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Abstract: Warehouses scheduling is the problem of sequencing requests of products to fulfill several customers’ orders so as 

to minimize the average time and shipping costs. In this paper, a solution to the problem of multiple warehouses scheduling 

using the steady state genetic algorithm is presented. A mathematical model that organizes the relationships between 

customers and warehouses is also presented in this paper. Two scenarios of storage capacities (constants and varying 

capacities) and two strategies of search points (ideal point and random points) are compared. An analysis of the results 

indicates that  multiple warehouses scheduling using the GENITOR approach with different warehouses capacities have better 

outcome than the usage of the traditional genetic algorithms). 
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1. Introduction 

The ability of firms to allocate customers to their 

available warehouses can be translated into a 

competitive advantage in current business 

environments. With its increasing significance, the 

problem of allocating a set of customers to multiple 

warehouses has begun to draw attention from both 

professionals and academicians. Scheduling is 

considered as one of the main issues in large systems. 

The appropriate scheduling will lead to the best 

exploitation of resources, lower cost and better 

customer demand satisfactions. Therefore, there is an 

urgent need to develop better automatic scheduling 

algorithms that enable us to achieve these goals. 

Evolutionary algorithms have achieved great success 

in the management process of scheduling in the 

following areas: Urban transit system, supply chain 

management processing factories, exam timetabling, 

flow shop manufacturing and job shop scheduling [2]. 

Specifically, Genetic Algorithms (GAs) as 

evolutionary algorithms had demonstrated impressive 

success in the area of warehouse scheduling with 

better results than other search algorithms [16].  

 

2. Background 

Multiple warehouse scheduling is the problem of 

sequencing requests for products (i.e., customer 

orders) so as to minimize the average time required to 

fill an order. This problem is complex due to several 

factors. First, the search space is quite large to 

determine all possible sequences of all orders. Several 

hundred possible orders are considered for each 

schedule. Optimization involves distinct performance 

measures, which can be inversely related. Search 

algorithms can be easily applied to multiple warehouse 

scheduling. However, given the expense of schedule 

evaluation and the number of possible schedules, 

knowledge poor search algorithms may be too costly. 

Heuristic based methods provide a promising 

alternative, as they explicitly leverage domain 

knowledge to directly construct candidate schedules. 

Approaches to scheduling have been varied and 

creative. Many points ranges from domain independent 

to knowledge intensive have been explored. Examples 

of the diverse underlying scheduling technique are 

local search [e.g., 11, 13], simulated annealing [e.g., 

17], constraint satisfaction [e.g., 3], and 

transformational [e.g., 13]. In [11, 14] the authors have 

presented the mechanism of scheduling  warehouses 

orders using standard GAs and a number of other 

search algorithms, they had proved the success of GAs 

in this area. The paper in [6] has proposed a GA for 

determining optimal replenishment cycles to minimize 

maximum warehouse space requirements. The results 

in this paper had showed that the proposed GA 

significantly outperforms a previously published 

heuristics. Zhou et al.[16] have addressed the 

scheduling of multiple stores using the standard GA 

with a proposed mathematical model.  In [8, 9] the 

authors had integrated the evolutionary approach with 

domain-specific heuristics to obtain further 

improvements in computational requirements of the 

single, multi-objective and hybrid algorithms. 
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3. Genetic Algorithms  

Genetic Algorithms (GAs) are based on the biological 

evolution processes that can be founded in natural 

evolution. In a GA generation after generation, the 

individual species compete with each other to survive 

(darwinian selection) [5]. Furthermore, GAs are 

evolutionary search and optimization algorithms that 

employ the mechanics of biological evolution for 

multi-objective problems [1, 3, 4, 12]. A GA presumes 

that a potential solution of any problem is an 

individual that can be represented by set of parameters.  

These parameters are regarded as the genes of 

chromosome and can be structured by a string of 

values in a binary form.  The fitness value of an 

individual is used to reflect the degree of goodness of a 

solution (chromosome) for the problem [5]. When a 

constraint is violated a penalty is imposed on the 

individual timetable solution.  The fitness of the 

individual solution depends in the penalties imposed 

by the constraint being violated [3, 10, 12]. The GA 

initially creates a population of solutions (individuals 

or chromosomes) and applies genetic operators to 

evolve the solutions from one generation to the next 

until it finds an optimal or near optimal solution, or 

terminates the execution under certain condition 

without finding any solution. The most important 

genetic operators that have been proposed by Holland 

to reproduce a new solution are [7]: 

• Selection operator: Select chromosomes from the 

population according to their fitness values and 

called them parents. 

• Crossover operator: Produce new offsprings by 

interchanging subparts of the selected 

chromosomes.  

• Mutation operator: Randomly flips some bits in a 

new offspring. 

Genetic algorithms have gained a primary importance 

in the field of scheduling, together with other 

stochastic methods as tabu search and simulated 

annealing. In general, GAs are used in scheduling for 

searching iteratively the best path in the tree of all 

possible  decision sequences, which is often too wide 

for exact searches. However, GAs are not well suited 

for fine tuning structures, so that variations improving 

local search efficiency are frequently added. 

 

4. Genitor Algorithm  

Genitor is a GA and it is known as steady state genetic 

algorithm. It is one of the most effective genetic 

algorithms [15]. Genitor works in the following way: 

a. Compute the fitness value for each chromosome 

(solution) in the generation (denoted by Sf ). 

b. Compute the average fitness value of all the 

chromosomes in the generation (denoted by Pf ). 

c. Each chromosome will be given a Rank greater 

than one if its fitness value is greater than the 

average fitness and a Rank less than one if its 

fitness value is less than the average fitness. 

d. All chromosomes that have a rank greater than one 

will be subjected to the crossover process. 

e. Crossover one pair of chromosomes who have the 

highest ratio:  

f. 
Pf

Sf
FR =  

g. The offspring produced from the crossover will 

replace the chromosome that has the lowest fitness 

value in the current generation. 

h. The above steps are repeated until the stopping 

condition is satisfied. 

 

5.  Multiple Warehouses Scheduling  

     Through GAs 

Multiple warehouses scheduling through traditional 

GAs have addressed the following points:  

a. Clarifying the links between customers and 

warehouses, by arranging a group of customers in 

the contract symbolizes by V and set of 

warehouses that is symbolized by U. Finally, a 

graph that links customers with warehouses is 

formed. An example of such a graph is shown in 

Figure 1. 

 

 

 

 

 
 

 

Figure 1.  The distribution of customers orders on a number of 

warehouses. 

 

b. Proposing a mathematical model to simulate the 

management of scheduling multiple warehouses. 

In addition, this model should specify the 

relationship between customers and warehouses. 

This model has focused on the following points: 

• Finding a mathematical function for calculating 

the fitness value effectively. 

• Proposing two strategies one to define the scope 
of the search space and the other to calculate 

weights of the goal fitness value. 

• Applying the GA using this proposed 

mathematical model to find the best solutions in 

the scheduling process. 

In this paper the GA that is used for multiple 

warehouses scheduling is outlined below: 
Begin  

t=0 
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Initialize the population of parents P(0) 

Determine the set of non _ dominated solutions E(0) 

While (not termination condition) do   
   Begin  

Recombine P(t) to yield the population of offspring 

C(t) 

Modify the population of P(t) and C(t) 

Update the set of non _dominated solutions E(t)  
Evaluate C(t) by Ideal Point Strategy or Random 

Points Strategy 

Select P(t+1) from P(t) and C(t) 

t=t+1 

   End  

End 
 

where t is a generation number counter, P(t) is a 

generation (i.e., a set of solutions) in iteration t, C(t) is 

a off springs that are resulted from crossover in 

iteration t, and E(t) is a set of best solutions obtained in 

iteration t. 

The quality of the solution generated for the 

multiple warehouse scheduling problem must be 

identified using two objectives; the time and the cost 

of shipping. Therefore, the GA proposed above to 

solve this problem should produce non-dominant 

solutions. A solution is called non-dominant solution, 

if there exists no other solution for which at least one 

of its objectives has a better value while values of 

remaining objectives are the same or better. 

 

6.  Scheduling Mathematical Model  

In this paper, the subsequent mathematical model is 

used to represent the multiple warehouses scheduling 

problem [16]. Let us define the following symbols:  

V: represents the m customers. 

U: represents the r warehouses. 

E:  the Edges that link customers with 

warehouses. For each edge Eij (link warehouse i 

with customer j).  

Vi ; Customer i request. 

qi: Warehouse j capacity. 

The criteria for evaluation depend on two main 

factors: the shipping cost cij between warehouses i 

and the customer j and the shipping time spent Tij: in 

the process of shipping from warehouses i to the 

customer j. These two factors are represented in forms 

of two objective functions to solve the problem of 

scheduling multiple warehouses as follows: 

1. An objective function to minimize the shipping 

cost cij of  request Vi of every customer i, (i=1..m),  

from the  warehouse j,  (j=1...r), that is assigned to  

him (i.e., the only one link ijx  that is equal to  1):  

Minimize ∑∑
==

=
r

j

ijiji

m

i

xcvxf
11

1 )(  

2. An objective function to minimize the shipping 

time Tij:  of every customer i, (i=1...m), from the  

warehouse j,  (j=1...r), that is assigned to him (i.e., 

the only one link ijx  that is equal to  1):  

Minimize ∑
=

∑
=

=
r

j
tijxij

m

i
xf

11
)(2  

subject to: 

a. Every customer i has been assigned to only one 

warehouse j. 

∑
=

=
r

j
xij 
1

1                  , i=1,2,…m 









===

otherwise o

r1,2,..,j  ,m1,2,..,i j ,  useo    wareh                    

 to  allocated is i  customer if 

xij

1

 

b. The total demands of all customers Vi s, (i=1...m), 

does not exceed the total capacities of all 

warehouses.  

qivixij
m

i

≤∑
=1

      , i=1,2,…m 

Merging the shipping cost and the shipping time 

objective functions yield the following fitness 

function: 

)x(f.w)x(f.w)x(f 2211 +=  

where w1 is a fixed weight of   f1(x), w2 is a fixed 

weight of f2(x). 

The way to determine the values of w1 and w2 will be 

explained later in this section.  

The evaluation of the fitness function f(x)  is 

computed as follows: 

     eval(f(x))=w1.f'1(x)+w2.f2'(x)  

where f'1(x)  is the first derivative of f1(x), and (x)f2'  is 

the first derivative of f2(x).  

The first derivative  (x)f'1  (shipping cost function) is 

computed as follows: 

)min(,1)max(,1

)min(,1)(1

xfxf

xfxf
f'1(x)

−

−
=  

where f1,max(x) is the highest cost value achieved 

for any chromosome in a generation, and f1,min(x) 

is the lowest cost value achieved for any 

chromosome in a generation. The first derivative 

(x)f'2 (shipping time function) is computed as 

follows: 

)min(,2)max(,2

)min(,2)(2

xfxf

xfxf
f'2(x)

−

−
=  

where )(max,2 xf  is the highest time value 

achieved for any chromosome in a generation, and 

)(min,2 xf  is the lowest time value achieved for 
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any chromosome in a generation. Finally, the 

values of w1 and w2 are computed as follows: 

   
21

1
1

ww

w
w

+
=           

21

2
2

ww

w
w

+
=      

where ),xmin(,'f)x('fisw 111 −  and 

).xmin(,'f)x('fisw 222 −  

 

7.  Scope of Search Space 

In this paper, the scope of the search space is defined 

in two strategies: 

1. Ideal Point strategy. 

2. Random Points strategy. 

A detailed explanation of each strategy is introduced 

bellow. 

 

7.1. Ideal Point Strategy 

The scope of the search space in this strategy is done 

by calculating the values of both f'1.min(x), f'2.min(x) 

which constitute the ideal point value (Ideal Point) in a 

given generation. This in turn leads to the observation 

that the best point for search is the point of idealism 

[11]. This strategy is defined as follows: 

     eval(f(x))=w1.f'1(x)+w2.f2'(x)  

where f'1(x), f'2(x), w1, and w2 are as defined above. 

 

7.2. Random Points Strategy 

The scope of search in this strategy is done through a 

number of random variables. This will ultimately 

enable us to get more than one point of search that are 

distributed in all regions of possible solutions in a 

given generation. This in turn increases the effective 

implementation of the GA to find the best solution 

[11]. This strategy is defined by eval(f(x)) as described 

above. However, w1 and w2 are given random values 

in which their summation is equal to one. Table 1 

compares these two strategies. Whereas, Figures 2 and 

3 illustrate graphically these two strategies: 

 

8. Penalty Function 

Given that the capacity is specified for each of the 

warehouses, some situations may arise in which the 

demands of some customers can not be satisfied or 

partially satisfied by such capacities. These situations 

are addressed by penalizing the fitness value. 

Consequently, the fitness function defined earlier has 

to be amended by multiplying it by a penalty as 

follows: 
 

 

 

 

 

 

Table 1. Ideal point and random points strategies comparisons. 

 Ideal Point 

Strategy 
Random Points 

Strategy 

 

 
Search Space 

Limited scope of 

the search at a 
certain point  

 

the scope of the 

search  include 
many points in 

the surrounding 

area. 

 
 

W1 and  w2 

calculation 

Requires 
calculating weights 

w1 and  w2 using 

several  
mathematical 

formulas 

assign random 
values to w1 and  

w2 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Ideal point strategy.    Figure 3. Random points strategy. 

 

eval(f(x))=p(x).(w1.f'1(x)+w2.f2'(x)), such that P(x) is 

a function of punishment and it is defined as follows: 









∑ ∀≤

∑ ∑ ∀>+α

=

=

= =

m

1i

m

1i

m

1i

jqi,  qi)- vixij if                                           1

  j, qi  vixij if                qi / qi)- xijiv(  

)x(P  

where vi is the quantity needed by customer i, and qj is 

warehouse j capacity , and α is Variable value such 

that 1≤ α ≤  2. In the case that all requests of a 
customer are satisfied, then P(x) is equal to 1. 

   

9. Constraints 

a. Each chromosome must represent all customers 

none redundantly. 

b. Each customer must be assigned to a warehouse. A 

warehouse can be assigned to more than one 

customer.  

c. In the case of deficiency in a customer satisfaction 

from his assigned warehouse, a search should be 

done to find another warehouse that still has a 

capacity to satisfy the rest of this customer request. 

d. The fitness value is computed in two ways, once 

using the Ideal Point strategy and in the second 

using the Random Points strategy.  

e. In the case of exhaustion of warehouses of their 

capacities without satisfying all customers’ 

requests, then the penalty function is applied as 

explained earlier.  

  

10. Analysis of the Results 

In this paper, the following constants are used: 
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1. Population size = 200. 

2. Number of generations = 500 . 

3. Crossover rate = 0.4-0.2. 

4. Mutation rate = 0.6-0.4.  

5. Punishment values= 1.6-1.5. 

6. Number of warehouses = 7.  

7. Number of customer = 7. 

 

Table 2. Shipping cost between customers and warehouses. 

Total Demand 

(in units) 

Warehouse  j Customer  i 

 7 6 5 4 3 2 1  

113.644 2.1 3.0 3.15 3.14 3.5 3.2 2.9 1 

25.360 5.8 4.1 3.60 3.62 4.3 4.0 3.9 2 

82.507 4.8 3.6 3.12 3.14 3.5 3.6 3.5 3 

80.159 4.9 3.6 3.17 3.19 3.6 3.6 3.5 4 

75.274 4.6 3.4 3.07 2.99 3.0 3.4 3.3 5 

116.064 4.7 3.5 3.13 3.04 3.1 3.4 3.3 6 

329.263 1.8 3.2 3.28 3.31 3.8 3.3 3.1 7 

 
Table 3. Shipping time between customers and warehouses.  

Warehouse  j Customer  i 

7 6 5 4 3 2 1  

2.11 4.18 8.08 7.33 7.90 5.83 4.48 1 

19.23 15.26 12.03 12.21 12.23 14.75 15.91 2 

15.45 10.21 6.98 7.15 7.33 9.70 10.86 3 

16.23 11.00 7.76 7.93 8.11 10.48 11.65 4 

14.61 8.58 6.58 5.73 4.85 7.96 9.13 5 

15.06 9.01 7.11 6.18 5.30 8.25 9.41 6 

0 6.20 8.73 9.33 9.91 7.40 6.48 7 

 
Two scenarios of warehouses capacities were used in 

the analysis; in the first scenario all warehouses have 

the same capacities, while in the second scenario each 

warehouse has a capacity of 10% greater than its 

neighbor warehouse. The system is executed twice 

using the Ideal Point strategy for each of these two 

scenarios. Another, execution of the system is also 

done twice using the Random Points strategy for each 

of these two scenarios. Table 2 presents the shipping 

costs between any customer and any warehouse, While 

Table 3 presents the shipping times between any 

customer and any warehouse. 

 

11. Analysis of Results Using Traditional    

      GA 

The following two sections present the results of 

executing the system. The first section presents the 

results that are based on the conventional GA, while 

the second section presents the results that are based 

on the Gintor GA. Traditional GA Warehouse 

scheduling results: 

Executing the multiple warehouses scheduling 

system using the traditional GA has produced the 

results that are shown in Figure 4. This figure provides 

a comparison between the results of the fitness values 

eval(f(x))  achieved by the multiple warehouses 

scheduling for each of storage capacities scenario, and  

for  the two search strategies mentioned earlier. In the 

reset of this paper, the following abbreviations will be 

used:  

• Eq-Str1: Scheduling with equal warehouses 

capacities using Ideal Point Strategy. 

• Eq-Str2: Scheduling with equal warehouses 

capacities using Random Points Strategy.  
 

Dif-Str1: Scheduling with different warehouses 

capacities using Ideal Point Strategy. 

Dif-Str2: Scheduling with different warehouses 

capacities using Random Points Strategy. 

From the graph of Figure 4, the results are noticed as 

in Table 4. 
 

Table 4. Results of Figure 4. 

The Highest 

Value of the 

Fitness Function 

The Chromosome 

that Satisfy the 

Highest Fitness  

Scheduling 

Policy 

1.603327 81 Eq-Str1 

3.96114 92 Eq-Str2 

1. 6432 88 Dif-Str1 

4.09554 95 Dif-Str2 

 

Therefore, we can observe that multiple warehouses 

scheduling using Random Points strategy has better 

results regardless of the capacity scenario used. 

Furthermore, multiple warehouses scheduling with 

various capacities has better results than with equal 

warehouse capacities.  
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Figure 5. Results of the evaluation function using genitor GA. 

 

Genitor Warehouse scheduling results: executing the 

multiple warehouses scheduling using the GENITOR 

has produced the results that are shown in Figure 5. 

The chart shown in this figure provides a comparison 

between the results of the fitness values eval(f (x)) 

achieved by multiple warehouses scheduling for each 

of storage capacities scenario using the  

From the graph of Figure 5, the results are noticed 

as in Table 5. 
 

Table 5. Results of Figure 5. 

 

 

 Scheduling 

Policy 

Chromoso

me # that 

Satisfy the 

Highest 

Fitness 

Value 

Using 

Traditional 

GA 

 

Highest  

Fitness Value 

Using 

Traditional 

GA 

 

Chromosom

e # that 

Satisfy the 

Highest 

Fitness 

Value Using 

GENITOR 

Highest 

Fitness 

Value Using 

GENITOR 

 

Eq_str1 112 1.51508 81 1.603327 

Eq_str2 189 3.80388 92 3.96114 

Dif_str1 195 1.53629 88 1. 6432 

Dif_str2 

 
180 3.91 95 4.09554 

 

12. Conclusions 

Evolutionary Algorithms have played a major role in 

finding optimal solutions to scheduling problems that 

takes into considerations the exploitation of time and 

cost of shipping as key factors to prove their 

effectiveness. In this paper, the authors have provided 

a multiple warehouses scheduling system that uses a 

mathematical model through Genitor. The results of 

this system have indicated faster time and better cost 

of shipping than the result of a similar system that uses 

the traditional GA. According to the results obtained in 

this paper, it has been observed that the best solution to 

the scheduling problem has been achieved using the 

Genitor with  varying warehouse capacities using the 

Random Points strategy. Also, it has been concluded 

that the results of using the Genitor algorithm has 

outperformed the results of using the traditional GA 

regardless of the warehouses capacities scenario and 

the search strategy used. 
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