
6 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

Input Variable Selection Using Parallel Processing

of RBF Neural Networks

Mohammed Awad

Faculty of Engineering and Information Technology, Arab American University, Palestine

Abstract: In this paper we propose a new technique focused on the selection of the important input variable for modelling

complex systems of function approximation problems, in order to avoid the exponential increase in the complexity of the

system that is usual when dealing with many input variables. The proposed parallel processing approach is composed of

complete radial basis function neural networks that are in charge of a reduced set of input variables depending in the general

behaviour of the problem. For the optimization of the parameters of each radial basis function neural networks in the system,

we propose a new method to select the more important input variables which is capable of deciding which of the chosen

variables go alone or together to each radial basis function neural networks to build the parallel structure, thus reducing the

dimension of the input variable space for each radial basis function neural networks. We also provide an algorithm which

automatically finds the most suitable topology of the proposed parallel processing structure and selects the more important

input variables for it. Therefore, our goal is to find the most suitable of the proposed families of parallel processing

architectures in order to approximate a system from which a set of input/output. So that the proposed parallel processing

structure outperforms other algorithms not only with respect to the final approximation error but also with respect to the

number of computation parameters of the system.

Keywords: Parallel processing, input variable selection, radial basis function neural networks.

Received November 30, 2007; accepted May 12, 2008

1. Introduction

In many real world practical modelling problems, it is

often possible to measure the value of many physical

signals (variables), but it is not necessarily known

which of them are relevant and required to solve the

problem [21]. An excessively high computational

complexity can occur when developing multivariate

models for industrial or medical applications when the

best set of inputs to use is not known. The main

problems to face here are that when the input

dimensionality increases, the computational

complexity and memory requirements of the model

increase (in some cases even exponentially); learning

is more difficult with unnecessary inputs.

Neural networks can be defined as an architecture

comprising massively parallel adaptive processing

elements interconnected via structured networks. The

main weakness of a neural network lies in its totally

flat structure. A direct consequence of such structural

simplicity is often a huge network, with an excessively

large number of hidden units. One effective solution is

to incorporate proper parallel processing structure into

the network. Parallel processing structures have a very

rich variety of applications in computing since they

provide representations that can be composed,

modified, and manipulated in a very flexible way [14,

10, 19, 7].

The main problem to solve is that when the number

of input variables increases, the number of parameters

usually increases in a very rapid way, even

exponentially. This phenomenon named the curse of

dimensionality [2a] prevents the use of the majority of

conventional modelling techniques and forces us to

look for more specific solutions. To deal with this

problem, Input Variable Selection (IVS) procedures

try to reduce the dimension of the input variable space,

identifying and removing as much irrelevant and

redundant data as possible, thus reducing the

dimensionality of the data and allowing learning

algorithms to operate faster and more effectively.

IVS has been researched intensively and has been

applied to various problems such as data mining [20,

2a], knowledge discovery, pattern recognition [13],

etc. One of the most popular methods used to select

input variables is Principal Component Analysis

(PCA). Several authors have also worked to select the

most important input variables in function

approximation problems. Pomares et al. [17] presented

a method to obtain the structure of a complete rule-

based fuzzy system for specific approximation

accuracy of the training data, deciding which input

variables should be taken into account how many

membership functions are needed in every selected

input variable in order to reach the approximation

target. The main drawback of that method is that it

Input Variable Selection Using Parallel Processing of RBF Neural Networks 7

only could be applied to grid-based fuzzy systems with

a limited number of input variables. Vehtari and

Lampinen [21] proposed to use posterior and marginal

posterior probabilities obtained via variable dimension

Markov chain Monte Carlo methods to find out

potentially useful input combinations and to do the

final model choice and assessment using the expected

utilities computed by using the cross-validation

predictive densities. Also noteworthy is the work made

by Chen and Wang [4a], who proposed that for a given

set of input and output variables, a fuzzy partition

associating fuzzy sets with each input variable.

In our particular case, parallel processing

architectures will be used to provide a suitable

construction of Parallel Processing Radial Basis

Function Neural Networks (PP-RBFNNs) which

improve significantly the performance of complex

function approximation problems. In this paper we

show how our PP-RBFNN is capable of modelling

complex systems without the above mentioned

problems inherent to the increase of the number of

input variables. For that purpose, we propose IVS

method which tries to relate every dimension of the

input data to the output target (as a function of one

dimension) and divides the data of this dimension into

parts. For each of these parts the distance is calculated

between the maximum and minimum values of the

output that belong to the input data of each dimension

in each part and the average of all the distances in all

parts. When the average has small value; the variable

is more important and must be selected. The variables

with big average are variables of noise and should be

eliminated. The number of RBFNNs depends on the

number of these variables and which of these go alone

or together in a RBFNN. The process of deciding

which of the variables go alone or together depends, in

general, on the calculation of the distance variance of

each variable or set of variables related to the output

target. We also propose an algorithm which

automatically finds the most suitable topology of PP-

RBFNN structure and selects the important input

variables for it. Therefore, our goal is to find the most

suitable of parallel processing architectures in order to

approximate a system from which a set of

Input/Output (I/O) data has been extracted.

The paper is organized as follows. Section 2

describes the basic building modules and the parallel

processing structures of RBFNN. Section 3 presents

the new procedure for IVS for our PP-RBFNNs.

Section 4 provides a method to select groups of input

variables and the number of RBFNNs. Section 5

presents the method of parameters optimization of

each RBFNN. Finally, section 6 presents examples of

how the proposed methodology is capable of finding

the most suitable PP-RBFNN architectures with best

final approximation error and less number of

computation parameters of the system.

2. Architecture of the PP-RBFNN

In classical RBFNNs every neuron in the hidden layer

receives all the input variables of the network.

Nevertheless, the interconnections in the PP-RBFNN

structure between input variables and the hidden layer

are limited and located. The advantage of the PP-

RBFNN structure consists of the fact that the problem

is divided into many problems that are connected in

parallel. Every problem is presented a RBFNN. All the

RBFNNs have a total output that is the output of the

PP-RBFNN structure. This division of the system

limits the quantity of the information of the previous

layer. In general, to construct a PP-RBFNN structure

to solve problems of function approximation two basic

steps are needed:

• The identification of its structure. The number of

RBFNNs depends on the number of the selected

input variables and on which of these variables go

alone or together to each RBFNN of the PP-

RBFNN system).

• The estimation of the parameters of every RBFNN

(centres
Sc

r
, radius sr and weight Sw , and the

RBF in each RBFNN, and the calculation of the

total output F(x) of the PP-RBFNN.

F(X)

…
.

x1

xm

…

 Σ

φ1

 φ2

 φm

w1

 w2

wm

Figure 1. Radial basis function neural network.

 RBFN1

RBFN2

 Σ

RBFNS

f(x)

F1(x)

F2(x)

FS(x)

……… ………

1

1

1

1

d

x

x

M

2

2

1

2

d

x

x

M

1

s

s

s

d

x

x

M

Figure 2. Parallel processing structures PP-RBFN.

8 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

Figure 3 presents the proposed parallel processing

RBFNN system. Each one of the nodes of the figure is

a RBFNN as shown in Figure 2. RBFNNs can be seen

as a particular class of Artificial Neural Networks

(ANNs). The basic architecture of an RBFNN is a 3-

layer network. The output of the net is given by the

following expression:

1

(, ,) ()
m

i i

i

F x w x wφ
=

Φ = ⋅∑
r r

 (1)

where { : 1,..., }i i mφΦ = = are the basis functions

set and wi the associate weights for every RBF. The

basis function φ can be calculated as a Gaussian

function using the following expression:

 (, ,) exp
x c

x c r
r

φ
 −

=

r r
r r

 (2)

where c
r
 is the central point of the function φ and r

is its radius.

Each subset of the input variables {x1,…,xd} (where

d is the number of the dimensions of the input data

space) can be used as the inputs of each RBFNN.

Every group of the input variables is used as input of

each RBFNN. These inputs are selected using our IVS

procedure. Every RBFNN receives variables and

implements the process of optimization of the

parameters of every RBFNN (centres S
c
r

, radii sr).

When the parameters of centres S
c
r

 and radii sr of

each RBFNN have been optimized, a method of linear

optimization is used to find the values of the weight w,

which depends on the total output f(x) of the system

PP-RBFNN, which minimizes the cost function

calculated on the set of data I/O.

The optimization of the weight does not depend on

every output of every RBFNN {F1(x),…,FS (x)}, but it

depends on the total output of the PP-RBFNN system,

and must be calculated in the linear form as in the

following expression:

 ()
1 1

(, ,)
smS

s s

i i

s i

f x w x wφ
= =

Φ = ⋅∑ ∑
r r

 (3)

where
s

iφ are the i
th
 basis functions of the s

th

RBFNN, and
s

iw is its weight.

Several PP-RBFNN structures can be obtained for

any given problem from a set of input variables. For

example, for a 4-input problem {x1,…,x4}, many

possible different architectures can be obtained, the

simplest when each input variable forms a single set as

shown in Figure 4(a), and the most complicated when

all input variables are used in the only RBFNN, as

shown in Figure 4(d). To gain an insight of how the

PP-RBFNN configuration affects the number of actual

parameters of the system, let us recall that the total

number of parameters in every classical RBFNN is

equal to (d 2)m ⋅ + , where m is the number of RBFs,

and d is the number of input variables. If the number

of parameters decrease using the proposed system, this

means that the problem solving using less recourses.

Table 1 shows the number of parameters used in each

one of the architectures of Figure 4 using (for fair

comparison) a total number of 24 RBFs for each one.

We can see how even for this simple example with

only 4 input variables to share, the differences can be

notable (the number of parameters can be doubled).

The PP-RBFNN structure is thus capable of decreasing

the number of parameters to optimize, provided that

the selected structure is the most suitable one for the

given set of I/O data. In classical RBFNN Figure 4(d)

is bigger than any PP-RBFNN structures.

f(x)

 Σ

F1(x)
RBFN1

X1

RBFN2

X2

RBFN3

X3

RBFN4

X4

F4(x)

F3(x)

F2(x)

f(x)

 Σ

F1(x)

RBFN1

X1

RBFN2

X2

X4

RBFN3

X3

F3(x)

F2(x)

b

a) 4 RBFNNs with one input b) 3 RBFNNs with one and two

 variable for each one. input variables for each one.

f(x)

F1(x)

 Σ

RBFN1

X1

X4

X2

X3
F2(x)

RBFN2

a

f(x)

X1

X2

X3

X4

 Σ

F(x)

RBFN1

c) 2 RBFNNs with two input d) 1 RBFNNs with all the

 variables for each one. input variable set.

Figure 3. Different topologies of parallel processing PP-RBFNNs.

Table 1. Number of parameters between different architectures PP-

RBFNN depends on m.(d+2).

Fig

RBFNN

RBF # in

each

RBFNN

Var # in

each

RBFNN

Parm # in

each Sub-

RBFN

Parm # in

PP-RBFN

6 1 18

6 1 18

6 1 18
4a 4

6 1 18

72

6 1 18

12 2 48 4b 3

6 1 18

84

12 2 48
4c 2

12 2 48
96

4d 1 24 4 144 144

In this paper we are concerned exclusively with the

selection of the most suitable PP-RBFNN structure.

However, some remarks could be made about the

optimization of the rest of the parameters of the net,

i.e., RBF centres, RBF radii and RBF weights. To

optimize the centres of each RBF of each RBFNN, it is

common to use clustering algorithms such as the one

presented in [1a]. For the radii, we used k-nearest

Input Variable Selection Using Parallel Processing of RBF Neural Networks 9

neighbour technique [15]. Once the parameters of

centres and radii of each RBFNN has been initialized

we can use a linear optimization method for

optimizing the values of the weights that minimize the

least square errors.

3. Input Variable Selection for the

PP-RBFNNs

An input variable selection method tries to reduce the

dimension of the input variable space and creates a

new input variable set, thus identifying and removing

as much irrelevant and redundant data as possible,

which reduces the dimensionality of the data and

allows learning algorithms to operate faster and more

effectively.

The curse of the dimensionality [3a] refers to the

exponential approximation of the hyper-volume as a

function of dimensionality. RBFNN can be planned as

interrelations of input space to output space, it has to

cover or represent each part of its input space in order

to know how that part of the input space should be

mapped. Covering the input space take resources, and

in the most general case, the amount of resources

needed is proportional to the hyper-volume of the

input space. The exact formulation of resources and

part of the input space depends on the type of the

network and should probably be based on the concepts

of information theory and differential geometry [3a].

Input variable selection fundamentally affects the

severity of the problem, as well as the selection of the

neural network model [13].

Our method considers a simple calculation to select

the input variables. The selection of the input variables

is done using the following steps:

1. Relate each possible input dimension of data {x1,

…,xd} with the dependent variable y (as a function

in one dimension) as:

 { }1 2 3 d(,) , (,) , (,) , . . . , (,)x y x y x y x y (4)

Divide the data of each dimension into P parts as:

(){ }1 1, , ; 1,..., ; 1,...,j k j

i i
i

P x P k n i d j p− ≤ < = = =
r

K (5)

where n is the number of Input/Output data, ()k

i
x
r

is the component i
th
 of the input vector k

th
. (Part of

data i
th
 from vector k

th
, ∑(i

th
) = input vector k

th
)

2. Associate the data of each part P to corresponding

output data as:

 (){ } ()1
,

k k j k j

i ii i
x y P x P

− ≤ <
r r

 (6)

3. Use the Kalman filter to smooth the vectors of the

maximum and minimums in each part, and calculate

the distance j

i
D between the maximum and the

minimum values of the output in each partition of

the input variable xi:

 max() min() 1,....j k k

i j jD y y j p= − = (7)

4. Finally, for each input variable xi we calculate the

mean of distances
i

D . The smallest
i

D the most

important input variable for the problem. Figure 5

presents, in a schematic way, the general

description of the proposed IVS method. For all the

parts the average of the distance is calculated D .

Figure 4. General description of the IVS method.

4. Selection Groups of Input Variables and

the Number of RBFNNs

This process depends on the function or the problem

that we try to approximate. In general, every function

is represented by forms of summation and/or

multiplication and/or division and/or subtraction

between its variables. The proposed PP-RBFNN

structure tries to add linearly the output of every

RBFNN to have the total output of the PP-RBFNN

system. For this, the variables that come multiplied or

divided and have not been eliminated by the

calculation of the mean distance go together to one

RBFNN. Any variable multiplied or divided by other/s

variables does not produce a big change in the value of

the variance of variable in the interval data, which we

will always normalize in the interval [0, 1]. The

variables that come added or subtracted to other

variables and have not been eliminated by the

calculation of the mean distance go alone to one

RBFNN. Any variable added or subtracted by other

variables produce clear change in the value of the

variance. The variance of the distance is calculated as:

1

()

var()
1

p
i

j j

j

i

D D

x
p

=

−

=
−

∑

 (8)

Figure 6 presents the process of selecting which of the

input variables must go alone or together to each

Relate each dimension of the input data {x1, …, xd} to the target output as a

function of dimension.

Divides the data in parts P.

Uses the Kalman filter to smooth the vectors of the maximum and minimums in
each part.

Associate the data of each dimension to his corresponding output data

Calculate the mean distance in each dimension.

D > θ ? No

Select the variable

Yes

Remove the variable

Calculate the value of distance D between the maximum and minimum values
of the target output in each part.

10 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

RBFNN depends on the value of the variance of the

distance between the maximum value and the

minimum value in each partition. The variables that

have a value of variance less than threshold variance

will be selected to go to RBFNN. The task of

analyzing the data begins with each of selected

variables related to target output, and the variables

with variance less than the proposed threshold value as

variables that must go alone in a RBFNN. The

variables that have not been selected in the first phase

are analyzed in the next phases which take all

possibilities of joining these variables, realizing every

possible set of two, three, four, etc.

5. Parameters Optimization of Each

RBFNN

In the proposed system we use a new supervised

method of clustering for initializing the values of the

centres Sc
r

 in every RBFNN. This algorithm

incorporates the information regarding the target

output for every input vector of the set of training, and

calculates the error provoked by each cluster in the

output of the function or the problem that we want to

approximate using a RBFNN. The number of clusters

will increase in zones where the cluster provokes

bigger error depending on the process of migration of

the clusters that have minor error to zones of clusters

that have bigger error and a process of local

displacement that tries to allocate the data to the most

nearby cluster [1a].

When the centres values of every RBFNN are

determined, the following step is to fix the values of

the radius
Sr of every basis function to cover all data.

For that purpose we use a heuristic algorithm of K-

nearest neighbours (Knn) [15]. Once the values of the

centres Sc
r

 and radius Sr of the RBF have been

optimized by means of the previous methods, every

RBFNN will be a linear model and the set of weight
S

w depends linearly on the samples of the set of

training. In the PP-RBFNN system, the weight w is

optimized depending on the total output. The

calculation of the total output f(x) is the linear sum of

all the output of each RBFNN {F1(x), …, FS(x)}.

The learning process is guided by the minimization

of a function of error calculated as:

()2
1 1

1
(, ,)

2

d n
d d

n i i

j i

Er f x w y
= =

= Φ −∑∑
r

 (9)

where (, ,)d

i
f x wΦ
r

 is the total output f(x) of the

system, and yi is the real output. The target of this

phase is to find the optimal weight to calculate the

total output and the error of approximation. To

calculate the matrix of the weight s

mw the following

expression is used:
s

mw G Y= (10)

where G is the pseudo-inverse matrix of the activation

matrix s

m
ϕ . This matrix can be calculated by means of

methods of resolution of linear equations. In this

algorithm we use the singular values decomposition

(SVD) to solve this system of linear equations and

assign the weight Sw for each RBFNN to calculate the

output for each of them.

Figure 5. Process of selecting the variables that go alone or together

to each RBFNN.

According to some methods the number of radial

functions can be fixed priori or determined

incrementally or decrementally. In the proposed

system we use the incremental method to determine

the number of RBF depending on the data test error

that the system produces, which means, increase in

each iteration only 1 RBF in one of RBFNN until the

there is no improvement in test error during several

iterations.

6. Simulation Examples

Experiments have been performed to test the proposed

algorithm. The system is simulated in MATLAB 7.0

under Windows XP with processor Pentium IV

running at 2.4 Ghz. In this section different examples

are given to verify the procedure in the proposed

algorithm. Two types of results are presented:

• The structure of the system PP-RBFNN.

C a lc u la te t h e v a r ia n c e V 1 o f t h e d is t a n c e in e v e r y p r a t e fo r e v e r y v a r ia b le

th a t t h e y h a v e b e e n s e le c te d .

C a lc u la te th e s iz e T o f th e v a r ia b le s th a t s ta y

A n a ly z e a l l th e p o s s ib le s e t s o f t h e v a r ia b le s a n d c a l c u la te t h e v a r ia n c e V 2

fo r e v e r y s e t

N o

¿ V 1 < U m b 1?

S e le c t th e

v a r ia b le to

g o a lo n e t o
S u b -R B F N

y e s

¿ T < = 2 ?
y e s

T w o
v a r ia b le s g o

to g e t h e r t o

S u b -R B F N
N o

¿ V 2 < U m b 2?

S e le c t t h e s e ts

o f tw o v a r ia b le s
to g o to

S u b -R B F N

y e s

N o

C a lc u la te th e s iz e T o f th e v a r ia b le s th a t s ta y

¿ T < = 3 ?

T h r e e
v a r ia b le s g o

to g e th e r to
S u b -R B F N

y e s

N o

A n a ly z e a l l t h e p o s s ib le s e t s o f th e v a r ia b le s a n d t o c a lc u la te th e v a r ia n c e

V 3 fo r e v e r y s e t

¿ V 3 < U m b 3?

S e le c t t h e s e ts
o f t h r e e

v a r ia b le s t o g o
to S u b -R B F N

y e s

N o

R e p e a t t h e p r o c e s s in 4 ,5 . . , d v a r ia b le s

F in is h

Input Variable Selection Using Parallel Processing of RBF Neural Networks 11

• The results of the validity of the algorithm in

approximate functions from samples of I/O data,

compared with results of a typical RBFNN that

receives all the variables of the function and with

other methods proposed in the bibliography.

The results are obtained in 5 executions; {RBF} the

set of radial functions used in each RBFNN. #Param

is the number of parameters. NRMSETr is the

normalized mean squared error of the training and

NRMSETest is the normalized mean squared error of the

test.

6.1. First Example f1(x)

Suppose we take an example with 6 possible input

variables to choose from. Let us consider a set of

20000 I/O data pairs randomly taken from the

function.

2

1 1 2 3 4 5 6

1 2 3 4 5 6

() 10 ()+20(-0.5) +10 +5 + 0

, , , , , [0,1]

f x sin x x x x x x

x x x x x x

π= ⋅

∈
 (11)

where each input variable is defined in the interval [0,

1]. The proposed algorithm selects the ideal

architecture of the system for the function f1(x),

depending on the value of the variance threshold after

analyzing every variable Figure 7.

Figure 6. The variance for each variable in f1(x).

In the function f1(x) few variables must go alone to

RBFNN and the subset of the rest goes to other

RBFNN, as in Figure 8(a).

(a) Structure PP-RBFNN selected

by the algorithm

(b) Structure of a classic

RBFNN for the current

function

Figure 7. Structure PP-RBFNNand RBFNN.

(a) In the number of parameters.

(b) In the number of RBF.

Figure 8. Comparison of the result of PP-RBFNN system and

Classical RBFNN.

Table 2. NRMSE of training and test obtained by the proposed

algorithm and by classic RBFNN for the function f1(x).

PP-RBFNN algorithm

{ RBF }

Param
NRMSETr Std NRMSETest Std

{2 1 1 1} 17 0.212 2E-3 0.214 1E-4

{1 2 1 1} 16 0.246 6E-3 0.252 4E-4

{1 1 2 1} 16 0.238 1E-2 0.243 5E-3

{1 1 1 2} 16 0.241 1E-2 0.246 6E-4

{3 1 1 1} 24 0.198 2E-1 0.204 1E-4

{2 2 1 1} 18 0.221 9E-3 0.225 1E-2

{2 1 2 1} 18 0.209 2E-3 0.216 6E-3

{2 1 1 2} 18 0.212 1E-3 0.216 1E-4

{4 1 1 1} 33 0.183 1E-2 0.189 8E-3

{3 2 1 1} 25 0.146 8E-2 0.147 3E-2

{3 1 2 1} 25 0.075 5E-3 0.084 3E-3

{3 1 1 2} 25 0.080 3E-3 0.088 2E-3

Classical RBFNN

RBF

Param
NRMSETr NRMSETest

2 16 0.428 0.437

3 24 0.331 0.328

4 32 0.301 0.305

5 40 0.316 0.316

6 48 0.279 0.278

7 56 0.213 0.214

8 64 0.284 0.284

9 72 0.249 0.252

10 80 0.231 0.237

11 88 0.211 0.219

12 96 0.206 0.212

13 104 0.179 0.190

14 112 0.153 0.173

15 120 0.144 0.154

6.2. Second Example f2(x)

In this example, the results obtained by the algorithm

and other methodologies proposed in the bibliography

are compared using the function f2(x).

1

2

(2 -1) 2

2 1 1

(3(-0.5)) 2

2 1 2

()=1.3356(1.5(1-) . (3 (-0.6)) +..

(4 (-0.9))), , [0,1]

x

x

f x x e sin x

e sin x x x

π

π

⋅

⋅ ∈
 (12)

They are compared with methods usually used to solve

the problem of functional approximation, as methods

presented in [8, 9, 5a, 6]. Table 3 presents the results

obtained by these methods for the function f2(x) and

compared with other methods in [16, 11, 18]. In the

function f2(x) each one of the variables go alone to

each RBFNN, as in Figure 10.

12 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

Figure 9. Obtained hierarchical PP-RBFNN structure for the

example f2(x.).

As seen from Tables 2 and 3 our experiment result

showed that the PP-RBFNN outperforms other

algorithms. In Table 2 PP-RBFNN outperforms the

classical RBFNN in number of parameters which

means less execution time and in NRMSE of training

and test. The result in Table 3 showed that the PP-

RBFNN outperforms previous algorithms applied on

the same function RBFNN in number of parameters

which means less execution time and in NRMSE of

training and test.

Table 3. Comparative of different algorithms for the function f2(x).

Algoritmo m
Test

NRMSE
Param

MLP [5a] 15 0.096 60

PP [14] - 0.128 -

CTM [5a] - 0.170 -

MARS [15] - 0.063 -

ANN [17] 40 0.008 160

3 × 5 (TP) 0.278 23

4 × 6 (TP) 0.104 39 Pomares 2000

5 × 9 (TP) 0.041 72

5 0.3622 ± 0.0268 20

10 0.1343 ± 0.0261 40

15 0.0459 ± 0.0096 60

21 0.0200 ± 0.0054 84

González 2001

29 0.0143 ± 0.0045 116

5 0.3666 ± 0.0168 20

10 0.1108 ± 0.0135 40

15 0.0368 ± 0.0092 60

21 0.0191 ± 0.0036 84

Rivas 2003

29 0.0147 ± 0.0022 116

{1 4} 0.489 ± 0.0110 15

{1 5} 0.365 ± 0.0006 18

{1 6} 0.352 ± 0.0004 21

{2 7} 0.128 ± 0.0021 27

{3 7} 0.040 ± 0.0003 30

{3 8} 0.026 ± 0.0015 33

{4 8} 0.013 ± 0.0005 36

PP-RBFNN

{4 9} 0.007 ± 0.0022 39

7. Conclusions

A fundamental limitation of the problem of

approximation systems is that when the number of

input variables increases, the number of parameters

usually increases in a very rapid way, even

exponentially. This phenomenon prevents the use of

the majority of conventional modelling techniques and

forces us to look for more specific solutions. To deal

with this problem, we proposed new architecture for

modelling complex systems in function approximation

problems. This architecture is composed of complete

RBFNN that are in charge of a reduced set of input

variables. Also we proposed a new method to select

the more important input variables, thus reducing the

dimension of the input variable space for each

RBFNN. The selection of the hierarchical structure of

PP-RBFNN adapted according to the selected number

of input variables and which of these variables go

alone or together in each RBFNN. We have also

provided a method to find automatically the most

suitable topology of the proposed hierarchical

structure and a method to select the more important

input variables. We showed that the results of PP-

RBFNN outperform traditional methods in: number of

parameters; number RBF and the approximation error.

References

[1] Awad M., Pomares H., Rojas F., Herrera L.,

González J., and Guillén A., “Approximating I/O

Data Using Radial Basis Functions:

A New Clustering-Based Approach,” in the

International Work-Conference on Artificial

Neural Networks, pp. 289-296, Berlin

Heidelberg, 2005.

[2] Bengio S. and Bengio Y., “Taking on the Curse

of Dimensionality in Joint Distributions Using

Neural Networks,” IEEE Transactions on Neural

Networks, vol. 11, no. 3, 2000.

[3] Bengio S. and Bengio Y., “Taking on the Curse

of Dimensionality in Joint Distributions Using

Neural Networks,” IEEE Transaction on Neural

Networks, special issue on data mining and

knowledge discovery, vol. 11, no. 3, pp. 550-557,

2000.

[4] Chen Y. and Wang J., “Kernel Machines and

Additive Fuzzy Systems: Classification and

Function Approximation,” in Proceedings of the

IEEE International Conference on Fuzzy

Systems, pp. 789-795, Greece, 2003.

[5] Cherkassky V. and Lay-Najafy H., “Constrained

Topological Mapping for Nonparametric

Regression Analysis,” Neural Networks, vol. 4,

pp. 2740, 1991.

[6] Cherkassky V., Gehring D., and Mulier F.,

“Comparison of adaptive Methods for Function

Estimation from Samples,” IEEE Transaction on

Neural Networks, vol. 7, pp. 969-984, 1996.

[7] Ferrari S., Maggioni M., and Borghese N.,

“Multiscale Approximation With Hierarchical

Radial Basis Functions Networks,” IEEE

Input Variable Selection Using Parallel Processing of RBF Neural Networks 13

Transaction on Neural Networks, vol. 15, no. 1,

pp.178-188, 2004.

[8] Friedman J. and Stuetzle W., “Projection Pursuit

Regression,” Journal of the American Statistics

Association, vol. 76, no. 376, pp. 817-823, 1981.

[9] Friedman J., “Multivariate Adaptive Regression

Splines,” Annals of Statistics, vol. 19, pp. 1-141,

1991.

[10] Fukumizu K. and Amari S., “Local Minima and

Plateaus in Hierarchical Structures of Multilayer

Perceptrons. Brain Science Institute,” Technical

Report, the Institute of Physical and Chemical

Research (RIKEN), 1999.

[11] Gonzalez J., “Identificación y Optimización de

Redes de Funciones de Base Radiales Para

Aproximación funcional,” Tesis Doctoral,

Universidad de Granada, 2001.

[12] Gonzalez J., Rojas H., Ortega J., and Prieto A.,

“A New Clustering Technique for Function

Approximation,” IEEE Transaction on Neural

Networks, vol. 13, no. 1, pp. 132 -142, 2002.

[13] Jain A. and Chandrasekaran R., “Dimensionality

and Sample Size Consideration in Pattern

Recognition Practice,” in Handbook of Statistics,

P. Krishaniah and L. Kanal (eds), vol. 2, pp. 835-

855, Netherlands, 1982.

[14] Kwasny S., Kalman B., and Chang N.,

“Distributed Patterns as Hierarchical Structures,”

in Proceedings of the World Congress on Neural

Networks, Portland, pp. 198-202, 1993.

[15] Moody J. and Darken C., “Fast Learning in

Networks of Locally Tuned Units,” Neural

Computations, vol. 1, no. 2, pp. 281-294, 1989.

[16] Pomares H., “Nueva Metodología Para El Diseño

Automático de Sistemas Difusos,” Tesis

Doctoral, Universidad de Granada, 2000.

[17] Pomares H., Rojas I., González J., and Prieto A.,

“Structure Identification in Complete Rule-Based

Fuzzy Systems,” IEEE Transactions on Fuzzy

Systems, vol. 10, no. 3, pp. 349-359, 2002.

[18] Rivas V., “Optimización de Redes Neuronales de

Funciones Base Radiales Mediante Algoritmos

Evolutivos,” Tesis Doctoral, Universidad de

Granada, 2003.

[19] Souza F., Vellasco M., and Pacheco M.,

“Hierarchical Neuro-Fuzzy QuadTree,” Models,

Fuzzy Sets and Systems, vol. 130, pp. 189-205,

2002.

[20] Trappenberg T., Ouyang J., and Back A., “Input

Variable Selection: Mutual Information and

Linear Mixing Measures,” IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 1,

pp. 37-46, 2006.

[21] Vehtari A. and Lampinen J., “Bayesian Input

Variable Selection Using Posterior Probabilities

and Expected Utilities,” Technical Report,

Helsinki University of Technology, Laboratory

of Computational Engineering Publications.

ISSN 1457-1404, 2002.

Mohammed Awad received the BSc

degree in industrial automation

engineering in 2000, from the

Palestine Polytechnic University,

and the PhD degree in 2005, from

the University of Granada, Spain. He

is currently assistant professor in the

Faculty of Information Technology and Chairperson of

the Department of computer information Technology

at the Arab American University, Palestine. His

current areas of research interest include artificial

neural networks and evolutionary computation,

function approximation using radial basis function

neural networks, input variable selection and fuzzy and

neuro-fuzzy system.
.

