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Abstract: The paper is concerned with hiding information into a digital image, specifically, an English text is used to be 
hidden into a digital grey-scale image. The purpose of this research is to embed a maximum text data size into the most 
suitable image selected among several images based on the binary entropy function measurements of both the text and image. 
The embedding process is constrained by minimising the bit error rate. Our results show that the binary entropy function can 
be considered as a powerful tool to select a proper image for a predetermined text under the BER constrain. 
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1. Introduction 

The scientific study of steganography in the open 

literature began in 1983 when Simmons [1] in his 

seminal work stated the problem in terms of 

communication in a prison. Steganography is the art of 

hiding information to prevent their detection by an 

unauthorized person
 
[2, 3]. The digital information (bits 

or symbols) might be hidden in any digital object, 

either text or image. The hidden data should be 

embedded in image, e.g., without causing any kind of 

image degradation. Moreover, as the embedded text 

size goes large the number of image distortions is 

increased. Therefore, it is objective is to embed a text 

data into an image with minimum image degradation. 

That is, to embed a digital text in the Least Significant 

Bit (LSB) of the grey-scale image pixels in a way that 

the distortion in the image due to embedding, referred 

to as BER, is maintained minimum and always less 

than a predetermined threshold value. If the BER 

exceeds a threshold value, flipping all binary bits in a 

text message into its complement should be used to 

minimize the BER, such a flipping process is referred 

to as Flipping Embedded Text (FET). 

The entropy of a certain message is defined as the 

average amount of information included in the message 

[4]. Accordingly, measuring the information entropy in 

both text and image, a first shot decision whether the 

previously selected pair of text and image is a proper 

pair or not is obtained. Thus, based on binary entropy 

function measurements, we picked up the proper text 

image pair that achieves the BER constraint. 

Toward this end, we simulate the hiding problem as 

a Binary Symmetric Channel (BSC) [5], in which we 

represent the cover object C (the image before 

embedding) as a transmitted data, and stego object S 

(the image after embedding) as a received data. The 

embedding process is formulated as a noisy channel. 

In this context, to obtain a stego image S more closely 

to the cover image C, the entropy function is used to 

decrease the number of errors happened through 

embedding process. So, we expect that there is a 

relation between the entropy of the source information 

(cover image C) and the entropy of the noisy channel 

(text message M) that help us to determine if the 

source is suitable for the appropriate channel or not in 

the sense of errorless transmission (stego image S 

similar to C). 

The entropy function is inversely proportional to 

probability of occurrence of an event [5]. That is, in a 

certain image that contains a large number of bits 0’s 

(most likely black), one should expect a smaller BER 

occurs when using a text of higher distribution of 0’s, 

henceforth. This concept drives us to consider the 

entropy measurements of both text and image. 

However, if the stego-object changes significantly, a 

third party may see that the information is being 

hidden and therefore could attempt to extract or 

destroy it [6]. In literature, there are two strategies to 

handle the image steganography techniques. 

Spatial (Image) domain strategy: in image domain, 

the LSB technique is the most important and the 

easiest one to embed information in a cover image [7]. 

Popular steganographic tools that are based on LSB 

embedding vary in their approach for hiding 

information.  Methods like Steganos and Stools use 

LSB embedding in the spatial domain, while others 

like Jsteg and OutGuess embed the message in the 

frequency domain [8]. With a well chosen image, one 

can even hide the message in the least as well as 

second to least significant bit and still not see the 

difference [7]. Some researchers hide the data in the 4-

LSB. Alkhraisat in [9] used an algorithm to hide a 
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maximum capacity of data in the cover image. His 

algorithm used the 4-LSB of the pixel representation 

for hiding the message. 

Jsteg [8] uses the traditional LSB method, i.e., it 

replaces the LSB of the frequency domain of the cover 

image sequentially bit-by-bit. Which causes the secrete 

message becomes easy to extract and discover, which is 

not our case. Several techniques select the used pixels 

randomly, in this process, a chance of collision may 

happened, i.e., the same pixel may be selected twice in 

the random process [10]. 

Three closely related basic requirements in 

information hiding systems are capacity, security, and 

robustness [10]. Steganographic capacity which means 

“the amount of bits that can be hidden in an image 

using LSB technique without causing statistically 

significant modifications” is introduced by [11]. Their 

results are able to provide an upper bound on the 

capacity. However, our proposed technique uses the 

LSB algorithm and succeeds in decreasing the number 

of distortions. 

Transform domain strategy: these strategies based on 

hiding information in more significant areas of the 

cover image making it more robust. Many transform 

domain methods are independent of the image format. 

Since such a strategy is out of our scope, for more 

details, consult [7, 12]. 

In section 2, we present our proposed system model, 

namely, text and image models. System capacity and 

performance is introduced in section 3. Numerical 

examples and simulation results are introduced in 

section 4. Finally, in section 5, we conclude our main 

results and present some future works 

 

2. System Model and Analysis 

In our system, we will consider a source that generates 

and hides the message M in an object, C. The resultant 

Stego Image, S, contains the hidden text. In our model 

the text message M should be flipped if the resultant 

BER > BERthreshold. The message should be embedded 

into the image using sequential algorithm employed in 

[10], in which the text message bits are sequentially 

(bit-by-bit) embedded into the image pixels. 

We calculate the BER based on hamming distance 

measurements by choosing and comparing between the 

maximum, and minimum BER (BERmax), and (BERmin) 

obtained after the embedding process, respectively. 

Then, if BERmax > 1 – BERmin, the binary bits of the 

message should be flipped. A flag bit is generated to 

indicate whether the text message bits were flipped or 

not. 

 

2.1. Text Model 

We assume that a transmitter generates a text message 

contains all possible alphabets (characters). The source 

generates the message that contains M distinct 

characters. The ith
 character, 1 ≤ i ≤ K, denoted as mi is 

generated by the source with probability P(mi), where 

K is the total number of characters from the source. 

Depending on the language itself, the characters are 

generated with different probabilities from the source, 

e.g., if we consider an English text message, due to its 

nature, the repetition of the character "e" differs from 

the repetition of, say, character "q". Accordingly, it is 

impractical to assume that the characters are generated 

with equally probable distribution [13], but, it is 

language dependent, that is to say, for mi ≠ mj , we 

have, P(mi) ≠ P(mj) ∀ 
i ≠ j

. 

However, as the text characters are to be mapped to 

their ASCII codes or compressed to any codeword 

form, the source can be seen as a sequence of bits 

generator, where we assumed that the source generates 

a total number of bits, say, T.  Thus, the generated 

alphabet is encoded into a vector t of binary bit stream 

of length T. One should note that, the Probability 

Density Function
1
 (PDF) of the generated characters is 

a discrete non-uniform function, however, after 

mapping characters to their corresponding codes, the 

generated bits (0 and 1) have a discrete uniform p.d.f. 

of equal probability. Such a source is referred to as a 

Discrete Memmoryless Source (DMS) [14]. 

Accordingly, the vector t contains 0’s and 1’s of 

probabilities P(0) = p, and P(1) = 1 - p, respectively. 

The average amount of information, referred to as 

binary entropy function [5], is given by 
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The binary entropy function is shown in Figure 1 as a 

function of the probability p. We can see that the 

convex binary entropy function has its maximum 

value 1 when p = 1 - p = 1/2 and symmetrically 

decreases around p. The binary entropy function, 

moreover, has zero values if and only if p = 0 or 1. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Binary entropy function of a discrete memoryless source. 

 

The entropy function, H(p), can be considered as a 

good measure of the statistical distribution of 0's and 

1's within a specific text. Such a concept will be 
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 In literature, sometimes it is referred to as probability mass 

function (pmf). 
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considered when discussing the embedding of a binary 

mapped-text into a digital image. 

 

2.2. Image Model 

The image can be represented as a 2-dimensional 

function of two real variables f(x,y), where x,y represent 

the spatial coordinates, and the function amplitude f 
given at any pair of coordinates is called the intensity or 

grey level of the image at that point. When x, y and the 

amplitude f are all finite and discrete quantities, we 

have a digital image [15]. A digital image consists of a 

rectangular map of the image’s pixels. The number of 

bits used for each pixel is called the bit depth. For 

monochrome image, e.g., the bit depth is 1 bit (to 

represent black or white), and the bit depth of the grey 

image is 8 bits to display 256 different shades of grey. 

No doubt that the image size increases with the 

number of pixels. Aiming at simplifying the matters, 

and due to the fact that the grey-scale images are 

considered a good type to hide data in spatial domain
2
, 

we will consider the grey-scale image to hide the text 

file. The cover image C, can be seen as a 2-dimensional 

matrix of order a × b. Each pixel position is determined 

by the spatial coordinates (x,y), where 0 ≤ x ≤ a, and 0 

≤ y ≤ b, the value of such a pixel is determined by the 

amplitude f of a decimal value encoded into 8-bits 

binary codeword that determines the image grey level. 

Let us assume the cover image C is a × b pixels of 

total number of bits, N = 8×a×b. As the text size is 

directly related to the image size, it is clear that the 

maximum text size is bounded by N/8, i.e., T ≤ N/8, of 

bits that can be hidden in the image pixels if we assume 

that the information is to be hidden only in the LSB of 

each pixel. 

 

3. System Performance 

3.1. System Capacity 

Relying to the previous discussion, the maximum size 

of a text that can be embedded into the LSB of the 

image is T bits, but some of the LSB of the image pixels 

should be reserved to help the receiver to decode and 

extract the text from the received image. One bit was 

reserved as a flag bit to control the flipping process. 

Several bits (l bits) are reserved to represent the length 

of the text embedded in the image, in order to help the 

receiver to exactly find the bits of the message inside 

the image. 

Lemma 1: the maximum system capacity (maximum 

data that can be embedded in the image) is Q = T+l+1.  

Proof: Assume that the embedding is done in the LSB 

of each pixel, and define the decimal value of T in 

binary as BT = Bin (T), to find the minimum number of 

bits that represents the text size T.  Assume the number 

                                                 
2
 Data is hidden in the least significant bits of the image 

pixels 

of bits that can represent the text length T is l, which is 

defined as the amount of information included in l, 
given by l = I(l) = log2 (BT), were we consider BT in 

its decimal value. As T is represented by l bits, 
lT 2≤ . By taking log2 for both sides, we have, log2 T 

< l. Thus, l ≥ Ceiling (log2 T), i.e., l ≥ log2 (T ), 
where x is the least maximum integer greater than x, 

and l is the minimum number of bits needed to 

represent the maximum text size used by specific 

image. Thus, the maximum system capacity is Q = T + 

l + 1.  

 

3.2. System BER Performance 

Through hiding information inside image pixels, we 

sometimes need to change the LSB in each pixel, and 

hence distortion of the image will occur. Such a 

distortion generates random errors in the original 

image, which we referred to as a BER. Simply, the 

BER is defined as the average number of bits in the 

LSB of each pixel that are changed through hiding the 

text information. Thus, our objective is to embed a 

high capacity of information into a cover grey-scale 

image, C, with minimum BER. We assume the LSB's 

of cover image C is q vector of binary bits of size Q 

where Q = T ≤ N/8, the i-th element in vector q, say qi 

∈ {0,1} where 1 ≤ i ≤ Q, Similarly, the secrete 

message M can be seen as a vector of binary bits, t 
where ti ∈ {0,1} and 1 ≤ i ≤  T. Accordingly, the 

problem is completely simplified to hide a vector of 

bits t into a vector of bits q to formulate a vector of 

bits, say, s, as shown in Figure 2. 
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Figure 2. The embedding (transition) process of t into q to 

generate s. 

 

Assume Et and Eq represent the binary entropy 

functions of p(0) = p in vectors t and q, respectively. 

We define the difference of entropies expressed as (L) 

between vector Et and Eq and the difference of 

probabilities ( β  ) between Pt and Pq as shown in 

Figure 3 below given as 
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not to flip the bits in the text data based on the value 

of β . 

Theorem 1: the BER due to the embedding process 

of a data text in a grey-scale image is minimized if the 

flipping parameter β  is minimized. 

Proof: the proof of theorem 1 is based on the 

discussion of the following cases: 
Case 1: when Et and Eq are in the same half, and 

they are coincide. In this case L = β  = 0, and this 

represents the best case since we can guess that the 

entropy of the bit 0 distribution in both vectors are 

almost close to each other in the average. Such a result 

can be used to indicate that the number of 0's in text 

and image are approximately equal in average. The 

result obtained in this case is not to flip. 

Case 2: if the two vectors are in the same half and 

they have a maximum L=1 and β  = ½, this case 

represents the extreme case since the distribution of bits 

in both vectors are uncorrelated. One should note that 

flipping process does not make sense, because the 

flipping procedure will keep L = 1 and β  = 1/2. 

Case 3: if the two vectors are in the same half but 

not in the extreme case (case 2), we always have the 

absolute difference between Pt and Pq, β  < ½, and the 

entropy difference L < 1. In this case, the distribution of 

bit 0 in the text and image are close to each other when 

the entropy difference is as minimum as possible, since 

the difference β  becomes minimum. Therefore, we 

can achieve the best case as the two vectors close to 

each other until they are coincide. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 3. The binary entropy function shows the entropy difference 

L and probability difference β. 

 

One should note that there is no need to flip the text 

vector, as flipping process in this case increases β  

which leads to uncorrelated distribution of bit 0 in both 

vectors. 

Case 4: if the two vectors are not in the same half, 

and the entropy difference L = 0, this means that the 

distribution of 0’s in the text and image are opposite of 

each other. In this case, β ≠ 0, if β ≤ 1/2 then the text 

vector should not be flipped, the flipping occurs only if 

β  > 1/2, in this case Et vector must be flipped Since 

the statistical average of bit 0 in both cases are 

completely opposite to each others. The flipping 

operation moves the vector Et to Ēt as shown in Figure 

4 in the other half and it coincides over the image 

vector Eq which represents case 1, the best case, since 

the probability difference β  is flipped and, hence, 

minimized to 'β = 0. 

Case 5: in this case the two vectors are in two 

different halves in which 0 < L < 1, on the other hand, 

the probability difference β  ≤ 1/2, in this case there is 

no need to flip Et because the statistical distribution of 

bit 0 in both vectors is still closed to each other. 

Furthermore, if β > 1/2, the text vector must be folded 

to a new location Ēt in the second half because the 

statistical average of bit 0 in both cases are completely 

uncorrelated, on the other hand β  is minimized as a 

result of flipping, i.e., the statistical distribution of bit 

0 in Ēt is correlated to Eq. Here, the flipping process 

does not affect L but it affects β , in other words L 

after flipping remains as it is and β  is minimized and 

it is changed to 'β .  

Accordingly, in order to correlate the statistical 

distribution of bit 0 in both text and image, we need to 

minimize β , such a minimization is carried out by 

flipping process, which rotates the text vector Et from 

the first half to a new position Et in the second half. 

As shown in Figure 4, when Et is moved closely to 

Eq, β is decreased, and Et is closing to Eq means that 

the distributions of bit 0 in both vectors become 

correlated.  

 

 

 

 

 

 

 

 

 

 

 
 

 

                     

 

Figure 4. Minimizing β by folding Et toEt. 

 

Recall the entropy function, we assume Ez(0) 

denotes either Et(0), Eq(0), Es(0) which are the 

entropies of a bit 0 in vectors t , q and s,  respectively, 

then 
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The results of calculation based on the entropy 

function measurements are given in the next section. 
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4. Simulation and Numerical Results 

We adopt the sequential algorithm of [15] to construct 

the vector q from a given specific image. That is, assign 

a fixed size specific image that is used to formulate the 

q vector used to hide the text. In our simulation, we 

randomly have collected 50 images of size 256�256 

pixels. The generated q vectors from these images are 

of average 8 KB size. Then, construct the vector t, 
serially bit-by-bit, from the encoded text of different 

sizes. We assume a text of 100 byte, then incremented 

by 100 byte every time. The entropy value increases as 

text size increases since the probabilities of 0’s 

approach to 0.5 when the text size becomes large, so the 

entropy text approaches to 1. After that, Et is calculated 

for 8 KB text, and 50 values of Eq were calculated for 

each image, from which the differences L and β  are 

calculated. It is worthy to mention that the entropy does 

not show how 0’s and 1’s are arranged. Thus, we assist 

on the fact that the measurements here are independent 

on how the vectors are arranged. 

We introduce several graphs to show how the 

entropy function behaves with size, entropy difference 

L, flipping factor,β , and BER. The BER without and 

with flipping the vector t is calculated using the weight 

of the hamming distance w(d) vector divided by the 

length of t vector. That is to say BER = w(d)/T. 
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Figure 5. Text size versus BER for sequential algorithm with flip 

and no flip. 
 

In Figure 5, we show the relation between the 

flipping and non-flipping techniques for different text 

size. The larger the text size, the more BER we have. 

With flip, it is noticed that flipping behaves better, 

especially, in the case of small size text, however, when 

the text size goes larger, we see that the flipped text and 

the unflipped one are almost the same. Figure 6 shows 

the relationship between L (the absolute difference 

between the entropy of text vector t and the entropy of 

image vector q), and the text size. As shown in the 

figure, the difference L decreases with text size almost 

exponentially. It is worthy to note that for small text 

size, the difference is noticeable and it becomes smaller 

with larger text. Aiming at explaining such a result, 

when L is small, this means that Et and Eq are almost 

equal and L becomes 0 when Et = Eq. Such a result 

completely coincide with our previous discussion and 

happened in large text size, since the distribution of 

0’s and 1’s, on the average, becomes the same. 

The entropy difference L and the BER relationship 

is shown in Figure 7, it is noticed that the BER 

increases as L increases and vice versa. 
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Figure 6. Text size with entropy difference between vector t and 

vectors q. 

 
 

Figure 7. Entropy difference L and the BER. 

 

Finally, Figure 8 shows the relation between the 

BER and the entropy difference L. In this case, we 

note that the BER is symmetric around the threshold 

value. If the BER goes large and exceeds the 

BERthreshold the flipping process is necessary to keep 

BER as minimum as possible. From the figure, we can 

say that the flipping process always keeps the BER 

under BERthreshold. 
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Figure 8. Entropy difference of fixed text and 50 images with 

BER. 

 

5. Conclusions 

In this paper, a binary text can be embedded into a 

grey-scale image using FET technique while keeping 

minimum BER based on a newly proposed technique, 

namely, the binary entropy function. Our main results 

can be concluded as: The FET technique is used to 
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minimize the number of distortions and the artefacts 

occurred in the cover image through embedding 

process. There is a relation between the binary entropy 

function and the BER. Moreover, the BER increases 

with the entropy difference between the image entropy 

and the text entropy. We can say that the entropy 

measurement is useful in studying the distribution of 

bits 0’s and 1’s in both image and text as a first 

indication to determine whether the image is considered 

suitable for a specific text or not. We believe that more 

deep analysis is required to take the full benefits of the 

entropy and information theoretic concepts. 
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