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Abstract: The content-based retrieval systems for 3D models on the Web become necessary since digital databases of 3D 

objects are growing. In this paper, we propose a new method to describe 3D models. This method is based on 3D discrete 

cosine transform  which is applied for the voxelized 3D model. The discrete cosine transform is widely used for 2D image 

compression and it shows its performance for the JPEG compression algorithm. The proposed descriptor is implemented in 

our 3D search engine, tested using the princeton shape benchmark database, tested for noise and decimation; and compared 

to other 3D descriptors known in the literature. 

 

Keywords: Search engine, 3D models, retrieval systems, 3D discrete cosine transform. 

 

Received October 3, 2008; accepted January 27, 2009 
 

 

1. Introduction 

The digital databases of 3D objects which are used 

in various domains (e-commerce, games, medicine, etc) 

become large. Therefore, an efficient method that 

allows users to find similar 3D objects for a given 3D 

model query is becoming necessary. Content based 

indexing and retrieval is an important way to manage 

these databases. Many content based retrieval systems 

and search engines for 3D models are available on the 

web [22, 23, 25, 24]. 

Several approaches to extract similarity between 3D 

objects are proposed in the literature. Hekzko et al. [4] 

proposed the images based descriptor which extracts 

feature vectors from several images obtained by 

orthogonal projections of the object. Chen et al. [2] and 

Ansary et al. [3] use the view based approach in which 

a number of views of the models are used in order to 

generate a shape descriptor. This approach is based on 

the idea that if two shapes are similar they should look 

similar from all viewing angles. Generally, the 2D 

shape descriptors are used in the view based case. As a 

non-feature vector approach, Hilaga et al. [5] proposed 

the method utilizing Reeb graphs based on geodesic 

distances between points on the mesh, which provides a 

rich representation of shapes able in particular to embed 

the object topology. The skeleton based approach is 

used by Sundar et al. [14], presents the object by its 

skeleton, computed by applying the thinning algorithm 

on the voxelization of a solid object. Vranic et al. [17] 

proposed the ray based approach, which extracts the 

extents from the centre of mass of the object to its 

surface. The feature vectors constructed using this 

method is presented in frequency domain by applying 

the spherical harmonics. Osada et al. [9] and Paquet et 

al. [12] proposed the statistics approaches which 

represent the signature of an object as a shape 

distribution sampled from a shape function measuring 

global geometric properties of an object. Topology 

surface methods are based on object surface measures 

like curvature measures. Zaharia et al. [20] presented 

the 3D shape spectrum descriptor, which is within the 

MPEG-7 framework [7]. Distribution of surface 

normal vectors is proposed by Paquet et al. [11]. 

Vranic et al. [19] and Zhang et al. [21] use the volume 

and voxel based approaches to extract features from 

volumetric representations of the object. The authors 

present the feature vectors in spatial domain or in 

frequency domain by applying the fast Fourier 

transform. 

In this paper, we propose to use the 3D Discrete 

Cosine Transform (3D-DCT) which is applied to the 

voxel representation for the 3D object in order to 

define a new 3D shape descriptor. The DCT [1] is an 

interesting tool to generate feature vectors for the 3D 

models. This method is computationally simpler than 

the Fast Fourier Transform (FFT), and it shows 

promising result for 2D JPEG images compression 

[26]. It has been widely deployed by modern video 

coding standards, for example the MPEG and JVT 

standards. Our method consists in aligning models 

into canonical positions using the Continuous 

Principal Component Analysis (CPCA) [19], 

representing them by the voxel grids, and applying the 

3D discrete cosine transform to the voxel 

representation. Our method is then tested using the 

Princeton shape benchmark database, compared to 

other methods known in the literature and tested for a 

noise and decimation. 
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Figure 1. 3D models indexing and retrieval process. 

 

2. System Overview 

As shown in Figure 1, the process of our content based 

indexing and retrieval system for 3D models is 

summarized. Our system consists of four steps: 

• Storing the 3D collection 
In order to test our method, we use the Princeton 

Shape Benchmark database. It is a large digital 

database of 3D objects produced by the shape 

retrieval and analysis group [13], so as to evaluate 

and to facilitate the comparison of different 3D shape 

descriptors. It consists of 1814 objects given by 

polygonal meshes, classified by semantic aspect. 

This database was split into two sets. The train set is 

composed in 907 objects classified into 90 classes 

and the test set is composed in 907 objects classified 

into 92 classes. 

•  Computing feature vectors 
We firstly align models into canonical position, 

secondly we represent each model by a voxel 

representation, and finally we apply the 3D-DCT to 

extract feature vectors. These feature vectors are then 

stored in order to retrieve models by similarity in the 

database via the search engine. 

•  Querying the search engine 
We develop a web interface that allows the users to 

submit a query model selected from the 3D 

collection to the web server, then returns the 

response as a web page. 

•  Matching 3D objects 
The dissimilarity between pairs of feature vectors is 

based on the Manhattan distance l1. Our method 

answers 3D shape queries in less than a second for 

the Princeton shape benchmark database. The last 

three steps are discussed in the following sections. 

3. The Voxelization of the 3D Objects 

Polygonal mesh is the most used representation for 3D 

objects. However, in some case it is difficult to extract 

feature vector that describes 3D model directly using 

this representation. In this paper, we use the voxel 

representation so as to generate a new 3D descriptor. 

In order to apply the 3D discrete cosine transform to 

the 3D models which are given by polygonal meshes, 

we use the analytical algorithm proposed in [6] so as to 

represent the 3D objects by a voxel grid. The first step 

used to generate the feature vectors for 3D models is to 

align models into canonical position using the 

Continuous Principle Component Analysis [19]. The 

alignment is a set of transformations on each of vertex 

of the mesh, summarized by the equation 1, 
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where P is a vertex of a mesh, G is the centre of mass  

of the object, computed using the equation 2, 
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and m is the number of the triangles Ti of the mesh. In 

order to compute the rotation matrix V, we compute 

firstly the covariance matrix C by the equation 3, 
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The eigenvectors of C are computed and sorted 

according to the order of descending eigen values and 

normalized to the Euclidean unit norm. Finally, the 

rotation matrix V is formed having as columns the 

scaled eigenvectors in decreasing order. The matrix of 

flipping F is computed by the equation 4, 
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The scale factor is computed by the equation 5, 

,3/)( 222

zyx ssss ++=                                   (5) 



266                                                                The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010                          

 

 

 

where, ∫∫ ′′

−=
I

xx dswSs ,1
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subdivide the bounding cube of 3D model into N*N*N 

equally sized voxel cells Vijk   for, { }Nkji ...1,, ∈ .Then, 

we use the analytical algorithm presented in [6] for 

calculating the surface areas Sijk that intersect the 

voxel Vijk. Each voxel Vijk stores the real value Sijk/S, 

where S is the total surface area of the object witch is 

equal to, ∑∑∑ ijkS . 

We use an octree structure in order to store the 

voxels, this avoid explicit storage of non-occupied part 

of the voxel grid. Figure 2 shows the voxel 

representation of an aeroplane model from the PSB 

database using N=64. 

 

 

Figure 2. The voxel representation for a model of an airplane from 

the PSB database. 

 

4. Feature Vector Based on 3D Discrete 

Cosine Transform 

In order to compute the feature vectors for any 3D 

models, we apply the 3D Discrete Cosine transform to 

the voxels representation of the object. The DCT is 

similar to the discrete Fourier transform since it 

transforms a signal or 2D/3D-image from the spatial 

domain to the frequency domain. The formula of a 

N*N*N voxel 3D-DCT is given in the following 

equation 6, 
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where Vijk is the three dimensional sequence of input 

voxels, DCT(V)(l,m,n) are the transformed outputs and 

{ }1,..,0,, −∈ Nnml . The first coefficients of the real 

absolute values, |DCT(V)(l,m,n)|, exclude the 

coefficient,  |DCT(V)(0,0,0)|, are taken as the 

components of feature vector for 3D model. In practice 

the number of components taken is 342. 

 

5. The 3D Search Engine 

As shown in Figure 3, the content based retrieval 

system is composed of an off-line and an on-line 

process. In the off-line process the system stores the 

3D collection. As a pose normalization step, the 

system aligns the models into canonical position using 

the continuous principal component analysis, 

represents models by the voxel representation and then 

computes the feature vectors using the 3D discrete 

cosine transform as a feature extraction step, finally the 

system stores them in an index table so as to compute 

the dissimilarity for 3D objects. 

In the on-line process, the user selects a 3D object 

from the collection as a query; submits it to the server 

then the system computes the l1 distances that can 

measure the degree of similarity between the query and 

other 3D models in the database. The system sorts 

these distances in ascending order and extracts the 

most similar objects for the query. The thumbnails of 

the retrieved models are then shown on the web page 

as a response to the user. The user can restart another 

search from the result by a click of the search button.  
 

 

Figure 3. The architecture of the retrieval system. 
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Figure 4. The screenshot of the web based search engine. 

 

In order to visualize the 3D objects in the 3D space 

using VRML2.0, the user click the VRML button. 

Figure 4 shows the screen-shot of the web based search 

engine. It shows also the retrieved 3D models for a car 

query from the Princeton shape benchmark database.  

6.  Experiment Results 

In this section, we give the tools used to evaluate our 

method, the distances used from our system, we 

compare our method to other methods, and we test its 

robustness to noise and decimation. 

 

6.1. Evaluation Criterions 

Widely used in information retrieval community, the 

recall vs. precision curves, the Nearest Neighbour 

(NN), the First Tier (FT) and the Second Tier (ST) are 

used to evaluate the content based indexing and 

retrieval methods. For a given query Q in a class C with 

n models, let R be the number of correctly retrieved 

models among the K best matches. The recall is a ratio 

of relevant models R to n-1, and the precision is the 

ratio of the relevant results and returned results K. The 

FT is the same as precision value when K is equal to n-

1, and the second tier is the same as precision value 

when K is equal to 2(n-1). The Nearest Neighbour 

measure is the percentage of the closest matches that 

belong to the same class as the query. Obviously, an 

ideal score is 100%, and higher scores represent better 

results. The proposed 3D shape descriptor is then 

evaluated using the recall vs. precision curves, the NN, 

the FT and the ST parameters. Different distances are 

used from our system so as to compute de distance 

between pairs of feature vectors, since the features 

vectors are real valued components, we use the l1 called 

Manhattan distance, l2 called Euclidian distance and lmax 

the maximum distance. These distances are defined by 

the following equation 7, 8 and 9, 
 

,),(
1

1 ∑
=

−=
p

i

ii FvcFvqFvcFvql                                (7) 

∑
=

−=
p

i

ii FvcFvqFvcFvql
1

2
1

2

2 ))((),( ,                     (8) 

,max),(
1

max ii
pi

FvcFvqFvcFvql −=
≤≤

                            (9) 

where Fvq and Fvc are the feature vectors for the 

query model and a model in the database respectively 

and p is the dimension of the feature vectors. 

Experimentally, our method gives better effectiveness 

using l1 distance, where the number of components of 

the feature vector is 342. Note that, the resolution of 

the voxel grid is 128, so, we take 128*128*128 as the 

number of voxels that represent the object. Table 1 

shows the different measurements NN, FT, ST and 

storage size (measured in Bytes) used to evaluate our 

method. Figure 4 shows the result of a query for a car 

model from the Princeton shape benchmark database. 

6.2. Implementation 

We are using Java and C/C++ so as to represent the 

3D objects by the voxel grids and to compute the 

feature vectors using the 3D-DCT. On the other hand, 

we are using the Hypertext Pre-Processor (PHP) 

language to implement the search engine. Our 

programs are compiled and running under windows 

platform, using 1.4 GHz, celeron M machine with 512 

MB memory. The average time used from our system 

to compute the feature vector is 0.8 seconds for a 

model, using the PSB database. 

 

6.3. Comparison to Other 3D Descriptors 

We compare our descriptor to the descriptor based on 

3D Discrete Fourier Transform (3D-DFT), proposed 

by Vranic et al.[19]. In order to generate the feature 

vector, the authors align model into canonical position 

using the continuous principal component analysis, 

represent the 3D object using a voxel representation, 

then apply the 3D-DFT to the voxel grid so as to 

represent the feature vectors in frequency domain. 

Finally they take the first coefficients as the feature 

vector. 

The second descriptor used in the comparison is the 

ray based feature vectors with Spherical Harmonics 

(RSH), proposed by Vranic et al. [17]. In order to 

compute feature vectors for this method, the authors 

apply the continuous principal component analysis to 

align models into canonical positions, then they 

extract extents from the centre of mass of the object to 

its surface. Finally, they apply the spherical harmonics 

in order to represent those extents in frequency 

domain. The feature vectors for this descriptor are 

composed with the first coefficients of the spherical 

harmonics decomposition. The recall vs. precision 

plots for test and train sets from PSB database given in 

Figures 5 and 6 and the table 1 show that the 3D-DCT 
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outperforms the method based on the 3D-DFT and the 

method RSH. 

 

Figure 5. Recall vs. precision plots for 3D-DCT, 3D-DFT and RSH 

descriptors using test set. 

Table 1. Comparison of measurements: ST, FT and NN for different 
methods using test set. 

 
Storage size  ST  FT  NN  

3D-DCT  1368 36.4% 26.5% 53.5% 

RSH 544 34.6% 25.6% 51.5% 

3D-DFT 1464 32.1% 22.9% 48.4% 

 
Figure 6. Recall vs. precision plots for 3D-DCT, 3D-DFT and RSH 

descriptors using train set. 

6.4. Stability for Noise and Decimation 

In order to test our method for noise, we add a random 

value and we translate them to a percentage of vertices 

of the mesh. Figure 8 shows a typical model with 5%, 

10% and 15% of noise for the original model shown in 

Figure 7. These perturbations are applied for all 3D 

models in the database. The recall vs. precision curves 

shown in Figure 9, show that our method is robust for 

noise since the recall vs. precision curves with noise 

and decimation, are not far to the recall vs. precision 

curve for the original method where we do not apply 

noise. So as to test the robustness for decimation, we 

delete randomly a percentage of facets of all models in 

the database. Figure 8 shows a typical model with 

decimation where the deleted facets appear in black. 

The recall vs. precision curves for decimation shown 

in Figure 9, show that our method is robust for 

decimation. 

 
Figure 7.  Original 3-D-model. 

 

 

 
 

Figure 8. Robustness evaluation of noise (5%, 10%, 15%, 

respectively) and decimation from a 3-D-model. 

 

      Figure 9. Recall vs. precision plots for noise and decimation. 

 

7. Conclusions 

The 3D models retrieval becomes an interesting 

research topic due to the development of large digital 

databases of 3D objects. Therefore, it is necessary to 

develop an efficient content based 3D search engine. 

In this paper, we proposed a new method for 3D 

models indexing and retrieval. The 3D-DCT 

descriptor is efficient and shows promising results. It 

is tested using the Princeton shape benchmark 

database, compared to other descriptors known in the 

literature and implemented via our web based 3D 

search engine. This method is robust for noise and 

decimation. 
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