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Abstract: In this paper we propose a new technique focused on the selection of the important input variable for modelling 

complex systems of function approximation problems, in order to avoid the exponential increase in the complexity of the 

system that is usual when dealing with many input variables. The proposed parallel processing approach is composed of 

complete radial basis function neural networks that are in charge of a reduced set of input variables depending in the general 

behaviour of the problem. For the optimization of the parameters of each radial basis function neural networks in the system, 

we propose a new method to select the more important input variables which is capable of deciding which of the chosen 

variables go alone or together to each radial basis function neural networks to build the parallel structure, thus reducing the 

dimension of the input variable space for each radial basis function neural networks. We also provide an algorithm which 

automatically finds the most suitable topology of the proposed parallel processing structure and selects the more important 

input variables for it. Therefore, our goal is to find the most suitable of the proposed families of parallel processing 

architectures in order to approximate a system from which a set of input/output. So that the proposed parallel processing 

structure outperforms other algorithms not only with respect to the final approximation error but also with respect to the 

number of computation parameters of the system. 
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1. Introduction 

In many real world practical modelling problems, it is 

often possible to measure the value of many physical 

signals (variables), but it is not necessarily known 

which of them are relevant and required to solve the 

problem [21]. An excessively high computational 

complexity can occur when developing multivariate 

models for industrial or medical applications when the 

best set of inputs to use is not known. The main 

problems to face here are that when the input 

dimensionality increases, the computational 

complexity and memory requirements of the model 

increase (in some cases even exponentially); learning 

is more difficult with unnecessary inputs.  

Neural networks can be defined as an architecture 

comprising massively parallel adaptive processing 

elements interconnected via structured networks. The 

main weakness of a neural network lies in its totally 

flat structure. A direct consequence of such structural 

simplicity is often a huge network, with an excessively 

large number of hidden units. One effective solution is 

to incorporate proper parallel processing structure into 

the network. Parallel processing structures have a very 

rich variety of applications in computing since they 

provide representations that can be composed, 

modified, and manipulated in a very flexible way [14, 

10, 19, 7].  

 
The main problem to solve is that when the number 

of input variables increases, the number of parameters 

usually increases in a very rapid way, even 

exponentially. This phenomenon named the curse of 

dimensionality [2a] prevents the use of the majority of 

conventional modelling techniques and forces us to 

look for more specific solutions. To deal with this 

problem, Input Variable Selection (IVS) procedures 

try to reduce the dimension of the input variable space, 

identifying and removing as much irrelevant and 

redundant data as possible, thus reducing the 

dimensionality of the data and allowing learning 

algorithms to operate faster and more effectively.  

IVS has been researched intensively and has been 

applied to various problems such as data mining [20, 

2a], knowledge discovery, pattern recognition [13], 

etc. One of the most popular methods used to select 

input variables is Principal Component Analysis 

(PCA). Several authors have also worked to select the 

most important input variables in function 

approximation problems. Pomares et al. [17] presented 

a method to obtain the structure of a complete rule-

based fuzzy system for specific approximation 

accuracy of the training data, deciding which input 

variables should be taken into account how many 

membership functions are needed in every selected 

input variable in order to reach the approximation 

target. The main drawback of that method is that it 
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only could be applied to grid-based fuzzy systems with 

a limited number of input variables. Vehtari and 

Lampinen [21] proposed to use posterior and marginal 

posterior probabilities obtained via variable dimension 

Markov chain Monte Carlo methods to find out 

potentially useful input combinations and to do the 

final model choice and assessment using the expected 

utilities computed by using the cross-validation 

predictive densities. Also noteworthy is the work made 

by Chen and Wang [4a], who proposed that for a given 

set of input and output variables, a fuzzy partition 

associating fuzzy sets with each input variable. 

In our particular case, parallel processing 

architectures will be used to provide a suitable 

construction of Parallel Processing Radial Basis 

Function Neural Networks (PP-RBFNNs) which 

improve significantly the performance of complex 

function approximation problems. In this paper we 

show how our PP-RBFNN is capable of modelling 

complex systems without the above mentioned 

problems inherent to the increase of the number of 

input variables. For that purpose, we propose IVS 

method which tries to relate every dimension of the 

input data to the output target (as a function of one 

dimension) and divides the data of this dimension into 

parts. For each of these parts the distance is calculated 

between the maximum and minimum values of the 

output that belong to the input data of each dimension 

in each part and the average of all the distances in all 

parts. When the average has small value; the variable 

is more important and must be selected. The variables 

with big average are variables of noise and should be 

eliminated. The number of RBFNNs depends on the 

number of these variables and which of these go alone 

or together in a RBFNN. The process of deciding 

which of the variables go alone or together depends, in 

general, on the calculation of the distance variance of 

each variable or set of variables related to the output 

target. We also propose an algorithm which 

automatically finds the most suitable topology of PP-

RBFNN structure and selects the important input 

variables for it. Therefore, our goal is to find the most 

suitable of parallel processing architectures in order to 

approximate a system from which a set of 

Input/Output (I/O) data has been extracted.  

The paper is organized as follows. Section 2 

describes the basic building modules and the parallel 

processing structures of RBFNN. Section 3 presents 

the new procedure for IVS for our PP-RBFNNs. 

Section 4 provides a method to select groups of input 

variables and the number of RBFNNs. Section 5 

presents the method of parameters optimization of 

each RBFNN. Finally, section 6 presents examples of 

how the proposed methodology is capable of finding 

the most suitable PP-RBFNN architectures with best 

final approximation error and less number of 

computation parameters of the system.  

2. Architecture of the PP-RBFNN  

In classical RBFNNs every neuron in the hidden layer 

receives all the input variables of the network. 

Nevertheless, the interconnections in the PP-RBFNN 

structure between input variables and the hidden layer 

are limited and located. The advantage of the PP-

RBFNN structure consists of the fact that the problem 

is divided into many problems that are connected in 

parallel. Every problem is presented a RBFNN. All the 

RBFNNs have a total output that is the output of the 

PP-RBFNN structure. This division of the system 

limits the quantity of the information of the previous 

layer. In general, to construct a PP-RBFNN structure 

to solve problems of function approximation two basic 

steps are needed: 

• The identification of its structure. The number of 

RBFNNs depends on the number of the selected 

input variables and on which of these variables go 

alone or together to each RBFNN of the PP-

RBFNN system). 

• The estimation of the parameters of every RBFNN 

(centres 
Sc

r
, radius sr and weight Sw , and the 

RBF in each RBFNN, and the calculation of the 

total output F(x) of the PP-RBFNN. 
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Figure 1. Radial basis function neural network. 
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Figure 2. Parallel processing structures PP-RBFN. 
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Figure 3 presents the proposed parallel processing 

RBFNN system. Each one of the nodes of the figure is 

a RBFNN as shown in Figure 2. RBFNNs can be seen 

as a particular class of Artificial Neural Networks 

(ANNs). The basic architecture of an RBFNN is a 3-

layer network. The output of the net is given by the 

following expression:  

                      
1

( , , ) ( )
m

i i

i

F x w x wφ
=

Φ = ⋅∑
r r

     (1) 

where { : 1,..., }i i mφΦ = =  are the basis functions 

set and wi the associate weights for every RBF. The 

basis function φ  can be calculated as a Gaussian 

function using the following expression:  

     ( , , ) exp
x c

x c r
r

φ
 −

=   
 

r r
r r

   (2) 

where c
r
 is the central point of the function φ  and r 

is its radius.  

Each subset of the input variables {x1,…,xd} (where 

d is the number of the dimensions of the input data 

space) can be used as the inputs of each RBFNN. 

Every group of the input variables is used as input of 

each RBFNN. These inputs are selected using our IVS 

procedure. Every RBFNN receives variables and 

implements the process of optimization of the 

parameters of every RBFNN (centres S
c
r

, radii sr ). 

When the parameters of centres S
c
r

 and radii sr  of 

each RBFNN have been optimized, a method of linear 

optimization is used to find the values of the weight w, 

which depends on the total output f(x) of the system 

PP-RBFNN, which minimizes the cost function 

calculated on the set of data I/O. 

The optimization of the weight does not depend on 

every output of every RBFNN {F1(x),…,FS (x)}, but it 

depends on the total output of the PP-RBFNN system, 

and must be calculated in the linear form as in the 

following expression: 

         ( )
1 1

( , , )
smS

s s

i i

s i

f x w x wφ
= =

Φ = ⋅∑ ∑
r r

         (3) 

where 
s

iφ  are the i
th
 basis functions of the s

th
 

RBFNN, and 
s

iw  is its weight.  

Several PP-RBFNN structures can be obtained for 

any given problem from a set of input variables. For 

example, for a 4-input problem {x1,…,x4}, many 

possible different architectures can be obtained, the 

simplest when each input variable forms a single set as 

shown in Figure 4(a), and the most complicated when 

all input variables are used in the only RBFNN, as 

shown in Figure 4(d). To gain an insight of how the 

PP-RBFNN configuration affects the number of actual 

parameters of the system, let us recall that the total 

number of parameters in every classical RBFNN is 

equal to (d 2)m ⋅ + , where m is the number of RBFs, 

and d is the number of input variables. If the number 

of parameters decrease using the proposed system, this 

means that the problem solving using less recourses. 

Table 1 shows the number of parameters used in each 

one of the architectures of Figure 4 using (for fair 

comparison) a total number of 24 RBFs for each one. 

We can see how even for this simple example with 

only 4 input variables to share, the differences can be 

notable (the number of parameters can be doubled). 

The PP-RBFNN structure is thus capable of decreasing 

the number of parameters to optimize, provided that 

the selected structure is the most suitable one for the 

given set of I/O data. In classical RBFNN Figure 4(d) 

is bigger than any PP-RBFNN structures. 
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a) 4 RBFNNs with one input                b) 3 RBFNNs with one and two  
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Figure 3. Different topologies of parallel processing PP-RBFNNs. 

Table 1. Number of parameters between different architectures PP-

RBFNN depends on m.(d+2).  

Fig 

# 

RBFNN 

# 

RBF # in 

each 

RBFNN 

Var #  in 

each 

RBFNN 

Parm # in 

each Sub-

RBFN 

Parm  # in  

PP-RBFN 

6 1 18 

6 1 18 

6 1 18 
4a 4 

6 1 18 

72 

6 1 18 

12 2 48 4b 3 

6 1 18 

84 

12 2 48 
4c 2 

12 2 48 
96 

4d 1 24 4 144 144 

In this paper we are concerned exclusively with the 

selection of the most suitable PP-RBFNN structure. 

However, some remarks could be made about the 

optimization of the rest of the parameters of the net, 

i.e., RBF centres, RBF radii and RBF weights. To 

optimize the centres of each RBF of each RBFNN, it is 

common to use clustering algorithms such as the one 

presented in [1a]. For the radii, we used k-nearest 
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neighbour technique [15]. Once the parameters of 

centres and radii of each RBFNN has been initialized 

we can use a linear optimization method for 

optimizing the values of the weights that minimize the 

least square errors. 

3. Input Variable Selection for the             

PP-RBFNNs 

An input variable selection method tries to reduce the 

dimension of the input variable space and creates a 

new input variable set, thus identifying and removing 

as much irrelevant and redundant data as possible, 

which reduces the dimensionality of the data and 

allows learning algorithms to operate faster and more 

effectively.  

The curse of the dimensionality [3a] refers to the 

exponential approximation of the hyper-volume as a 

function of dimensionality. RBFNN can be planned as 

interrelations of input space to output space, it has to 

cover or represent each part of its input space in order 

to know how that part of the input space should be 

mapped. Covering the input space take resources, and 

in the most general case, the amount of resources 

needed is proportional to the hyper-volume of the 

input space. The exact formulation of resources and 

part of the input space depends on the type of the 

network and should probably be based on the concepts 

of information theory and differential geometry [3a]. 

Input variable selection fundamentally affects the 

severity of the problem, as well as the selection of the 

neural network model [13]. 

Our method considers a simple calculation to select 

the input variables. The selection of the input variables 

is done using the following steps: 

1. Relate each possible input dimension of data {x1, 

…,xd} with the dependent variable  y (as a function 

in one dimension) as: 

   { }1 2 3 d( , ) , ( , ) , ( , ) , . . . , ( , )x y x y x y x y  (4) 

Divide the data of each dimension into P parts as:  

( ){ }1  1, , ; 1,..., ; 1,...,j k j

i i
i

P x P k n i d j p− ≤ < = = =
r

K    (5) 

where n is the number of Input/Output data, ( )k

i
x
r

 

is the component i
th
 of the input vector k

th
. (Part of 

data i
th
 from vector k

th
,  ∑(i

th
)  = input vector k

th
 )  

2. Associate the data of each part P to corresponding 

output data as: 

      ( ){ } ( )1
,

k k j k j

i ii i
x y P x P

− ≤ <
r r

     (6) 

3. Use the Kalman filter to smooth the vectors of the 

maximum and minimums in each part, and calculate 

the distance j

i
D  between the maximum and the 

minimum values of the output in each partition of 

the input variable xi: 

         max( ) min( ) 1,....j k k

i j jD y y j p= − =       (7) 

4. Finally, for each input variable xi we calculate the 

mean of distances
i

D . The smallest
i

D  the most 

important input variable for the problem. Figure 5 

presents, in a schematic way, the general 

description of the proposed IVS method. For all the 

parts the average of the distance is calculated D . 

 

Figure 4. General description of the IVS method. 

4. Selection Groups of Input Variables and 

the Number of RBFNNs 

This process depends on the function or the problem 

that we try to approximate. In general, every function 

is represented by forms of summation and/or 

multiplication and/or division and/or subtraction 

between its variables. The proposed PP-RBFNN 

structure tries to add linearly the output of every 

RBFNN to have the total output of the PP-RBFNN 

system. For this, the variables that come multiplied or 

divided and have not been eliminated by the 

calculation of the mean distance go together to one 

RBFNN. Any variable multiplied or divided by other/s 

variables does not produce a big change in the value of 

the variance of variable in the interval data, which we 

will always normalize in the interval [0, 1]. The 

variables that come added or subtracted to other 

variables and have not been eliminated by the 

calculation of the mean distance go alone to one 

RBFNN. Any variable added or subtracted by other 

variables produce clear change in the value of the 

variance. The variance of the distance is calculated as: 

     
1

( )

var( )
1

p
i

j j

j

i

D D

x
p

=

−

=
−

∑
 

  (8) 

Figure 6 presents the process of selecting which of the 

input variables must go alone or together to each 

 
Relate each dimension of the input data {x1, …, xd} to the target output as a 

function of dimension. 

Divides the data in parts P. 

Uses the Kalman filter to smooth the vectors of the maximum and minimums in 
each part. 

Associate the data of each dimension to his corresponding output data 

Calculate the mean distance in each dimension. 

D  > θ ? No 

Select the variable 

Yes 

Remove the variable 

Calculate the value of distance D between the maximum and minimum values 
of the target output in each part. 
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RBFNN depends on the value of the variance of the 

distance between the maximum value and the 

minimum value in each partition. The variables that 

have a value of variance less than threshold variance 

will be selected to go to RBFNN. The task of 

analyzing the data begins with each of selected 

variables related to target output, and the variables 

with variance less than the proposed threshold value as 

variables that must go alone in a RBFNN. The 

variables that have not been selected in the first phase 

are analyzed in the next phases which take all 

possibilities of joining these variables, realizing every 

possible set of two, three, four, etc. 

5. Parameters Optimization of Each 

RBFNN 

In the proposed system we use a new supervised 

method of clustering for initializing the values of the 

centres Sc
r

 in every RBFNN. This algorithm 

incorporates the information regarding the target 

output for every input vector of the set of training, and 

calculates the error provoked by each cluster in the 

output of the function or the problem that we want to 

approximate using a RBFNN. The number of clusters 

will increase in zones where the cluster provokes 

bigger error depending on the process of migration of 

the clusters that have minor error to zones of clusters 

that have bigger error and a process of local 

displacement that tries to allocate the data to the most 

nearby cluster [1a]. 

When the centres values of every RBFNN are 

determined, the following step is to fix the values of 

the radius 
Sr  of every basis function to cover all data.  

For that purpose we use a heuristic algorithm of K- 

nearest neighbours (Knn) [15]. Once the values of the 

centres Sc
r

 and radius Sr  of the RBF have been 

optimized by means of the previous methods, every 

RBFNN will be a linear model and the set of weight 
S

w  depends linearly on the samples of the set of 

training. In the PP-RBFNN system, the weight w is 

optimized depending on the total output. The 

calculation of the total output f(x) is the linear sum of 

all the output of each RBFNN {F1(x), …, FS(x)}.  

The learning process is guided by the minimization 

of a function of error calculated as: 

( )2
1 1

1
( , , )

2

d n
d d

n i i

j i

Er f x w y
= =

= Φ −∑∑
r

   (9) 

where ( , , )d

i
f x wΦ
r

  is the total output f(x) of the 

system, and yi is the real output. The target of this 

phase is to find the optimal weight to calculate the 

total output and the error of approximation. To 

calculate the matrix of the weight s

mw the following 

expression is used: 
s

mw G Y=   (10) 

where G is the pseudo-inverse matrix of the activation 

matrix s

m
ϕ . This matrix can be calculated by means of 

methods of resolution of linear equations. In this 

algorithm we use the singular values decomposition 

(SVD) to solve this system of linear equations and 

assign the weight Sw for each RBFNN to calculate the 

output for each of them. 

 

Figure 5. Process of selecting the variables that go alone or together 

to each RBFNN. 

According to some methods the number of radial 

functions can be fixed priori or determined 

incrementally or decrementally. In the proposed 

system we use the incremental method to determine 

the number of RBF depending on the data test error 

that the system produces, which means, increase in 

each iteration only 1 RBF in one of RBFNN until the 

there is no improvement in test error during several 

iterations.  

6. Simulation Examples 

Experiments have been performed to test the proposed 

algorithm. The system is simulated in MATLAB 7.0 

under Windows XP with processor Pentium IV 

running at 2.4 Ghz.  In this section different examples 

are given to verify the procedure in the proposed 

algorithm. Two types of results are presented:  

• The structure of the system PP-RBFNN. 
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• The results of the validity of the algorithm in 

approximate functions from samples of I/O data, 

compared with results of a typical RBFNN that 

receives all the variables of the function and with 

other methods proposed in the bibliography.  

The results are obtained in 5 executions; {RBF} the 

set of radial functions used in each RBFNN. #Param 

is the number of parameters. NRMSETr is the 

normalized mean squared error of the training and 

NRMSETest is the normalized mean squared error of the 

test.  

6.1.  First Example f1(x) 

Suppose we take an example with 6 possible input 

variables to choose from. Let us consider a set of 

20000 I/O data pairs randomly taken from the 

function.  

2

1 1 2 3 4 5 6

1 2 3 4 5 6

( ) 10 ( )+20( -0.5) +10 +5  + 0 

, , , , , [0,1]

f x sin x x x x x x

x x x x x x

π= ⋅

∈
 (11) 

where each input variable is defined in the interval [0, 

1]. The proposed algorithm selects the ideal 

architecture of the system for the function f1(x), 

depending on the value of the variance threshold after 

analyzing every variable Figure 7. 
 

 

Figure 6. The variance for each variable in  f1(x). 

In the function f1(x) few variables must go alone to 

RBFNN and the subset of the rest goes to other 

RBFNN, as in Figure 8(a). 

 

(a) Structure PP-RBFNN selected 

by the algorithm 

 
(b) Structure of a classic 

RBFNN for the current 

function 

Figure 7. Structure PP-RBFNNand RBFNN. 

 

 
(a) In the number of parameters. 

 
(b) In the number of RBF. 

Figure 8. Comparison of the result of PP-RBFNN system and 

Classical RBFNN.  

Table 2. NRMSE of training and test obtained by the proposed 

algorithm and by classic RBFNN for the function f1(x). 

PP-RBFNN algorithm 

{ RBF } 
# 

Param 
NRMSETr Std NRMSETest Std 

{2 1 1 1} 17 0.212 2E-3 0.214 1E-4 

{1 2 1 1} 16 0.246 6E-3 0.252 4E-4 

{1 1 2 1} 16 0.238 1E-2 0.243 5E-3 

{1 1 1 2} 16 0.241 1E-2 0.246 6E-4 

{3 1 1 1} 24 0.198 2E-1 0.204 1E-4 

{2 2 1 1} 18 0.221 9E-3 0.225 1E-2 

{2 1 2 1} 18 0.209 2E-3 0.216 6E-3 

{2 1 1 2} 18 0.212 1E-3 0.216 1E-4 

{4 1 1 1} 33 0.183 1E-2 0.189 8E-3 

{3 2 1 1} 25 0.146 8E-2 0.147 3E-2 

{3 1 2 1} 25 0.075 5E-3 0.084 3E-3 

{3 1 1 2} 25 0.080 3E-3 0.088 2E-3 

Classical RBFNN 

RBF 
# 

Param 
NRMSETr NRMSETest 

2 16 0.428 0.437 

3 24 0.331 0.328 

4 32 0.301 0.305 

5 40 0.316 0.316 

6 48 0.279 0.278 

7 56 0.213 0.214 

8 64 0.284 0.284 

9 72 0.249 0.252 

10 80 0.231 0.237 

11 88 0.211 0.219 

12 96 0.206 0.212 

13 104 0.179 0.190 

14 112 0.153 0.173 

15 120 0.144 0.154 

6.2. Second Example f2(x) 

In this example, the results obtained by the algorithm 

and other methodologies proposed in the bibliography 

are compared using the function f2(x). 

1

2

(2 -1) 2

2 1 1

(3( -0.5)) 2

2 1 2

( )=1.3356(1.5(1- ) . (3 ( -0.6) ) +.. 

(4 ( -0.9) )),  , [0,1]

x

x

f x x e sin x

e sin x x x

π

π

⋅

⋅ ∈
  (12) 

 

They are compared with methods usually used to solve 

the problem of functional approximation, as methods 

presented in [8, 9, 5a, 6]. Table 3 presents the results 

obtained by these methods for the function f2(x) and 

compared with other methods in [16, 11, 18]. In the 

function f2(x) each one of the variables go alone to 

each RBFNN, as in Figure 10. 
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Figure 9. Obtained hierarchical PP-RBFNN structure for the 

example f2(x.). 

As seen from Tables 2 and 3 our experiment result 

showed that the PP-RBFNN outperforms other 

algorithms. In Table 2 PP-RBFNN outperforms the 

classical RBFNN in number of parameters which 

means less execution time and in NRMSE of training 

and test. The result in Table 3 showed that the PP-

RBFNN outperforms previous algorithms applied on 

the same function RBFNN in number of parameters 

which means less execution time and in NRMSE of 

training and test.   

Table 3. Comparative of different algorithms for the function f2(x). 

Algoritmo m 
Test  

NRMSE 
# Param 

MLP [5a] 15 0.096 60 

PP [14] - 0.128 - 

CTM [5a] - 0.170 - 

MARS [15] - 0.063 - 

ANN [17] 40 0.008 160 

3 × 5 (TP) 0.278 23 

4 × 6 (TP) 0.104 39 Pomares 2000 

5 × 9 (TP) 0.041 72 

5 0.3622 ± 0.0268 20 

10 0.1343 ± 0.0261 40 

15 0.0459 ± 0.0096 60 

21 0.0200 ± 0.0054 84 

González 2001 

29 0.0143 ± 0.0045 116 

5 0.3666 ± 0.0168 20 

10 0.1108 ± 0.0135 40 

15 0.0368 ± 0.0092 60 

21 0.0191 ± 0.0036 84 

Rivas 2003 

29 0.0147 ± 0.0022 116 

{1 4} 0.489 ± 0.0110 15 

{1 5} 0.365 ± 0.0006 18 

{1 6} 0.352 ± 0.0004 21 

{2 7}    0.128 ± 0.0021 27 

{3 7} 0.040 ± 0.0003 30 

{3 8} 0.026 ± 0.0015 33 

{4 8} 0.013 ± 0.0005 36 

PP-RBFNN 

{4 9} 0.007 ± 0.0022 39 

7.  Conclusions 

A fundamental limitation of the problem of 

approximation systems is that when the number of 

input variables increases, the number of parameters 

usually increases in a very rapid way, even 

exponentially. This phenomenon prevents the use of 

the majority of conventional modelling techniques and 

forces us to look for more specific solutions. To deal 

with this problem, we proposed new architecture for 

modelling complex systems in function approximation 

problems. This architecture is composed of complete 

RBFNN that are in charge of a reduced set of input 

variables. Also we proposed a new method to select 

the more important input variables, thus reducing the 

dimension of the input variable space for each 

RBFNN. The selection of the hierarchical structure of 

PP-RBFNN adapted according to the selected number 

of input variables and which of these variables go 

alone or together in each RBFNN. We have also 

provided a method to find automatically the most 

suitable topology of the proposed hierarchical 

structure and a method to select the more important 

input variables. We showed that the results of PP-

RBFNN outperform traditional methods in:  number of 

parameters; number RBF and the approximation error.  
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