
The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010                                                         365 

 

 

Attack and Construction of Simulator for Some of 

Cipher Systems Using Neuro-Identifier  

Khaled Alallayah
1
, Mohamed Amin

1
, Waiel Abd El-Wahed

2
, and Alaa Alhamami

3
 

1
Department of Mathematical & Computer Science, Al Menoufia University, Egypt

 

2
Department of Computer Science, Al Menoufia University, Egypt 

3
Faculty of Computing Studies, Amman Arab University for Graduate Studies, Jordan  

 
Abstract :  The problem in cryptanalysis can be described as an unknown and the neural networks are ideal tools for black-

box system identification. In this paper, a mathematical black-box model is developed and system identification techniques are 

combined with adaptive system techniques, to construct the Neuro-Identifier. The Neuro-Identifier is discussed as a black-box 

model to attack the target cipher systems. In this paper a new addition in cryptography. Has been presented, and the methods 

of classical and stream cryptosystems are discussed. The constructing of Neuro-Identifier mode is  to achieve two objectives: 

the first one is to emulator construction Neuro-model for the target cipher system, while the second is to (cryptanalysis) 

determine the key from given plaintext-ciphertext pair. 
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1. Introduction 

Security of cryptographic systems is directly related to 

the difficulty associated with inverting encryption 

transformations of the system. The protection afforded 

by the encryption procedure can be evaluated by the 

uncertainty facing an opponent in determining the 

permissible keys [19]. The cryptanalysis problem can 

be described as an identification problem, and the goal 

of the cryptography is to build a cryptographic system 

that is hard to identify [7]. System identification is 

concerned with inferring models from observation and 

studying system behaviour and properties. System 

identification deals with the problem of building 

mathematical models of dynamical systems based on 

observed data from the system [10]. Artificial Neural 

Networks (ANNs) are simplified models of the central 

nervous system. They are networks of highly 

interconnected neural computing elements that have 

the ability to respond to input stimuli. Among the 

capabilities of ANN, are their ability to learn 

adaptively from dynamic environments to establish a 

generalized solution through approximation of the 

underlying mapping between input and output [5, 16, 

18]. Neural networks can be regarded as a black-box 

that transforms an input vector of m-dimensional space 

to an output vector in n-dimensional space. This makes 

them ideal tools for black-box system identification 

[11, 18, 23]. 

 

 

2. System Identification 

There are two approaches for system identification [9, 

11], depending on the available information, which 

describes the behaviour of the system. The first 

approach is the State-Space approach (internal 

description), which describes the internal state of the 

system, and is used whenever the system dynamical 

equations are available. The second approach is the 

Black-Box approach (input-output description) which 

is used when no information is available about the 

system except its input and output. Figure 1 illustrates 

an unknown system with xm input signals and yn output 

signals. The central concept in identification problems 

is identifiability [9, 11]. The problem is whether the 

identification procedure will yield a unique value of 

the parameter (q), and/or whether the resulting model 

(M) is equal to the true system, i.e., a model structure 

is globally identified at (θ *) if: 

             M(θ) = M(θ *),     θ Є DM => θ = θ *              (1) 

where M is a model structure, q is a parameter vector, 

ranging over a set of values DM [17]. 
 

 
Figure 1. System with m inputs and n outputs. 
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3. Input-Output Descriptions  

The input-output description of a system gives a 

mathematical relationship between the input and output 

of the system. In developing this description, the 

knowledge of the internal structure of a system may be 

assumed to be unavailable; the only access to the 

system is by means of the input and output terminals 

[21]. Under this assumption, a system may be 

considered a Black-Box as shown in Figure 2. Clearly 

what one can do to a black box is to apply inputs and 

measure their corresponding outputs, and then try to 

abstract key properties of the system from these input-

output pairs. An input-output model assumes that the 

new system output can be predicted by the past inputs 

and outputs of the system [21, 23].  
 

 

 
Figure 2.  Adaptive system identification architecture. 

 

A Black-Box model of system identification 

assumes no prior knowledge about the system except 

it’s input and output, i.e., no matter what analysis is 

used, it always lead to the same input-output 

description. Moreover, a black-box model allows 

finite-dimensional identification techniques to be 

applied, which may require in nonlinear system 

identification. In developing the input-output 

description, before an input is applied, the system must 

be assumed to be relaxed or at rest, and that the output 

is excited solely and uniquely by the input applied 

thereafter and the system is said to be causal if the 

output of the system at time k does not depend on the 

input applied after time k [21]. The system can be 

described as in equation 2. 

                                Y (k) = H x                                  (2)  

where H is some function that specifies uniquely the 

output y in terms of the input x of the system. Although 

the subject of system identification is well developed 

for linear systems, the same is not true for the 

nonlinear case. However, linearization of nonlinear 

systems can be obtained by several methods, among 

them is the approximate linearization technique for 

nonlinear systems [20, 21]. 

For Single-Input Single-Output (SISO), the input-

output model identification problem is to devise a 

mathematical model which, when excited with the 

input sequence [x(k), k=1,2,…, m ], will produce an 

estimated output [y(k), k=1,2,…, n ], as in equation 3. 

y(k)=f(y(k-1),y(k-2),..,y(k-n),x(k-1),x(k-2),..,x(k-m))  (3)      

where [x(k), y(k)] representing the input-output pairs of 

the system at time k, and n, and m are positive integers 

representing the number of past outputs and the 

number of past inputs respectively. f is a static 

nonlinear function which maps the past inputs and 

outputs to a new output. f is called describing function . 

That means; for any discrete-time, unknown nonlinear 

system there would be suitable positive integers (m and 

n) and a multidimensional mapping f(.) in such a way 

that the system output at a given instant could be 

approximated by equation 3. If a system is linear ƒ is a 

linear function, and equation 3 can be rewritten as in 

equation 4 [5, 7, 8, 11]: 

              y(k)=a1y(k-1)+a2y(k-2),…+any(k-n) 

              +b1x(k-1)+b2x(k2),.…+bmx(k-m)                                 

where ai(i=1,2,…,n) and bi(i=1,2,…,m) are real 

constants. Equation 4 can be rewritten in matrix 

notation as in equation 5. 

                                      n                                  m 

            y(k)= ∑ αi k (y− 1)+ ∑ β j k (x− j)                   (5)
                                        

                                 i = 0                              j = 0 

For Multi-Input Multi-Output (MIMO), y(k) and 

x(k) are of dimensions m and p respectively, equation 5 

can be rewritten as in equation 6 [8]: 

                                           n                                   m 

              y(k) = ∑ Ai k (y− 1) + ∑ Β j k (x− j)            (6) 
                                        i = 0                               j = 0 

where Ai and Bj an (m x m) and (m x p) matrices 

respectively. 
 

 

4. Cryptographic System 

An encryption algorithm is a single parameter family 

of invertible transformations (mappings) of the 

message space (M) into the cryptogram (ciphertext) 

space (C) using finite length key k from keyspace (K). 

See a reversible encryption algorithm [20, 21] in 

equation 2. 
                               Ek: M → C, such that: 

                          Ek (m) = c, k ∈K, m∈ M, c∈C                       (7) 

An inverse decryption algorithm as in equation 8.  

Dk = E
-1

k : Dk: C→ M, such that:    

                 Dk(c) = D k [Ek (m)] = m                         (8) 

The keys should uniquely define the enciphered 

message as in equation 9; 

              i.e.,  Ek1 (m) ≠ Ek2 (m)     if k1 ≠ k2                (9) 

According to the previous discussion of the properties 

of the system, and the definition of a cryptographic 

system, it might be concluded that: a cryptographic 

system is, relaxed, causal, time invariant, and nonlinear 

system [12]. 

 

(4) 
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5. Neuro-Identifier  

Identification of a system consists of finding a model 

relationship. Consider the system described in equation 

3. Identification then consists of determining the 

system orders and approximation of the unknown 

function by neural network model using a set of input 

and output data [4, 13, 14]. The procedure begins with 

the choice of neural model which is defined by its 

architecture and an associated learning algorithm. This 

choice can be made through trial and error. Once the 

neural model is chosen, and system input-output data 

are available, learning can begin. Different structures 

are trained and compared using learning set and 

simulation set of data, and a criterion (error goal). The 

optimal structure then, is the one having the fewest 

units (neurons) for which the criterion is met. Neuro-

Identifiers (NIDs) are basically Multi-Layer Feed-

Forward (MLFF) artificial neural networks with an 

input layer (buffer layer), a single or multiple nonlinear 

hidden layer with biases, and a linear/or nonlinear 

output layer [8, 22].The results of research have shown 

that linear identifiers are not capable of identifying 

nonlinear systems. Hybrid identifiers can identify 

simple nonlinear systems but not complex ones [6, 22]. 

Figure 3 illustrates the structure of the multi-layer 

feed-forward neural network identifier NID, with two 

nonlinear hidden layers, which is used in this research. 

The size of the neural network (number of neurons in 

the hidden layer) is crucial in designing the whole 

structure. There is no mathematical formulation to 

calculate the optimal size of such networks. However, 

with many free units the NID will learn faster, avoid 

local minima, and exhibit a better generalization 

performance [11, 21]. The essential constraint on 

increasing the size of hidden layers is the limitation of 

the hardware architecture used in the experimental 

work. 
 

 

Figure 3. Multi-layer feed forward Neuro-identifier architecture. 

 

Training Algorithm 

1- Initialize network (weights and biases).  

2- For each training pair 3-7 until performance criteria. 

3- Sums weighted input and apply activation function to 

compute output. h0i =  ∑ i=1 Xi Wij + bi .  hi = f(h0j ).. 

4- Compute output of network.   

      yy = bp +∑ i=1 hi Wpi.                 y = f(yy ).  

5- Calculate error term.     δ  = (y-yd ).  

6- Calculate correction term.            

      Wb = [w1b1 w2b2 … wpbp ]. 

      ∆Wb = (JT.J +ηI)-1. (-JT.δ).  

7- Update biases and weights.  

       Wij (new) = wij (old)+ ∆ Wb.          

8- End. 

 

5.1. Using NID in Cryptanalysis 

Cryptographic systems are a 2-input, 1-output systems, 

it takes a plaintext character (or bit /block of bits), and 

a key character to produce a ciphertext character. 

Hence a 2-neurons input layer is used to present the 

training data to the identifier, while a single neuron 

output layer is used. The described neural network 

identifier was used to identify cryptographic systems in 

two approaches with the following objectives: 

1. Emulation approach: construction of an neuron-

model for the target unknown cipher system. 

a. Encryption cipher: 

       - Input data: TP, TK.     

       - Desired output data: TC. 

b. Decryption cipher:  

       - Input data: TC, TK.    

       - Desired output data: TP. 

2. Cryptanalysis approach: determination of the key of 

a given plaintext and ciphertext pair, which belongs 

to unknown cipher system. 

       -Input data: TP, TC.          

       -Desired output data: TK. 

The first objective is to construct a neuro-model which 

imitates the internal (transfer) function of the 

cryptographic system (hardware or software). After 

training and on convergence, the constructed model 

will resemble the target system completely. The 

construction of such a model will be useful in studying 

the behavior of the unknown system and it can be used 

as a real system in encryption and decryption in cases 

where the real system cannot be. The aim of the second 

objective; obtained is clearly a pure cryptanalysis 

target (total break). One way this is done is by 

introducing plaintext-cipher text as input to the system, 

which yields the key as output. 

The training data is built using the target cipher 

system algorithm by applying selected input signals 

(characters or bits) and collecting the output response 

of the system. The resulting data are split into two 

groups; the first group is used to train the neural 

network, while the second group is used to test 

(simulate) the trained network. 

 

6. Classical Ciphers 

NID, as described above, has been used in this research 

in classical cryptosystem identification, as a black-box 
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model. The objective of the attack, is to determine the 

key from the given plaintext-ciphertext pair. Black-box 

attack has been applied to simple and polyalphabetic 

substitution systems (Caesar, Affine, Beaufot and 

Vigenere ciphers). Lower case alphabets (a, b, c,..., z) 

are chosen as a subset from ASCII character set, and 

used for training and testing the NID. That is because 

of the limitation of the available hardware, i.e., a large 

network is needed for the large space of training 

parameters (plaintext, key, and cipher text).Training 

data are built as a combination of pairs of plaintext P, 

and key K and passed to the target cipher algorithm to 

produce the ciphertext C. Hence for 26 possible 

plaintext characters, and 26 possible key characters, we 

use (26 * 26 = 676) possible pairs of (P, K) and 676 

possible cipher characters (C). This means that each 

possible combination of plaintext character and key 

character is taken as a training example. Testing data is 

taken from a text file that includes only lower case 

alphabets (a, b, c,..., z). This file is encrypted by the 

target some cipher system algorithms for simple 

substitution and polyalphabetic substitution ciphers 

[12]. In simple substitution (or monoalphabtic) ciphers 

each character of the plaintext is replaced with a 

corresponding character of ciphertext. A single one-to-

one mapping function (f) from plaintext to ciphertext 

character is used to encrypt the entire message using 

the same key (k), such that [1]. 

              Ek (M) = f (m1) f (m2)….f (mn) = C            (10) 

where n  is the length of the message, M is plaintext 

message given by M= (m1, m2,…, mn), and C is 

ciphertext message given by C= (c1, c2,….,cn). 

Simple substitution ciphers are often called 

monoalphabetic ciphers. Several forms of f can be used 

in simple substitution, such as: 

• Shifted alphabet (Caesar cipher): the most 

straightforward substitution cipher is the Caesar 

substitution, named after the Roman Emperor Julius 

Caesar (100-44 BC). The ciphertext is obtained by 

simply shifting the original alphabet, and can be 

represented mathematically as in equation 11:  

                        f(a)= (a+k) mod n                            (11) 

where k is the number of position to be shifted, a is 

a single character of the alphabet, and n is the size 

of the alphabet. 

• Addition and multiplication (affine transformation): 

a mixture of addition and multiplication obtains the 

displacement as in equation 12.   

                   f(a)= (ak1+k0)  mod  n                           (12) 

where k1 and n relatively prime. Simple substitution 

ciphers dose not hides the underlying frequencies 

different letters of the plaintext, and hence it can be 

easily broken. Apolyalphabetic cipher means a 

sequence of monoalphabetic ciphers, which are 

often referred to as substitution alphabets or just 

alphabet. In another meaning; it is made of multiple 

simple substitutions. The sequence of the 

substituting alphabet may have fixed length (p) and 

is denoted as its period [1, 20]. 

• Vigenere cipher: A popular form of periodic 

substitution ciphers is the Vigenere cipher. The key 

is specified by a sequence of letters, K= k1, 

k2,…,kP,    then Vigenere cipher system is defined 

as as in equation 13:   

                         Fi(a)= (a+ki) mod n                        (13) 

For plaintext letter a, and key letter k, the ciphertext               

c=Fi. 

• Beaufort cipher: Another periodic cipher is Beaufort 

cipher which is similar Vigenere but using 

subtraction instead of addition, and defined as as in 

equation 14: 

                      Fi(a)= (ki-a) mod n                            (14) 

For plaintext letter a, and key letter k, the ciphertext        

c= Fi. 

 

6.1. Training of Classical Cipher 

During the training, the error goal (sum squared error) 

is defined as (0.00001 =10
5
), which gives 100% 

accuracy. After the training process has finished and 

the NID has converged to the defined error goal, the 

weights (W) and biases (B) matrices are saved to be 

used later in the simulation phase. Figure 4 illustrates 

the error curve during the training process for the 

Beaufot cipher system. 

Result shows in Table 1 that the creation of 

emulation models in classical cipher, and Result shows 

in Table 2 that the creation of attack (cryptanalysis) 

models in classical cipher. 
  . 

 
 

 

Figure 4. Error curve for Beaufort cipher. 

 

6.2. Simulation 

The simulation phase includes execution of the 

trained neural identifier in both approaches 

(cryptanalysis and emulation) using the saved weights 

(W) and biases (B), and the simulation data set (SP, SK, 

SC). Simulation of vigenere cipher in both approaches 
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(cryptanalysis and emulation) gives 100% accuracy for 

any length of key. The possible key of vigenere cipher 

is any combination of lowercase alphabetic characters 

with maximum length of (676=26*26) which is the 

size of the training set. Figure 5 illustrates actual and 

simulated key of length (300 characters) for Beaufort 

cipher. 

 
Table 1. Creation of emulation models in classical cipher. 

 

 
Table 2. Creation of (cryptanalysis) models in classical cipher. 
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Caesar 

 
26 26 31 31548120 1.34 

Affine 

 
26 26 86 97171458 5.42 

Vigenere 

 
676 26*26 136 2.694e9 2.944e3 

Beaufort 676 26*26 183 2.907e9 3.687e3 

 

.  
 

Figure 5. Actual and behaviours of simulated NID response for 

Beaufort cipher. 
 

Actual and simulated key of vigenere cipher.  
 

• Plaintext: 
securityofacryptographicsystemisdirectlyrelatedtothediffi

cultyassociatedwithinvertingencryptiontransformationoft

hatsystemtheprotectionaffordedbytheencryptionprocedure

canbeevaluatedbytheuncertaintyfacinganopponentindeter

miningthepermissiblekeysusedtherearetwofundamentally

differentwaysinwhichcryptographicsystemsmaybesecurei

nsomesystemstheamountofinformationavailabletothecryp

tanalystisactuallyinsufficienttodeterminestheencipheringa

nddecipheringtransformationsnomatterhowmuchcomputi

ngpowerthecryptanalysthaveavailableasystemofthiskindis

calledunconditionallysecureshannoncalledsuchsecrecyasp

erfectsecr 

• Ciphertext: 
ixcjnfhohfpyomfmovnxdxbchuphufihzffuvtauosbtttzqcja

esectyvuapvoilorexhuwwxpewdoegpfbwxnrnvdjbocpood

lfdnjojbockchxtthuphuftwamfemerpfcdtfukoruwbnpesug

cgumhyhnenlquwugazoduetrxzktttzymjaejjzshmaxjqmvtc

xjdodhpekksdmiczbhukmxjfbwmhtlbfcbsheyzudenorguw

twaosqkeisltkgdpibbjtlauawvyegakhmtyhekkxbcwyomfm

ovnxdxbchuphufsbwvpulerqosygsdibgolttiphxxabkrbjhfx

jcchfaielbqoaxhxpbxtdpesskyepxbqeyhpfgqvtjwizobnhqc

tyvitjqheweiaoaygehpesugcxleshbnvwkrtxcxleshbnvpood

lfdnjojbocokccttiaovepmjyeqefpjpfbwiolaohxxcgumhqga

auphxtvtwsoyeaqhboirsiajcvmhxohwdwihyxzbxdjjzcdwii

elbqelnobqkkehdxbdhnrwizuwsjyeguvrtyvoiiegbbqjler 

• Actual key: 
Khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhale  

• Simulated key: 
Khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhaledmkhale

dmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledmkh

aledmkhaledmkhaledmkhaledmkhaledmkhaledmkhaledm

khaledmkhaledmkhaledmkhaledmkhaledmkhale 
 ACCURACY = 100% 

 

7. Stream Ciphers 

NID has been used as a general Emulation model for 

all stream cipher systems (linear and nonlinear 

keystream generators). It is used as a black-box attack 

to extract the key sequence. Cryptanalysis approach 

arid emulation approaches have two phases: training 

phase and simulation phase. Both approaches will be 

discussed in the next articles. The lowercase alphabet 

is taken to represent the set of plaintext characters. 

Plaintext characters are converted into binary digits 
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Encryption 26 26 8 7455570 .38 Caesar 

 Decryption 26 26 11 11644550 .40 

Encryption 26 26 51 57230444 1.49 Affine 

 Decryption 26 26 71 80171458 2.03 

Encryption 676 26*26 78 1.2012 e9 1.0162 e3 Vigenere 

 Decryption 676 26*26 101 1.5116e9 1.3609e3 

Encryption 676 26*26 99 1.5094e9 1.3321e3 
Beaufort 

Decryption 676 26*26 127 1.6934e9 1.8345e3 
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using the International Telegraph Alphabet No 2 

(ITA2) which consist of five bits for each character. 

The reason for choosing such a coding system is the 

requirement to reduce the space of the generated key, 

and the space of the ciphertext consequently. In this 

case the range of ciphertext character will be in the 

range of (0 0-25 i.e.,  0- 31). 

The training data set is designed to exhibit the 

feature of each possible plaintext character with each 

possible keystream. It consists of combination pairs of 

plaintext and key stream with a size of (832=32*26). 

This is passed to the XORing function to produce the 

ciphertext. 

The testing data set is built by choosing a text file as 

plaintext and selected keystreams from different 

known generators (as mentioned below) to produce the 

ciphertext [3,15]. The following nonlinear generators 

have been chosen as an example: 

• Exclusive or “XOR”: a nonlinear generator system 

consists of two LFSRs. Their lengths (k1 and k2) are 

relatively prime and all feedback polynomials are 

primitive. The period of this generator is (2k1-1)           

(2k2-1) [2--]. For example LFSR of (5,7) bit stages 

feedback function (S1 ⊕ S2) and maximal length of 

((25-1)*(27-1) = 3937) bits [1, 2]. 

• Hadmard Generator: a nonlinear generator system 

consists of two LFSRs. Their lengths (k1 and k2) 

are relatively prime and all feedback polynomials 

are primitive, k1≠k2 and gcd (k1,k2)=1. The period 

of this generator is (2k1-1) (2k2-1) [2]. For example 

LFSR of (5,7) bit stages feedback function (S1^S2) 

and maximal length of ((25-1)*(27-1) = 3937) 

bits[1, 2]. 

 

7.1. Training of Stream Cipher 

During the training by Levenberg Marquardt (LM) 

algorithms of both approaches, the error goal (sum 

square error) is defined as 0.00001 = 10-5, which gives 

100% of accuracy. After the training process has 

finished and the neural identifier has converged to the 

defined error goal, the weights (W) and biases (B) 

matrices are saved to be used later in the simulation 

phase. Figure 6 illustrates the error curve during the 

training process for stream cipher systems in 

cryptanalysis approach. Result shows in in Table 3 that 

the creation of attack (cryptanalysis) models in stream 

cipher. 

 

7.2. Simulation 

The simulation phase includes execution of the trained 

neural identifier in both approaches (cryptanalysis and 

emulation) using the saved weights (W) and biases (B), 

and the simulation data set (SP, SK, SC). Simulation of 

stream cipher in both approaches gives 100% accuracy 

for a key length less than or equal to the size of 

training set. The possible output keystreams are any 

output of the keystream generators combined with any 

plaintext (lowercase alphabet only) with maximum 

length of 832 characters (832*5=4160 bits) which is 

the size of the training set. Simulation of Stream in all 

modes gives 100% accuracy. 
 

 
 

Figure 6.  Error curve during the training process for stream cipher 

(cryptanalysis). 

 
Table 3. That the creation of (cryptanalysis) models in stream 

cipher. 

 

8. Conclusions 

• The proposed model attack method has been 

presented with two approaches; the first approach is 

to determine the enciphering key K, which satisfies 

the cryptanalysis goal. In cryptanalysis terminology, 

it is classified as a total break. The second approach 

presents a new method in cryptology; Black-Box 

NID offers the construction of a Neuro-Model for 

the target cipher system. The constructed Neuro-

Model can be considered as an equivalent system to 

the target system. 

• The LM algorithm form neural network is used to 

train the NID; it gives good approximation 

capabilities, faster convergence, more stable 

performance surface, and the ability to reach any 

degree of accuracy with enough degrees of freedom 

in the hidden layers. It is also demonstrated that LM 

algorithm is a proper choice in off-line training for 

complex nonlinear systems. Furthermore, it could 

be amended to accommodate on-line training of 

such systems. 

• Most of identification techniques can identify 

certain cipher systems, but not all of them, the 

presented method are a generalized method that 

could identify many cipher system and build the 

equivalent system from the input-output 

observations. 
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