
The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010 55

An Enhancement of Major Sorting Algorithms

Jehad Alnihoud and Rami Mansi

Department of Computer Science, Al al-Bayt University, Jordan

Abstract: One of the fundamental issues in computer science is ordering a list of items. Although there is a huge number of

sorting algorithms, sorting problem has attracted a great deal of research; because efficient sorting is important to optimize

the use of other algorithms. This paper presents two new sorting algorithms, enhanced selection sort and enhanced bubble

Sort algorithms. Enhanced selection sort is an enhancement on selection sort by making it slightly faster and stable sorting

algorithm. Enhanced bubble sort is an enhancement on both bubble sort and selection sort algorithms with O(nlgn) complexity

instead of O(n
2
) for bubble sort and selection sort algorithms. The two new algorithms are analyzed, implemented, tested, and

compared and the results were promising.

Keywords: Enhanced selection sort, enhanced bubble sort, selection sort, bubble sort, number of swaps, time complexity.

Received May 27, 2008; accepted September 1, 2008

1. Introduction

Information growth rapidly in our world and to search

for this information, it should be ordered in some

sensible order. Many years ago, it was estimated that

more than half the time on many commercial computers

was spent in sorting. Fortunately this is no longer true,

since sophisticated methods have been devised for

organizing data, methods which do not require that the

data be kept in any special order [9].

Many algorithms are very well known for sorting the

unordered lists. Most important of them are Heap sort,

Bubble sort, Insertion sort and shell sort [17]. As stated

in [5], sorting has been considered as a fundamental

problem in the study of algorithms, that due to many

reasons:

• The need to sort information is inherent in many

applications.

• Algorithms often use sorting as a key subroutine.

• In algorithm design there are many essential

techniques represented in the body of sorting

algorithms.

• Many engineering issues come to the fore when

implementing sorting algorithms.

Efficient sorting is important to optimize the use of

other algorithms that require sorted lists to work

correctly; it is also often in producing human-readable

output. Formally, the output should satisfy two major

conditions:

• The output is in non-decreasing order.

• The output is a permutation, or reordering, of the

input.

Since the early beginning of computing, the sorting

problem has attracted many researchers, perhaps due to

the complexity of solving it efficiently. Bubble sort

was analyzed as early as 1956 [2].

Many researchers considered sorting as a solved

problem. Even so, useful new sorting algorithms are

still being invented, for example, library sort was first

published in 2004. Sorting algorithms are prevalent in

introductory computer science classes, where the

abundance of algorithms for the problem provides a

gentle introduction to a variety of core algorithm

concepts [1, 19]. In [1], they classified sorting

algorithms by:

• Computational complexity (worst, average and best

behavior) of element comparisons in terms of list

size (n). For typical sorting algorithms good

behavior is O(n log n) and bad behavior is Ω(n²).

Ideal behavior for a sort is O(n). Sort algorithms

which only use an abstract key comparison

operation always need Ω(n log n) comparisons in

the worst case.

• Number of swaps (for in-place algorithms).

• Stability: stable sorting algorithms maintain the

relative order of records with equal keys (values).

That is, a sorting algorithm is stable if whenever

there are two records R and S with the same key

and with R appearing before S in the original list, R

will appear before S in the sorted list.

• Usage of memory and other computer resources.

Some sorting algorithms are “in place”, such that

only O(1) or O(log n) memory is needed beyond

the items being sorted, while others need to create

auxiliary locations for data to be temporarily stored.

• Recursion: some algorithms are either recursive or

non recursive, while others may be both (e.g.,

merge sort).

• Whether or not they are a comparison sort. A

comparison sort examines the data only by

56 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

comparing two elements with a comparison operator.

In this paper, two new sorting algorithms are

presented. These new algorithms may consider as

selection sort as well as bubble sort algorithms. The

study shows that the proposed algorithms are more

efficient, theoretically, analytically, and practically as

compared to the original sorting algorithms. Section 2

presents the concept of enhanced Selection Sort (SS)

algorithm and its pseudocode. Furthermore, the

implementation, analysis, and comparison with

selection sort are highlighted. Section 3 introduces

enhanced bubble sort algorithm and its pseudocode,

implementation, analysis, and comparison with bubble

sort. Also, a real-world case study for the proposed

algorithms is presented in section 4. Finally,

conclusions were presented in section 5.

2. Enhanced Selection Sort

2.1. Concept

Inserting an array of elements and sorting these

elements in the same array (in-place) by finding the

maximum element and exchanging it with the last

element, and then decreasing the size of the array by

one for next call. In fact, the Enhanced Selection Sort

(ESS) algorithm is an enhancement to the SS algorithm

in decreasing number of swap operations, making the

algorithm to be data dependent, and in making it stable.

The differences between ESS and SS algorithms are

discussed in section 2.5.

2.2. Procedures

The procedures of the algorithms can be described as

follows:

• Inserting all elements of the array.

• Calling the “Enhanced Selection Sort” function with

passing the array and its size as parameters.

• Finding the maximum element in the array and

swapping it with the last index of the same array.

• Decreasing the size of the array by one.

• Calling the “Enhanced Selection Sort” function

recursively. The size of the array is decremented by

one after each call of the “Enhanced Selection Sort”

function. Operationally, the (size) after the first call

became (size-1), and after the second call became

(size-2), and so on.

2.3. Pseudocode

In simple pseudocode, enhanced selection sort

algorithm might be expressed as:

function enhanced selection sort (array , size)

1 if size > 1 then

2 var index, temp, max

3 index := size-1

4 max := array(index)

5 for a:= 0 to size-2 do

6 if array(a) ≥ max then

7 max := array(a)

8 index := a

9 end if

10 end for

11 if index ≠ size-1 then

12 temp := array(size-1)

13 array(size-1) := max

14 array(index) := temp

15 end if

16 size := size-1

17 return Enhanced Selection Sort (array , size)

18 else

19 return array

20 end if

2.4. Analysis

For loop, in line 5 iterates n times in the first call then

n keeps decreasing by one. We may say that:

>−+

=
=

0)1(

00
)(

nnTn

n
nT

T(n) = n + T(n-1)

 = n + n-1 + T(n-2)

 = n + n-1 + n-2 + T(n-3)

 = n + n-1 + n-2 + n-3 + T(n-4)

 = …

 = n + n-1 + n-2 + n-3 + … +

 (n- k+1) + T(n-k)

 = , for n ≥ k

To terminate the recursion, we should have n - k = 0

=> k = n:

So,

ESS algorithm is easy to analyze compared to other

sorting algorithms since the loop does not depend on

the data in the array. Selecting the highest element

requires scanning all n elements (this takes n - 1

comparisons) and then swapping it into the last

position. Then, finding the next highest element

requires scanning the remaining n - 2 elements and so

on, for (n-1)+(n-2)+...+2+1 = n(n-1)/2 = O(n
2
)

comparisons.

The number of swaps in the proposed algorithm

may elaborate as follows:

a) In the best-case scenario; if the input array is

already sorted (ascending order), then there is no

need to make swapping, since each element is in

the correct place.

b) In the average-case scenario; if the input array is

sorted in reverse (descending order), then the

)(
1

knT
n

kni
i −+∑
+−=

2

1
0

1
)0(

1

+
=+∑

=
=+∑

=

n
n

n

i
iT

n

i
i

)2(
2

1
)(nO

n
nnT =+=

(1)

(2)

(3)

(4)

An Enhancement of Major Sorting Algorithms 57

total number of swapping operations is: floor of

(n/2). Since swapping the maximum value with the

last element means that the maximum and the

minimum values are in the correct places. For

example, if we have a descending sorted array as

follows:

5 4 3 2 1

Then the algorithm will swap the first element (max)

with the last element, as follows:

1 4 3 2 5

Since the last element before swapping was the

minimum value, it is after swapping got in the correct

place and cannot be the maximum value in any of the

next comparisons.

In the next comparison, the second element now is

the maximum value and it will be swapped with the

fourth (size-1)
th

 element.

1 2 3 4 5

 The array now is sorted and the algorithm required

two swap operations to sort the input array of five

elements. That means, the swapping operations that are

needed to sort a descending sorted array is floor of

(n/2).

c) In the worst case; if the input array is unsorted

neither ascending nor descending, then the required

swapping operations are approximately n operations.

2.5. Comparison with SS Algorithm

SS algorithm, works by selecting the smallest unsorted

item remaining in the array, and then swapping it with

the item in the next position to be filled. The selection

sort has a complexity of O(n
2
) [8, 11]. In simple

pseudocode, selection sort algorithm might be

expressed as:

Function SelectionSort(array, size)

1 var i, j

2 var min, temp

3 for i := 0 to size-2 do

4 min := i

5 for j := i+1 to size-1 do

6 if array(j) < array(min)

7 min := j

8 end if

9 end for j

10 temp := array(i)

11 array(i) := array(min)

12 array(min) := temp

13 end for i

The main advantage enhanced selection sort over

selection sort algorithms is: selection sort always

performs O(n) swaps while enhanced selection sort

depends on the state of the input array. In other words,

if the input array is already sorted, the ESS does not

perform any swap operation, but selection sort

performs n swap operations. Writing in memory is

more expensive in time than reading, since EBS

performs less number of swaps (read/write) then it is

more efficient than selection sort when dealing with

an array stored in a secondary memory or in EEPROM

(electrically erasable programmable read only

memory). However, there are many similarities

between ESS and SS algorithms, as shown in Table 1.

Table 1. ESS vs SS algorithms.

Criteria
Enhanced Selection

Sort
Selection Sort

Best Case O(n2) O(n2)

Average Case O(n2) O(n2)

Worst Case O(n2) O(n2)

Memory O(1) O(1)

Stability Yes Yes

Number of Swaps
Depends on data: 0,

n/2, or n
Always n

To prove that ESS algorithm is relatively faster

than SS algorithm, we implement each of them using

C++, and measure the execution time of both

programs with the same input data, and using the same

computer. The built-in function (clock ()) in C++ is

used to get the elapsed time of the two algorithms.

#include<iostream.h>
#include<ctime>
#include <cstdlib>
int sort(int[], int);
void main()

{

 clock_t Start, Time;
 Start = clock();

 // the function call goes here

 Time = (clock() - Start);

 cout<<"Execution Time : "<<Time<<" ms."<<endl;

}

Since the execution time of a program is measured

in milliseconds using this function; we should measure

execution time of sorting algorithms with a huge size

of input array. Table 2 shows the differences between

execution times of ESS and SS with using an array of

(9000) elements in the best, average, and worst cases.

Table 2 shows that Enhanced Bubble Sort (EBS) is

relatively faster than selection sort in all cases. That

because the number of comparisons and swap

operations are less. In SS, the number of swaps is

always (8999), which is (n-1), but in ESS, it is (n) in

the worst-case, (n/2) in the average-case, and (0) in the

best-case. If the array is stored in a secondary

memory; then the SS will operate in relatively low

performance as compared with ESS.

3. Enhanced Bubble Sort

The history of Bubble sort algorithm may elaborate as

follows:

58 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

In 1963 FORTRAN textbook [13] states the

following code to what so called “Jump-down” sort.

1 void JumpDownSort(Vector a, int n){

2 for(int j=n-1; j> o; j--)

3 for(int k=0; k< j;k++)

4 if (a[j] < a[k])

5 Swap(a,k,j);}

Table 2. Execution time for ESS vs SS algorithms.

Case Criteria
Enhanced

Selection Sort

Selection

Sort

Number of
comparisons

40495500 40504499

Number of swaps 0 8999

B

e

s

t

Elapsed time 125 ms 171 ms

Number of

comparisons
40495500 40504499

Number of swaps 4500 8999

A

v

e

r

a

g

e

Elapsed time 133 ms 203 ms

Number of
comparisons

40495500 40504499

Number of swaps 8999 8999

W

o

r

s

t

Elapsed time 156 ms 203 ms

In another early 1962 book [10] “Jump-down”

version appears with no name. In another two early

works [3, 7] the “jump-down” sort is referred to as

selection sort. Then bubble sort is also covered and

referred as sorting by repeated comparison and

exchanging, respectively.

3.1. Concept and Procedures of EBS

The proposed algorithm is considered as an

enhancement to the original Bubble sort algorithm and

it works as follows:

Inserting an array of elements and sorting these

elements in the same array (in place) by finding the

minimum and the maximum elements and exchanging

the minimum with the first element and the maximum

with the last element, and then decreasing the size of

the array by two for next call.

 The detailed procedures of the algorithm can be

summarized as follows:

1. Inserting all elements of the array.

2. Defining and initializing two variables, (firstindex = 0)

and (lastindex = size-1).

3. Calling the "Enhanced Bubble Sort" function with

passing the array, its size, firstindex, and lastindex as

parameters of the function.

4. In the "Enhanced Bubble Sort" function, the operation

now is to find the maximum and the minimum elements

and saving the index value of the max of the array in the

variable maxcounter, and the index value of the min in

the variable mincounter.

5. Put the max in the lastindex and min in the firstindex of

the array without losing the last values of the first index

and the last index of the original array.

6. Decreasing the value of lastindex by one and increasing

the value of firstindex by one. Operationally, the size of

the array after the first call became (size-2), and after

the second call it actually became (size-4), and so on.

7. Calling the "Enhanced Bubble Sort " array recursively

while the size of the array is greater than one (size>1).

Then returning the sorted array.

3.2. Pseudocode

The pseudocode of EBS algorithm might be expressed

as:

function EnhancedBubbleSort (array, size, firstindex,

lastindex)

1 if size > 1 then

2 var temp := 0, maxcounter := lastindex

3 var mincounter := firstindex

4 var max := array(lastindex),min := array(firstindex)

5 for a:= firstindex to lastindex do

6 if array(a) ≥ max then

7 max := array(a)

8 maxcounter := a

9 end if

10 if array(a) < min then

11 min := array(a)

12 mincounter := a

13 end if

14 end for

15 if firstindex==maxcounter AND

 astindex==mincounter then

17 array(firstindex):= min

18 array(lastindex) := max

19 else

20 if firstindex==maxcounter AND

 lastindex ≠ mincounter then

21 temp := array(lastindex)
22 array(lastindex) := max
23 array(firstindex) := min
24 array(mincounter) := temp

25 else

26 if firstindex ≠ maxcounter AND

 lastindex==mincounter then

27 temp := array(firstindex)
28 array(firstindex):= min
29 array(lastindex) := max
30 array(maxcounter):= temp

31 else

32 temp := array(firstindex)
33 array(firstindex):= min

An Enhancement of Major Sorting Algorithms 59

34 array(mincounter):= temp
35 temp := array(lastindex)
36 array(lastindex):= max
37 array(maxcounter):= temp

38 end if

39 end if

40 end if

41 firstindex := firstindex + 1
42 lastindex := lastindex - 1
43 size := size – 2

44 return EnhancedBubbleSort

 (array,size,firstindex,lastindex)
45 else return array

46 end if

3.3. Analysis

The first call of the function loop iterates n times, as

shown in line 5, and in the second call, the loop iterates

n-2 times, and so on. We may analyze the algorithm as

follows:

 T(n) = 1, for n < 2

 T(n) = n + T(n-2), for n ≥ 2

 = n + (n-2) + T(n-4)

 = 2n – 2 + T(n-4)

 = 2n – 2 + (n-4) + T(n-6)

 = 3n – 6 + T(n-6)

 = 4n – 12 + T(n-8)

 = 5n – 20 + T(n-10)

 = …

 = in – (i
2
 - i) + T(n – 2i)

 = kn – (k
2
 - k) + T(n – 2k)

Assume that:

n = 2
k
, taking lg2 on both sides:

lg n = k lg2

lg n = k * 1

lg n = k

Therefore,

kn – (k
2
 - k) + T(n – 2k)=

nlgn – ((lgn)
2
 - lgn) + T(n – 2lgn)

T(n) = O(nlgn)

3.4. Comparison with Bubble Sort Algorithm

Bubble Sort (BS) repeatedly stepping through the array

to be sorted, comparing two items at a time and

swapping them if necessarily. Passing through the list is

repeated until no swaps are needed, which indicates

that the list is already sorted. The algorithm gets its

name from the way smaller elements “bubble” to the

top of the list. Since it uses comparisons only to operate

on elements, it is a comparison sort [2, 11]. In simple

pseudocode, bubble sort algorithm might be expressed

as:

function bubbleSort(array, array_size)

1 var i, j, temp;

2 for i:=(array_size-1)downto 0 step-1

3 for j := 1 to i do

4 if array(j-1) > array(j) then

5 temp := array[j-1];

6 array[j-1] := array[j];

7 array[j] := temp;

8 end if

9 end for

10 end for

11 end function

The positions of the elements in bubble sort play an

important role in determining its performance. Large

elements at the beginning of the list are quickly

swapped, while small elements at the beginning move

to the top extremely slowly. This has led to these types

of elements being named rabbits and turtles,

respectively [2, 20]. BS algorithm makes n

comparisons at the first time, and then it makes n-1

comparisons, and so on [19]. This yields to n + (n-1) +

(n-2) + … + 2 + 1 which is equal to n(n+1)/2 which is

O(n
2
).

In EBS algorithm, decreasing the number of

comparisons by two each call led the complexity to be

O(nlgn) which is very much better than O(n
2
). The

difference between EBS and BS may not be clear with

a small size of the input array, but with a large size it

is very clear that EBS is faster than bubble sort. The

main differences between EBS and BS are:

• In the average-case; BS performs n/2 swapping

operations, in the best-case it performs 0

operations, and in the worst-case it performs n

swapping operations, while EBS performs (n/2)

swapping operations in all cases.

• Since EBS needs to check the locations of the

found minimum and maximum elements before

performing swapping to avoid losing data; it has a

larger size of code than Bubble sort.

• In all cases, EBS makes O(nlgn) comparisons and

Bubble sort makes O(n
2
) comparisons to sort n

elements of the input array.

Table 3 shows the main differences between EBC

and Bubble sort algorithms:

Table 3. EBS vs BS algorithms.

Criteria
Enhanced Bubble

Sort
Bubble Sort

Best Case O(nlgn) O(n2)

Average Case O(nlgn) O(n2)

Worst Case O(nlgn) O(n2)

Memory O(1) O(1)

Stability Yes Yes

Number of Swaps Always n/2
Depends on data: 0,

n/2, or n

To be certain about these results we should

compute the execution time of the implementation

program of each algorithm. Table 4 shows the

differences between execution time of EBS and BS

algorithms using C++ with (9000) elements as the size

of the input array.

60 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

From Table 4 we may conclude that EBS is faster

than bubble sort especially when n is large. This is an

important advantage of EBS over bubble sort. At the

same time, EBS always performs n/2 swap operations

and it has a larger code size as compared to bubble sort.

Table 4. Execution time for EBS vs BS algorithms.

Case Criteria
Enhanced

Bubble Sort
Bubble Sort

Number of

comparisons
20254500 40504500

Number of swaps 4500 0

B

e

s

t

 Elapsed time 93 ms 187 ms

Number of
comparisons

20254500 40504500

Number of swaps 4500 4500

A

v

e

r

a

g

e
Elapsed time 109 ms 437 ms

Number of

comparisons
20254500 40504500

Number of swaps 4500 9000

W

o

r

s

t Elapsed time 140 ms 453 ms

To support the previous results we may compare the

proposed algorithms with some recent advanced sorting

algorithms, such as cocktail sort [12], shell sort [18],

and enhanced shell sort [17].

Cocktail sort as stated in [12], also known as

bidirectional BS and cocktail shaker sort, is a variation

of BS and selection sort that is both a stable sorting

algorithm and a comparison sort. The algorithm differs

from BS in that it sorts in both directions each pass

through the list. This sorting algorithm is only

marginally more difficult than BS to implement, and

solves the problem with so-called turtles in BS.

In the first stage of the cocktail sort, it loops through

the array from bottom to top, as in BS. During the loop,

adjacent items are compared. If at any point the value

on the left is greater than the value on the right, the

items are swapped. At the end of the first iteration, the

largest number will reside at the end of the set.

In the second stage, it loops through the array in the

opposite direction; starting from the item just before the

most recently sorted item, and moving back towards the

start of the list. Again, adjacent items are swapped if

required. The cocktail sort also fits in the category of

exchange sorts due to the manner in which elements are

moved inside the array during the sorting process.

As illustrated in [12], both space and time

complexities of the Cocktail sort are the same as that of

the BS for exactly the same reasons. That is, time

complexity is O(n
2
), and space complexity for in-place

sorting is O(1). EBS is more efficient and faster than

both, bubble sort and Cocktail sort, since it takes

O(nlgn) time complexity while BS and cocktail sort

take O(n
2
) to sort n elements.

Shell sort [18] which is an enhanced version of

insertion sort, reduces the number of swaps of the

elements being sorted to minimize the complexity and

time as compared to the insertion sort. Shell sort

improves the insertion sort by comparing elements

separated by a gap of several positions. This lets an

element take bigger steps toward its expected position.

Multiple passes over the data are taken with smaller

and smaller gap sizes. The last step of Shell sort is a

plain insertion sort, but by then, the array of data is

guaranteed to be almost sorted.

The shell sort is a “Diminishing Increment Sort”,

better known as a comb sort [4] to the unwashed

programming masses. The algorithm makes multiple

passes through the list, and each time sorts a number

of equally sized sets using the insertion sort [12]. The

size of the set to be sorted gets larger with each pass

through the list, until the set consists of the entire list.

This sets the insertion sort up for an almost-best case

run each iteration with a complexity that approaches

O(n). Donald L. shell [18] invented a formula to

calculate the value of ‘h’. This work focuses to

identify some improvement in the conventional Shell

sort algorithm.

As stated in [15, 18], the original implementation of

Shell sort performs O(n
2
) comparisons and exchanges

in the worst case. A minor change given in V. Pratt's

book [13] which improved the bound to O(n log
2
 n).

This is worse than the optimal comparison sorts,

which are O(n log n).

ESS algorithm [17] is an improvement in the Shell

sort algorithm to calculate the value of ‘h’. It has been

observed that by applying this algorithm, number of

swaps can be reduced up to 60 percent as compared to

the shell sort algorithm, but it is still a quadratic

sorting algorithm. It is clear that EBS is faster than

shell sort and its variants since all of them makes a

quadratic time while EBS makes a O(nlgn) time to

sort n elements.

4. Case Study

This section presents a real-world case study to sort

students of Al al-Bayt University in Jordan by the

university number (students IDs) in ascending order.

In this case study, BS, SS, shell sort, enhanced shell

sort, ESS, and EBS algorithms are applied with 12500

as total number of students.

Table 5. Execution time for the six algorithms.

Algorithm Elapsed Time

Bubble sort 506 ms

Enhanced bubble sort 151 ms

Selection sort 346 ms

Enhanced selection sort 307 ms

Shell sort 322 ms

Enhanced shell sort 249 ms

An Enhancement of Major Sorting Algorithms 61

Figure 1. The interface of the sorting application.

The simulator was built using Visual C++ to deal

with the database and to sort its records. The interface

of this simulator is shown in Figure 1.
The elapsed time for sorting the database is

measured using the (clock()) function of C++ and

recorded for each algorithm, as shown in Table 5.

Figure 2 shows a comparison of the elapsed time in

milliseconds of the BS, EBS, SS, and ESS.

0

100

200

300

400

500

600

Sorting Techniques

Bubble Sort

Enhanced Bubble Sort

Selection Sort

Enhanced Selection Sort

Figure 2. Comparison of sorting techniques.

From Figure 2, it is apparent that the ESS relatively

increases the efficiency of the selection sort and EBS

speeds up the bubble sort and enhances its efficiency.

5. Conclusions

In this paper, two new sorting algorithms are presented.

ESS has O(n
2
) complexity, but it is faster than SS,

especially if the input array is stored in secondary

memory, since it performs less number of swap

operations.

SS can be specially implemented to be stable. One

way of doing this is to artificially extend the key

comparison, so that comparisons between two objects

with other equal keys are decided using the order of the

entries in the original data order as a tie-breaker. ESS is

stable without the need to this special implementation.

EBS is definitely faster than BS, since BS performs

O(n
2
) operations but EBS performs O(nlgn) operations

to sort n elements. Furthermore, the proposed

algorithms are compared with some recent sorting

algorithms; shell sort and enhanced shell sort. These

algorithms are applied on a real-world case study of

sorting a database of (12500) records and the results

showed that the EBS also increases the efficiency of

both shell sort and enhanced shell sort algorithms.

References

[1] Aho A., Hopcroft J., and Ullman J., The Design

and Analysis of Computer Algorithms, Addison

Wesley, 1974.

[2] Astrachanm O., Bubble Sort: An Archaeological

Algorithmic Analysis, Duk University, 2003.

[3] Bell D., “The Principles of Sorting,” Computer

Journal of the Association for Computing

Machinery, vol. 1, no. 2, pp. 71-77, 1958.

[4] Box R. and Lacey S., “A Fast Easy Sort,”

Computer Journal of Byte Magazine, vol. 16,

no. 4, pp. 315-315, 1991.

[5] Cormen T., Leiserson C., Rivest R., and Stein

C., Introduction to Algorithms, McGraw Hill,

2001.

[6] Deitel H. and Deitel P., C++ How to Program,

Prentice Hall, 2001.

[7] Friend E., “Sorting on Electronic Computer

Systems,” Computer Journal of ACM, vol. 3,

no. 2, pp. 134-168, 1956.

[8] Knuth D., The Art of Computer Programming,

Addison Wesley, 1998.

[9] Kruse R., and Ryba A., Data Structures and

Program Design in C++, Prentice Hall, 1999.

[10] Ledley R., Programming and Utilizing Digital

Computers, McGraw Hill, 1962.

[11] Levitin A., Introduction to the Design and

Analysis of Algorithms, Addison Wesley, 2007.

[12] Nyhoff L., An Introduction to Data Structures,

Nyhoff Publishers, Amsterdam, 2005.

[13] Organick E., A FORTRAN Primer, Addison

Wesley, 1963.

[14] Pratt V., Shellsort and Sorting Networks,

Garland Publishers, 1979.

[15] Sedgewick R., “Analysis of Shellsort and

Related Algorithms,” in Proceedings of the 4
th

Annual European Symposium on Algorithms,

pp. 1-11, 1996.

[16] Seward H., “Information Sorting in the

Application of Electronic Digital Computers to

Business Operations,” Masters Thesis, 1954.

[17] Shahzad B. and Afzal M., “Enhanced Shell

Sorting Algorithm,” Computer Journal of

Enformatika, vol. 21, no. 6, pp. 66-70, 2007.

[18] Shell D., “A High Speed Sorting Procedure,”

Computer Journal of Communications of the

ACM, vol. 2, no. 7, pp. 30-32, 1959.

[19] Thorup M., “Randomized Sorting in O(n log log

n) Time and Linear Space Using Addition,

Shift, and Bit Wise Boolean Operations,”

Computer Journal of Algorithms, vol. 42, no. 2,

pp. 205-230, 2002.

62 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

[20] Weiss M., Data Structures and Problem Solving

Using Java, Addison Wesley, 2002.

Jehad Alnihoud received his PhD of

computer science from University

Putra Malaysia in 2004. Currently, he

is an assistant professor at the

Faculty of Information Technology

in Al al-Bayt University in Jordan.

His research areas include image

retrieval and indexing, image processing, algorithms,

GIS, and computer graphics.

Rami Mansi obtained his BSc in

information technology with a

major in software engineering from

Philadelphia University, 2006. His

research interests include computer

graphics, algorithms design and

analysis, HCI, programming, and

text processing.

