL

LL

LLMMMM

LL

LL

          (16) 

 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )


































−−

−−

−−

−−=

2300000001

0123000000

0000012300

00000123

1000000032

0000321000

0000003210

hhhh

hhhh

hhhh

hhhh

hhhh

hhhh

hhhh

Tr

L

L

MMMMLMMMMMM

L

LMM

L

MMMMLMMMMMM

L

L

          (17) 

 

It is useful to think of the filter 

{h(0),h(1),h(2),h(3)…} as being a smoothing filter H, 

which something like a moving average of four points. 

While because of the minus signs, the filter G={h(3),-

h(2),h(1),-h(0),…}, is not a smoothing filter. For such 

characterization to be useful, it must be possible to 

reconstruct the original data vector of length N from its 

N/2 smooth and its N/2 detail [18]. The requirement of 

the matrices to be orthogonal leads to that its inverse is 

just the transposed matrix: 
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For a length 2 ( )kh , there are no degrees of freedom 

left after satisfying the required conditions. These 

requirements are [5]: 
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These are the Haar scaling function coefficients, which 

are also the length 2 Daubechies coefficients. For the 

length-4 coefficients sequence, there is one degree of 

freedom or one parameter that gives all the coefficients 

that satisfy the required conditions:  
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Letting the parameter be the angle α , the coefficients 

become 
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These equations give length-2 Haar coefficients for 

23,2 ππ and length-4 Daubechies coefficients for 

3πα = . These daubechies-4 coefficients have a 

particularly clean form: 







 −−++

=
24

31
,

24

33
,

24

33
,

24

31
4Dh

         

To compute a single level FDWT for 1-D signal the 

next steps should be followed: 

a. Input vector should be of length N, where N must be 

power of two. 

b. Construct a transformation matrix: using 

transformation matrices given in equations 14 and 

15, Transformation of input vector, which can be 

done by applying matrix multiplication to the NxN 

constructed transformation matrix by the N*1 input 

vector. For example let us take a general 1-D signal 

X. [ ]76543210 xxxxxxxxX = , for an 

8x1 input 1-D signal, X construct a 88×  

transformation matrix, Tr,  using Haar coefficients 

filter: 
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or using Db4 coefficients filter: 
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Transformation of input vector is done as follows: 

[Z]N*1 =[Tr]N*N x [X]N*1. To reconstruct the original 

signal from the Discrete Wavelet Transformed (DWT) 

signal, Inverse Fast Discrete Wavelet Transform 

(IFDWT) should be used. The inverse transformation 

matrix is the transpose of the transformation matrix as 

the transform is orthogonal. To compute a single level 

IFDWT for 1-D signal the next steps should be 

followed: 

a. Let X be the Nx1 wavelet transformed vector. 

b. Construct NxN reconstruction matrix, Ti, using 

transformation matrices given in equations 18 and 

19. 

c. Reconstruction of input vector, which can be done 

by applying matrix multiplication to the NxN 

reconstruction matrix, Ti, by the Nx1 wavelet 

transformed vector. For example, let X be the input 

1-D signal, [ ]76543210 xxxxxxxxX = , for 

an 18×  input 1-D signal, X, construct a 

88× reconstruction matrix, Ti, using Haar 

coefficients filter: 
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or using Db4 coefficients filter: 
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Reconstruction of input vector can be done as follows: 

[Z]N*1 = [Ti]NxN x [X]N*1 

 

4. Proposed System for Radon-Wavelet 

Based OFDM Transceiver  

Due to good orthogonality of both DWT and FRAT 

which reduce ISI and ICI, in proposed system there is 

no need of using Cyclic Prefix (CP). The block 

diagram of the proposed Radon-wavelet based OFDM 

system is depicted in Figure 3 and the IDWT 

modulator and DWT demodulator are shown in Figure 

4.  
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Figure 3. Block diagram of FRAT-DWT based OFDM system. 
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Figure 4. DWT-OFDM modulation- demodulation. 

 

The processes of Serial to Parallel (S/P) converter, 

signal demapper, and the insertion of training sequence 

are the same as in the system of FFT-OFDM. Also the 

zeros are added as in the FFT based case and for the 

same reasons. After that the IDWT is applied to the 

signal. The main and important difference between 

FFT based OFDM and DWT based OFDM is that in 

wavelet based OFDM cyclic prefix is not added to 

OFDM symbols. Therefore the data rates in wavelet 

based OFDM is higher than those of the FFT based 

OFDM. At the receiver, the zeros padded at the 

transmitter are removed, and the other operations of 

channel estimation, channel compensation, signal 

demapping and Parallel to Serial (P/S) are performed 

in the same manner as in FFT based OFDM.. 

In conventional OFDM system, the length of input 

data frame is 60 symbols, and after (S/P) conversion 

and QAM mapping the length becomes 30 symbols. 

Zero padding operation makes the length 64 symbols 

which are the input to IFFT (sub-carrier modulation). 

After adding CP (usually 40% of the length of the 

frame), the frame length becomes 90 symbols. Since 

OFDM operations applied to training symbols are the 

same as those applied to transmitted data (except the 

mapping operation), the length of training symbols is 

also 90 symbols. The training and data frames are 

transmitted as one frame starting with training, so the 

length of transmitted frame is 180 symbols [22]. In 

proposed system, the length of the input data frame 

must be (pxp), where P is a prime number. The closest 

number to 60 is 7x7, which makes the frame length 49 

symbols. This is because the input of FRAT must be a 

two dimensional matrix with size (pxp).  

 

5. Simulation Results of the Proposed 

System 

Four types of OFDM systems were simulated: FFT-

OFDM, Radon-OFDM, DWT-OFDM and proposed 

Radon-DWT based OFDM systems using MATLAB 

version 7. The BER performances of the four systems 

were found for different channel models: AWGN 

channel, flat fading channel, and selective fading 

channel. System parameters used through the 

simulations are: sec1.0 µ=ST , FRAT window: 7 by 7, 

and DWT bins 64=N .  

5.1. Performance of Proposed OFDM System in 

AWGN channel 

Figure 5 shows the results of simulation of proposed 

system compared with other systems in AWGN 

channel. It is clearly seen that FRAT-DWT based 

OFDM has better performance than the other three 

systems: FFT-OFDM, DWT-OFDM and FRAT-

OFDM. This is due to the high orthogonality of 

proposed system. To have BER = 10
-4
, FFT-OFDM 

requires 28 dB, FRAT-OFDM requires 25 dB, DWT-

OFDM requires 21.5 dB, and FRAT-DWT based 

OFDM requires 17 dB. And to have BER = 10
-5
, FFT-

OFDM requires 31.5 dB, FRAT-OFDM requires 28 

dB, DWT-OFDM requires 23.5 dB, and FRAT-DWT 

based OFDM requires 18.5 dB. From the results it can 

be noted that proposed system has 12 dB advantage 

over FFT-OFDM, 9.5 dB over FRAT-OFDM, and 5 

dB over DWT-OFDM. 
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Figure 5. BER performance of FRAT-DWT based OFDM in 

AWGN channel. 

 

5.2. Performance of the Proposed OFDM 

System in Flat Fading Channel with 

AWGN 

In this channel, all signal frequency components are 

affected by a constant attenuation and linear phase 

distortion, in addition to an AWGN. The channel was 

selected to be multi-path and Rayleigh distributed. 

Doppler frequency used in simulation is calculated as 

follows: sec/10300 6mc ×= , in GSM system 

MHzf c 900=  so, 

sec
8

6

10300sec

1
10900

m
cd

v

c

v
ff

×
××=×= ×    

vmf d ×= )1(3  
 

The Doppler frequency used, is that corresponding to a 

walking speed (4.8 km/hour), and it has a value:  

Hz
m

m
f
d

4
sec3600

10008.4

1

3
=

×
×= , The results of 

simulations for 4Hz Doppler frequency are shown in 

Figure 6. From Figure 6 it can be seen that to have 

BER = 10
-5
, FFT-OFDM requires 33dB, FRAT-OFDM 

requires 30.5dB, DWT-OFDM requires 25dB, and 

FRAT-DWT based OFDM requires 20.5dB. So 

proposed system offers 12.5 dB SNR-improvement 
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compared with FFT-OFDM, 10 dB compared with 

FRAT-OFDM, and 4.5dB compared with DWT-

OFDM for this channel model. Other Doppler-Shift 

frequencies were used for proposed system simulation 

over the flat fading Rayleigh channel; the values used 

are 80Hz corresponding to car speed (96 km/hour), 

300Hz corresponding to Helicopter speed (360 

km/hour), and 500Hz corresponding to airplane speed 

(600 km/hour), and the same results were obtained for 

these frequencies. The reason for best performance 

results of FRAT-DWT based OFDM is the good 

orthogonality of Radon transform and the excellent 

orthogonality of DWT. 

 

5.3. BER Performance of the Proposed OFDM 

System in Selective Fading Channel with 

AWGN  

In this section, the channel model is assumed to be 

selective fading channel. A second ray's Raleigh-

distributed multi-path fading channel is assumed, 

where the parameters of the multipaths channel are: 

path gain equal -8 dB and path delay sec1.0
max

µτ = . 
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Figure 6. BER performance of FRAT-DWT based OFDM in flat 
fading channel at Doppler frequency 4 Hz. 

The BER performance of proposed system and the 

other OFDM systems over a selective fading channel 

with Doppler frequency of 4 Hz is shown in Figure 7. 

It can be seen that to have BER = 10
-5
, FFT-OFDM 

requires 37.5 dB, FRAT-OFDM requires 34.5 dB, 

DWT-OFDM requires 28 dB, and FRAT-DWT based 

OFDM requires 22 dB. So proposed system offers a 

large SNR-improvement compared with FFT-OFDM, 

FRAT-OFDM, and DWT-OFDM for this channel 

model. 

The same performance characteristics of systems 

over selective fading channel with Doppler frequencies 

80 Hz, 300 Hz, and 500 Hz were simulated. Figure 8 

shows BER performance of FRAT-DWT based OFDM 

in selective fading channel with Doppler frequency of 

300 Hz. From Figure 8, it is clearly seen that FFT 

based OFDM needs more than 40 dB of SNR to have 

BER= 10
-4
, while FRAT based OFDM needs around 

39 dB of SNR to reach BER=10
-5
, DWT based OFDM 

BER performance does not exceed 0.002425 with 

increasing SNR, whereas proposed FRAT-DWT based 

OFDM has much better performance than the other 

three systems, it reaches BER=10
-5
 at SNR= 26.5 dB. 
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Figure 7. BER performance of FRAT-DWT based OFDM in 

selective Fading Channel at Doppler frequency 4 Hz. 
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Figure 8. BER performance of FRAT-DWT based OFDM in 

selective fading channel at Doppler frequency 300 Hz. 

 

Figure 9 shows BER performance of FRAT-DWT 

based OFDM in selective Fading Channel with 

Doppler frequency of 500Hz. From Figure 9, the 

following conclusion can be stated: When Doppler 

frequency exceeds 500 Hz, proposed system suffers 

from the same problem that DWT based OFDM 

system suffer from, the performance of proposed 

system does not increase with increasing SNR when 

the Doppler frequency exceed 500 Hz. It is seen that 

OFDM systems are very sensitive systems to the 

variation of Doppler frequency in selective fading 

channel. 
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Figure 9. BER performance of FRAT-DWT based OFDM in 
selective fading channel at Doppler frequency 500 Hz. 
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The effect of Doppler frequency value on BER 

performance for proposed system is provided in Figure 

10. It can be seen from Figure 10 that the critical value 

of Doppler frequency for proposed system is around 

420 Hz.  
 

0 5 10 15 20 25 30 35 40

10
-4

10
-3

10
-2

10
-1

10
0

B
E
R

SNR 

4Hz

80Hz

415Hz

500Hz

410Hz

 

Figure 10. BER performance of FRAT-DWT based OFDM in 

selective fading channel at different Doppler frequencies. 
 

6. Conclusions 

In this paper a novel OFDM generation method is 

proposed, simulated, and tested. The proposed system 

uses Radon-DWT mapping instead of QAM mapping 

which increases the orthogonality. The optimal 

ordering (best direction) in the Radon mapper can be 

considered as a good interleaver which serve in error 

spreading. In proposed system there is no need for 

using CP because of excellent orthogonality offered by 

FRAT and DWT, which in its order reduces the system 

complexity, increases the transmission rate, and 

increases spectral efficiency. Simulation results of 

proposed Radon-DWT based OFDM show a very good 

SNR gain improvement and a BER performance as 

compared with DWT-OFDM, FRAT-OFDM, and 

FFT-OFDM in an AWGN, a flat fading, and a 

selective fading channels. It offers more than 15 dB 

SNR improvement compared with FFT-OFDM for 

selective Fading Channel at Doppler frequency 4Hz. 

From the simulation results, it can be seen that 

proposed Radon-DWT based OFDM has the smallest 

sensitivity to variations of the channel parameters. This 

work will be continued towards designing a Radon-

DWT multi-carrier code division multiple access 

system with an increased SNR improvement under 

severe channel conditions. 
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