
86 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

Specification and Prototyping of Reactive

Distributed Systems with Algebraic Term Nets

Faiza Bouchoul and Mohammed Mostefai

Laboratory of Automatics of Sétif, Ferhat Abbas University, Algeria

Abstract: The specification of the dynamic behaviour of reactive distributed systems must exhibit the structures of control and

has to imply explicitly the relevant aspects of the distribution, such as the concurrency, the reactivity and the interaction

between the entities. Among the most common reactive distributed systems we can cite industrial ones; distributed

networks occur for example in telecommunications, Internet, power and energy, transportation and manufacturing.

Distributed computing will play an increasingly critical role in the global industrial-infrastructure. The need for

trustworthy systems has received tremendous researchers’ attention. The usage of formal tools for simulation and

prototyping designed to facilitate the modelling of such systems is of great interest. Improved methods are needed to insure

reliability, security and robustness of industrial distributed systems. This paper proposes the fundamentals of a formal

approach for the specification of reactive distributed systems based on object-oriented paradigm. Object’s behaviour is

modelled as REACTNets. The REACTNets enhance the ECATNets that are a kind of high level algebraic Petri nets with

explicit distribution and reactivity. We associate to the classic ECATNets MAUDE rules to handle interactions between

objects. The two formalisms have a common semantics in term of rewriting logic so that interesting prospects are opened for

their integration.

Keywords: Reactive distributed systems, object oriented paradigm, rewriting logic, ECATNets, Maude, rapid prototyping.

Received February 5, 2008; accepted September 1, 2008

1. Introduction

A distributed system can be seen as a number of

heterogeneous and autonomous entities which can

interact by the means of suitable interfaces. The

complexity of these systems increases with the number

of entities which compose them. Various works

relating to formal modelling of such systems are

continuously proposed for the purpose of verification

or rapid prototyping; each one with different

objectives, concepts, tools and possibilities.

These models must exhibit the structures of control

and have to explicitly imply the relevant aspects of

distribution, such as the concurrency, the reactivity and

the interaction between the entities. In particular, the

expression of concurrency and reactivity constitutes a

crucial aspect during the development of the model.

Concurrency can arise between the system entities

(inter-entities concurrency) and also inside the same

entity (intra-entities concurrency). Reactivity deals

with the possibility for the system to react dynamically

to its environment. Thanks to their logical autonomy

and to their modularity, objects are naturally

predisposed for the role of concurrent units. They not

only make it possible to describe structural properties

of the system but also to handle naturally the

distribution [14]. However, the object oriented

approach presents an evident weakness to suitably

express the dynamic aspects of distributed systems.

For this reason, the objects are often enhanced with

formalism for the description of the dynamic aspects

of their behaviour. In particular, the approaches

associating Petri nets and objects are more and more

gaining the interest of several groups of researchers.

The aim of this work is to propose the fundamentals

of a formal approach for the specification of

reactive distributed systems with true concurrency

semantics at inter- and intra-entities level. The idea is

to associate the Extended Concurrent Algebraïc Term

Nets (ECATNets) [8] and the theory of concurrent

objects proposed by Meseguer in MAUDE [23, 12].

The ECATNets are a kind of high level algebraic Petri

nets with rewriting logic semantics. First we propose

the REACTNets that enhance traditional ECATNets

with reactivity. REACTNets should be used to describe

individual objects’ behaviours so that to provide them

with a true intra-object concurrency; and to express not

only the actions which the object carries out but also its

interactions with its environment in term of messages

emitting/ receiving.

2. Object/Petri Nets Formalisms

2.1. The Object/Petri Net Complementarily

Object/Petri nets association is based mainly on the

interesting complementarily of the two formalisms for

the specification of distributed systems. Petri nets deal

with the most crucial aspects of concurrency; objects

offer necessary tools to express various aspects of

Specification and Prototyping of Reactive Distributed Systems with Algebraic Term Nets 87

distribution. Furthermore, distributed systems are often

reactive and the behaviour of a reactive system is

usually modelled by event-condition-actions rules

called commonly production rules or simply rules

Event Condition Action (ECA). The significance of an

ECA rule is that if the event in the environment occurs,

and the condition is true, the reactive system performs

the action [16]. The problem is that the token-game

semantics of Petri nets does not model behaviour of

reactive systems, the non-reactivity of the token-game

semantics can be seen immediately from the definition

of the firing rule.

A transition in a Petri net is enabled once the

conditions of firing are true, however the environment

of the Petri net does not influence in any way its firing.

In contrast, in a reactive system a relevant transition

needs some additional input event to become enabled.

So, the token-game semantics models closed systems,

whereas a reactive system is open, otherwise it cannot

interact with its environment. Furthermore, in a

reactive system an enabled transition must fire

immediately. In the token-game semantics, an enabled

transition may fire, but does not necessarily have to.

A Reactive Petri net can simply be built by changing

for internal transitions the rule "the transition may fire"

by the rule "the transition must fire" [16]; while for

external transitions expressing the interactions with the

environment the traditional rule can be preserved to

ensure the network stability. Thus a reactive Petri net

has two possible states: stable and unstable. The

system must continue to fire the internal enabled

transitions as a long time as it does not reach a stable

state, in other words until no internal transition is

enabled; before being able to fire external transitions

from the environment. But, the Petri net must explicitly

comprise sufficient constructions to model the

interaction with the environment by external transitions

handling the events that influence its internal

behaviour and expressing the reactivity. For this

purpose object paradigm offers to Petri nets an elegant

solution. And we can conclude that the

complementarily of the two approaches is twofold, on

one hand objects need Petri nets to express their

dynamic behaviour and on the other hand Petri nets

need objects to have modularity and reactivity through

object interaction mechanisms.

2.2. Object/Petri Net Approaches: State of the

Art

The object/Petri net association is not new, and among

the multitude of works integrating objects and Petri

nets, two tendencies are distinguishable, designated

successively by “Objects in Petri nets” and “Petri nets

in objects” [4]. The principle of the “objects in Petri

nets” approach is to model a system by a single Petri

net, whose tokens are objects. This single network can

be structured by using a hierarchical decomposition,

typically in the form of super-transitions or super-

places. The type of tokens is described in an external

formalism to Petri nets, for instance an algebraic

notation or a programming language.

The formalism POP/POT [15] belongs to this type

of approaches. Parallel Object–based Transition (POT)

system is another example: A POT is a simple Petri net

where objects are tokens with associated structures of

memories; the state of an object is explicitly modelled

by places. Another example is given by LOOPN [22]

which is a language for simulation and specification of

distributed systems with timed coloured Petri nets. It

includes object properties such as the sub-typing,

inheritance and polymorphism which allow an

adequate modularization of complex specifications.

The "Petri nets in objects" approach consists in

using Petri nets to describe the internal behaviour of

the objects. This approach proposes to model the

system by several independent Petri nets (objects)

which can interact. The network marking models the

internal state of the object and the transitions model the

execution of its methods. The fundamental interest of

this type of approach is to allow the use of the concepts

resulting from the object paradigm (classification,

encapsulation) to describe the structure of the system,

instead of using a purely hierarchical structuring.

The Competitor Object Oriented Petri Net

(COOPN) [11] and PROTOB [2] belong to this type of

formalisms. In particular, PROTOB is a Computer

Aided Software Engineering (CASE) for the

specification, simulation and prototyping of the

concurrent systems. A PROTOB Object is defined by

its attributes, actions and communication ports. The

behaviour is described by a PROT which is a high

level Petri net which integrates Petri nets and

DataFlow Diagrams (DFDs). In [26] an other similar

formalism is presented: the Colored Timed Object-

Oriented Petri-Nets (CTOPN) are proposed for the

modeling of the automated manufacturing systems.

Objective-Linda [20] is another formalism for the

formal specification of active objects’ behaviour, using

High Level Petri Nets (HLPN). The EP-Nets [18]

associating objects and Petri nets are proposed for the

modelling of the interactive multi-media

orchestrations. In [3] the dynamic model of UML is

enhanced by high level timed Petri nets to cover the

language gaps. Another example is given by

Hierarchical Object- Oriented Petri Net (HOONets).

HOONEts deal with several oriented object aspects

such as abstraction, encapsulation, modularity,

interaction by messages, inheritance and

polymorphism [21]. However the work closest to our

proposed approach is probably the CO-Nets [1]; the

CO-Nets constitute a multi-paradigm integrating

algebraic Petri nets and the object-oriented paradigm,

the model is semantically interpreted by a rewriting

logic theory largely inspired from that of ECATNets.

88 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

2.3. The Rewriting Logic

The rewriting logic is nothing but a generalization of

equational logic in order to adapt it to changes

[24]. The rules are similar to those of

equational logic but have a completely different

significance. A rule T ⇒ T’ do not mean any more T

equal T’ but T becomes T’. The rule is a basic action

allowing the transition of the system from one state to

another. The rewriting logic describes the changes of

the system so that the state is represented by an

algebraic term, the transition becomes a rewriting rule

and the distributed structure, an algebraic structure

modulo a set of axioms E. Syntax in logic of rewriting

is given by a signature(Σ, E), where Σ is a set of

functions and E a set of axioms. A rewriting theory

T=(Σ, E, L, R) in rewriting logic is composed of a

signature(Σ, E) and by a set of labelled rules R with

labels in L. These rules describe the behaviour of the

system and the rewritings are performed on the classes

of equivalences of the terms modulo the axioms E. In

practice a rewriting theory T = (Σ, E, L, R) can be used

as an executable specification allowing a rapid

prototyping of the modelled system and its checking.

One of the most powerful applications of this logic

consists of the MAUDE concurrent objects theory; it is

a theory enabling description of the system as a

configuration of objects. Object systems from simplest

to most complex can be modelled in this theory. This

theory is at the origin of MAUDE language. The latter

is a high level specification language for concurrent

oriented objects systems where each elementary action

is described by a rewriting logic rule. By integrating

functional, object and concurrent programming,

MAUDE enables specification of object systems in a

declarative way with a high degree of abstraction and

generality. MAUDE adopts OBJ3 [17] as a functional

sub-language for the specification of data types. The

behaviour of the system is described by a set of

rewriting rules. Each rule called event of

communication can imply several objects and several

messages. The object is the unit of concurrency of the

system (granule of concurrency) and evolves according

to an interleaving semantics. Another application is the

ECATNets

Concurrent Algebraic Term Nets (ECATNets) are a

kind of high level Petri nets which associate rewriting

logic to Petri nets. ECATNets integrate the Numerical

Petri Nets NPN [27], Algebraic Data Types (ADTs)

and the rewriting logic. By these three formalisms,

ECATNets offer a powerful tool for the specification,

prototyping and validation of concurrent systems.

NPNs and ADTs define structural and syntactic aspects

of ECATNets whereas the rewriting logic defines its

semantics. ECATNets were subjects to several

applications and extensions [5, 7, 6, 10, 13, 9], the last

work [19] proposed the RECATNets that enhance the

ECATNets with the recursion and possibilities to

specify complex workflow patterns.

3. The REACTNets

The REACTNets results from the integration of the

ECATNets and MAUDE; in addition to the advantages

of an object/Petri nets association as explained above,

the two formalisms have the same semantics based on

rewriting logic; on one hand this common semantic

enable an homogeneous integration and attenuates the

difficulties often encountered during the integration of

ad hoc formalisms, on the other hand this association

makes it possible to specify not determinist distributed

systems with a true concurrency semantics at inter-

object level (thanks to MAUDE rules) and intra-object

level (thanks to ECATNets); finally the object

paradigm adds the distribution and reactivity which are

missing in traditional Petri nets to ECATNets.

3.1. The ECAObjects

The object that we call ECAObject, as shown in Figure

1, is described by its structural aspects and its

behavioural aspects. The structure of an ECAObject

consists of its static description in term of its name

(unique identifier), its attributes, its communication

ports and the events describing its behaviour. The

attributes model the ECAObject’s static properties

such as:

• Parameters of ECAObject (name, first name,

age…).

• States of ECAObject (busy, idle …).

• References to other ECAObjects.

The ports are the ECAObject’s access points used

for messages’ emission and reception. The current state

of an ECAObject is given by the set of its

attributes. The event is the elementary activity of the

ECAObject dependent on its state and modifying it. It

is the granule of its concurrent behaviour. An

ECAObject can carry out several events in parallel.

The identification of the events depends on the level of

abstraction agreed to describe this behaviour.

The events can be either internal (local operations in

the ECAObject) or visible (emission or interception of

messages). The visible events constitute the interface

of ECAObject and model the services needed or

Behaviour

(a REACTNet)

NOM

ATTRIBUTS
PORTS

EVENEMENTS

Structure

Figure 1. Abstract architecture of an ECAObject.

Specification and Prototyping of Reactive Distributed Systems with Algebraic Term Nets 89

offered by him. The behaviour of the ECAObject

consists of its dynamic evolution and can be described

by the set of its acceptable life cycles. A life cycle

represents a possible succession of events implying

this ECAObject during its evolution and can comprise

concurrency, mutual exclusion, and sequencing. A

place may be:

• An attribute of the ECAObject.

• A port for an external interaction.

• An intermediate place added for the needs of

specification.

The behavior of an ECAObject is described by a

REACTNet exhibiting not only its internal events but

also its external events expressing its interaction with

the environment through emission or reception of

message in specific ports, as shown in Figure 2. The

places P-out (emission) and P-in (reception) are

communication ports for the ECAObject’s visible

events. This case of figure could be brought back to a

composition by transition (also called by rendez-vous)

of the two Petri nets as shown in Figure 3. It is a

particular case of the composition by a sequential

process and it was proven that properties of aliveness

and boundness are preserved in the composite network

[25]. In addition we agree that REACTNets are

considered with respect to the stability rules of

classical reactive Petri nets theory as presented in [16].

The communication ports allow to specify the

simultaneous emission and interception of several

different messages in parallel whereas The input/output

places of classical Object/Petri nets approaches are

generally managed in FIFO in accordance with the

traditional vision of communication ports of concurrent

objects.

The transition T models an internal event which is

an action undertaken by the ECAObject. Let us note

here that any change which can affect the state of an

ECAObject (its attributes) constitutes a stage of one of

its possible life cycles and have to be expressed in

the REACTNet

Figure 3. Emission/reception of messages as a composition by

“rendez-vous”.

3.2. The REACTNets’ Semantics

The state of the system called configuration is

specified as a multi-set of ECAObjects and messages,

provided with an operator ACI, with the identity

element ∅. The pair (P, M (P)) defines the current state

of the place P. the set of these pairs (place, marking)

has a structure of a multi-set with ⊗ union on this

multi-set and ∅B the identity element. The state of the

ECOBJect is the union (⊗) of the states of all its places

and is expressed with the term <O: C/ P1: m1...Pn: mn>

where, O: name of the ECAOBject, C: classe of the

ECAOBject, Pi: i
th
 place of the associated

REACTNets, and mi: marquing of the i
th
 place of the

associated REACTNets.

The tokens are algebraic terms: Input Condition

(IC), Destroyed Tokens (DT), Created Tokens (CT) are

multi-sets of terms (tokens), where ⊕, ∩, ⊂, Θ stand

for, respectively, union, intersection, inclusion and

difference on the multi-sets and ∅M the element

identity. [TC] is a Boolean algebraic expression

eventually containing variables appearing in IC, DT

and CT. To each place P are associated a sort S(P) and

a capacity C(P) defined as a multi-set of closed terms

(constants). The marking M(P) of a place is defined in

respect of its capacity (which can be infinite).The

transition T materializes an internal event and is

enabled if the following conditions are true:

• IC(P1, T) is enabled: IC indicates the multi-set of

tokens that have to be present in P1.

• TC(T) is true.

• the addition of CT to the place P2 must not

result in exceeding its capacity.

When T is fired:

• The multi-set M(P1 ∩ DT) is removed from the

input place P1.

• The multi-set CT is added to P2.

4. The Rewriting Theory of the System

A REACTNets-based specification has a rewriting

logic semantics combining the semantics of ECATNets

and that of MAUDE and therefore it is a particular case

of a conditional rewriting theory. The rewriting system

obtained inherits the four groups of ECATNets’ rules

to which we add two other groups derived from

MAUDE, the first one expresses the reactivity by the

means of the interaction with environment and the

second models the creation/destruction of objects.

4.1. Equational Logic Rules

These rules are derived from the algebraic equations

describing the types of tokens (by ADTs). Usually,

the ECATNets use OBJ3 [17] as a functional

sub-language. The evaluation of the tokens can be

done using a concurrent equational rewriting.

P-in

DT

IC

P-out

CT [TC]

T

me

Figure 2. A generic REACTNet.

m

P-out

P-in

m
m

ms

90 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

4.2. Transitions Rules

The form of the rules derived from the transitions

depends on the form of IC. The form of the rule is

derived from the ECATNets rules as well as MAUDE

events of communication in the sense that we explicitly

express the object nature of the REACTNet. If we

suppose that the generic REACTNet presented at the

preceding paragraph is associated to an object O of

class C which we represent in accordance with

MAUDE notation by the expression <O:C>, we will

have the following cases:

• Case 1: IC is of the form [m]⊕

IC = DT

We agree to express the rule as follows:

T: <O:C/P1: IC> ⇒ <O:C/P2: CT>

where expressions P1: IC and P2: CT are in

conformity with the ECATNet notation, i.e., they

respectively express the suppression of IC of P1 and

the addition of CT to P2.

IC ∩ DT = ∅M

The multi-set IC must be included in M(P) but does

not have to be removed after firing, to express it the

idea is to transform IC into itself:

T: <O:C/P1: IC; P1:DT ∩ M(P1)>

⇒ <O:C/P1:IC; P2:CT>

IC ∩ DT ≠ ∅M

For this case, it was shown that it is possible to split

the transition T in two transitions T1 and T2 of the

simple type (two preceding cases) whose

simultaneous firing is equivalent to that of T so we

derive two rules:

T1 : <O:C/P1: IC1> ⇒ <O:C/P2: CT1>

T2: <O:C/P1, IC2> ⊗ <O:C/P, DT2>

⇒ <O:C/P, IC2> ⊗ <O :C/P2, CT2> With:

IC= IC1 ∪ IC2, DT= DT1∪ DT2

IC1 = DT1, IC2 ∩ DT2 = ∅M

• Case 2: IC is of the form ~ [m] ⊕ 

The form of the rule is given by:

T: <O: C/P1: DT∩ M (p)>

⇒ <O:C/P2: CT> if (IC\ (IC∩M(p) = ∅M) ⇒ false

• Case 3: IC= ∅M

The form of the rule is given by:

T: <O:C/P1, DT∩ M(p)) ⇒ (O:C/P2,CT)

if (M(p) =∅M) ⇒ true

When the place capacity C(p) is finite, the

conditional part of the rewrite rule will include the

following component:

(CT

⊕ (M(p) ∩ C(p)) ⇒ CT ⊗ M(p)

(Cap)

In the case where there is a transition condition TC,

the conditional part of our rewrite rule must contain

the following component: TC⇒ true.

4.2.1. Identity Rules

∅M ⊕ X ⇒ X

∅B ⊗ Z ⇒ Z

4.2.2. Inferences Rules

The two following rules allow by splitting and

recombination of the set of tokens, to carry out the

rewriting rules with a maximum of concurrency at the

level of the ECAOBJect itself, in fact this splitting/

recombination of the state of the ECAOBject exhibits

explicitly intra-object concurrency which is missing in

MAUDE.

Splitting:

<O:C/ P:X ⊕Y> ⇒ <O:C/ P:X>⊗<O:C/ P:Y>

Recombination:

<O:C/ P:X>⊗<O:C/ P:Y>⇒<O:C/ P:X ⊕Y>

4.2.3. Visible Events Rules

They are asynchronous events related to the ports of

the ECAObject. The explicit separation between the

communication interface and the other activities for the

same object makes it possible to have an additional

level of intra–object concurrency. The communications

can be done in a completely independent manner of the

internal activities.

Intercepting a message

This rule can be expressed according to the adopted

syntax as follows:

m<O:C> ⇒ <O:C/(P-in, m)>

Emitting a message

The agreed rule is as follows:

 <O:C/ (P-out, m)> ⇒ m <O:C>

4.3. Object Creation/Destruction Rules

The object creation/destruction model considered is

borrowed from that of MAUDE and inherits in

particular, its declarative nature.

4.3.1. Object Creation

The creation of an object requires a rule which makes

it possible to specify explicitly that a message mC is a

creation message, while revealing the object created on

the right of the rule in accordance with MAUDE

syntax.

Example: mC ⇒ < O:C/S >

This rule specifies that mC is a message of creation;

 the effect is the generation of an object O of class C;

S is the initial state of the associated REACTNet, i.e.,

the pairs set (place: marking) which starts the life

cycle of the ECAObject created.

The identity of the ECAObject O and its initial state

S can be the message parameters. Creation can be

made, as presented in [23] in two stages, initially the

sending of a message to a particular object (Meta–

object) associated to the class then the emission by this

last of the effective message of creation. The objective

is to manage the unicity of the identity and the validity

of the creation.

Specification and Prototyping of Reactive Distributed Systems with Algebraic Term Nets 91

4.3.2. Object Destruction

The destruction can be specified by the interaction of a

destroying message and the object to be destroyed,

which will have to disappear from the right of the rule.

Example: mD < O:C > ⇒∅

Just as for creation, the destruction of an object can be

processed by a particular object (a priori the same

charged by creation) in order to check that the object to

be destroyed really exists and to eliminate it in the

affirmative from the list of the objects of the current

configuration, by transmitting the destructive message.

5. Case Study: the Router System

The usage of multiple switches to connect test points

or devices to instruments for the purpose of testing,

measuring or monitoring some systems such as

industrial ones is very common. The router system

seems to be a good example for our approach. This

choice is also motivated by the high degree of

parallelism implied in such systems.

5.1. Abstract Specification

The system is composed of several senders and several

receivers communicating via the router. A sender emits

from a queue of packets. Each emitted packet must be

acknowledged. The sender does not send a new packet

to a given receiver if its predecessor is not

acknowledged yet. The receiver receives the packets in

a queue. For each received packet, an

acknowledgement is sent to the sender. The router has

at a given moment a set of packets and

acknowledgements to treat. It can intercept many

packets and acknowledgements in parallel and rout

them in the same time to the receivers.

5.2. A Formal Model for the Router System

The system is composed of three ECAObjects classes:

Sender, Receiver and Router. The messages’ exchange

between these three ECAObjects can be done

according to the protocol presented in Figure 4 where

S, RT and R, respectively, the ECAObjects of the

Sender class, the Router class and the Receiver class.

The sender S sends a Pck(S, D, R) message to the

router RT who transmits it to the concerned receiver R

in the form of the routed message(S, D, R). Data (D) is

the contents of the message.

After the message reception, the receiver R returns

an acknowledgement Ack(R, S) which is routed to S in

the form(R, S). The distinction between packets and

acknowledgements before and after routing is

necessary since each message type is associated to a

distinct visible event. Indeed, the Pck(S message, D, R)

have to be intercepted by the router RT whereas the

message(S, D, R) have to be intercepted by the receiver

S.

5.2.1. The ECAObject Receiver

Attributes:

Recq : queue of received packets.

Ports:

Ack_out, Pck_in

Internal events:

Treating–Pck: processing of a received packet

(queuing in Recq and emission of an

acknowledgement)

Visible events:

Output messages: {Ack(R,S) }

Input messages: { (S,D,R) }

5.2.2. The ECAObject Router

Attributes:

Acknowledgement: a set of packages and

acknowledgements to be treated at a given moment.

Ports:

Ack_in, Pck_in , Ack_out, Pck_out

Internal events:

Routing–Pck : Routing of a packet.

Routing–Ack : Routing of an acknowledgement.

Visible events:

Output Messages: { (S,D,R), (S, R) }

Input Messages: {Ack(R,S), Pck(S,D,R)}

5.2.3. The ECAObject Sender

Attributes:

Sendq: queue of the packets to emit.

Receiver: identifier of the receiver from which an

acknowledgement is expected.

Ports:

Ack_in, Pck_out

Internal events:

Emitting–Pck : this action consists in emitting a packet

when the conditions are true (file not empty and no

acknowledgement waited from the receiver)

Treating–Ack:

Processing of a received acknowledgement.

Visible events:

Output Messages: { Pck(S,D,R) }.

Input Messages: {(R, S)}.

S RT

Pck(S,D,R)

(R,S)
R

 (S,D,R)

Ack(R,S)

Figure 4. Interaction protocol between the ECAObjects.

92 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

5.3. The REACTNets of the Router Model

The type Queue[elt] is supposed to be predefined with

the usual operations remove, empty, add. We consider

the functions send, rec and data which give,

respectively, for a packet or an acknowledgement the

Sender(S), the Receiver(R) and the Data(D).

5.3.1. The REACTNet “Receiver”

The packets(S, D, R) are received in the input port

Pck–In, as shown in Figure 5. For each received

message, an acknowledgement is emitted via the

output port Ack–Out. The data D is added to the file Q

in the Recq place. The parameter id used is supposed

referring the identity of the object associated to the

REACTNet.

5.3.2. The REACTNet “Sender”

Sendq contains the file Q of the packets (Pck(S, D, R))

to emit. The packets are emitted via the output port

Pck–Out, as shown in Figure 6. For any emission a

reference of the receiver R whose a acknowledgement

is awaited is stored in the Receiver place. A packet

Pck(S, D, R) is emitted only if no acknowledgement is

awaited from the receiver R. The expression

~Rec(Head(Q)) expresses that the identity of the

receiver of the packet at the head of file should not be

in the Receiver place and ∅m indicates that no token is

destroyed. The acknowledgements are received in the

port Ack–In.

5.3.3. The REACTNet “Router”

The Router ECAObject, shown in Figure 7, has two

input ports Pck–In and Ack–In, respectively for the

packets and the acknowledgements and two output

ports Pck–Out and Ack–Out. messages and are

collected in the place “Messages”. The transitions

receiving–Pck and Receiving–Ack are used to pass the

received messages of the input ports to the place

“messages”.

6. Specification of the System

6.1. The Object Module “ROUTER”

The module object ROUTER (Box given below) is the

specification in the adopted notation of the example of

the router introduced in precedent paragraphs. The

following types are supposed to be predefined:

Mset[elt] (multi-set of elements), Queue[elt] (file of

elements) and Bits (sequence of bits). Syntax is

borrowed of course from MAUDE but with different

concurrency semantics, MAUDE has an interleaving

semantics whereas our approach has true concurrency

semantics.

6.2. A Prototyping Scenario

We show in what follows how the specification above

can be used for a rapid prototyping of the system,

we start from a given configuration and execute the

prototype. For the lack of space we omit intermediate

states.

• Initial Configuration

<RT:Router/(Pck–Out,∅m)⊗(Ack–Out,∅m)⊗

 (Messages,∅m)⊗(Pck–In,∅m) ⊗(Ack–In,∅m)>

<S1:Sender/(Sendq,Pck(S1,D1,R1). Pck(S1,D2,R2)) ⊗

 (Pck–Out,∅m) ⊗ (Ack–In,∅m) ⊗ (Receiver,∅m)>

<S2:Sender/(Sendq,Pck(S2,D3,R2))⊗(Pck–Out,∅m) ⊗

 (Ack–In,∅m)⊗(Receiver,∅m)>

<R1:Receiver/ (Recq,∅m)⊗ (Ack–Out,∅m)⊗(Pck–

In,∅m)> <R2:Receiver/ (Recq,∅m)⊗ (Ack–

Out,∅m)⊗(Pck–In,∅m)>

• Step (1)

Firable rules:

Object S1: Emitting–Pck

Object S2: Emitting–Pck

Concurrency

Inter–object between S1 and S2.

• Step (2)

Firable rules:

Figure 7. The REACTNet router.

Ack(R,S)

Pck(S,D,R)

Pck(S,D,R) Ack(R,S)

 (S,D,R) (R,S)

Routing-Ack

Receiving-Ack

Routing-Pck

Receiving-Pck

Pck-Out Ack-Out

Pck-In Ack-In

Pck(S,D,R) Pck(S,D,R)

Messages

Figure 5. The REACTNet receiver.

Treating-Pck

Ack(id, Send((S,D,id))

Add(q,Data((S,D,id))

Ack-Out Pck-In

q

(S,D,id)

Rec

q

Figure 6. The REACTNet sender.

Empty(q) ⇒ false

~Rec(Head(q))

Empty(q) ⇒ false

Rec(Head(q))

Ack-In

Pck-Out

Receiver

Head(q)

Sendq

q

Emitting-Pck

Treating-Pck

R (R’,id) Remove(q)

∅m

Specification and Prototyping of Reactive Distributed Systems with Algebraic Term Nets 93

Object S1: R1

Emitting–Pck

Object S2: R1

concurrency

Inter–object between S1 and S2

Intra-object for S1

• Step (3)

Firable rules:

Object S1: R1

Object RT: R100 (twice)

Concurrency

Inter–object between S1 and RT

Intra-object for RT

• Step (4)

Firable rules:

Object RT : R100

Receiving–Pck (twice)

Concurrency

Intra-object for RT

• Step (5)

Firable rules:

Object RT: Receiving–Pck

Final Configuration

<RT:Router/(Pck–Out,(S1,D1,R1)⊕(S2,D3,R2))⊗

 (Ack–Out,∅m)⊗(Messages, Pck(S1,D2,R2))⊗

 (Pck–In∅m,)⊗(Ack–In,∅m)>

<S1:Sender/(Sendq,∅m)⊗(Pck–Out,∅m)⊗

 (Ack–In,∅m)⊗(Receiver,R1⊕R2)>

<S2:Sender/(Sendq,∅m))⊗(Pck–Out,∅m)⊗

 (Ack–In,∅m)⊗(Receiver,R2)>

<R1:Receiver/ (Recq,∅m)⊗(Ack–Out,∅m)⊗

 (Pck–In,∅m)>

<R2:Receiver/ (Recq,∅m)⊗(Ack–Out,∅m)⊗

 (Pck–In,∅m)>

7. Conclusion

In this paper, we have proposed the fundamentals of a

new approach for the specification of object-oriented

distributed systems with true concurrency at both intra

and inter-object levels. We associate two formalisms,

the ECATNets and MAUDE. Thus bring together the

advantages of both formalisms: the high degree of

concurrency and expressiveness of the ECATNets and

the object-orientness of MAUDE. The main strength of

our approach is probably its rewriting logic semantics;

therefore, the obtained prototype can be executed and

analyzed under the MAUDE environment.

Appendix

OMOD ROUTER

protecting configuration / specification of the configuration

withsortes msg, objects and Oid(object identifier) and

communication events

 protecting Queue[elt]

protecting Mset[elt]

 protecting Bits

make Msg–queue is Queue[msg] endmk

make Msg–mset is Mset[msg] endmk

 msg Pck(–,–,–) : Oid Bits Oid → msg

 msg (–,–,–) : Oid Bits Oid → msg

 msg Ack(–,–) : Oid Oid → msg

 msg (–,–) : Oid Oid → msg

var q:msg–Queue

var S,R,R’,RT : Oid

var D : Bits

Class Sender / Atts: Sendq:Msg–queue, Receiver:Oid; Ports

:Ack–In,Pck–Out:Msg–mset

Emitting–Pck : <S:Sender/(Sendq,q) ⊗ Receiver,∅m)>

⇒ <Sender/(Sendq,Remove(q)) ⊗ (Pck–Out,Head(q))

⊗ (Receiver, Rec(Head(q))> if ((Empty(q)⇒false) and

(M(Receiver)Θ(M(Receiver) ∩ Rec(Head(q)))=

∅m)⇒false)

Treating–Ack : <S:Sender/(Receiver,R) ⊗ (Ack–In, (R’,S))>

⇒ ∅B if ((R=Rec ((R’,S))) ⇒ true)

R1 : <S:Sender/(Pck–Out,Pck(S,D,R))> ⇒ <S:Sender>

Pck(S,D,R) / Pck–Out rule

R2 : (R’,S) <S:Sender> ⇒ <S:Sender/(Ack–In, (R’,S))> /

Ack–In rule

Class Receiver /Atts: Recq:Msg–queue; Ports :Ack–

Out,Pck–In:Msg–mset.

Treating–Pck : <R:Receiver/(Pck–In,(S,D,R)) ⊗ (Recq,q) >

⇒

 <R:Receiver/(Recq, Add(q,Data((S,D,R)))) ⊗ (Ack–

Out,Ack(R,Send (S,D,R))>

R10 : <R:Receiver,(Ack–Out,Ack(R,S))> ⇒ <R:Receiver>

Ack(R,S)/ règle associée à la place Ack–Out.

R20 : (S,D,R) <R:Receiver> ⇒ <R:Receiver/(Pck–

In,(S,D,R))>/ règle associée à la place Pck–In.

Class Router / Atts :Messages; Ports: Pck–Out,Ack–

out,Ack–In,Pck–In : Msg–mset

Receiving–Pck : <RT:Router/(Pck–In,Pck(S,D,R)> ⇒

<RT:Router/(Messages,Pck(S,D,R))>

Receiving–Ack : < RT:Router /(Ack–in,Ack(R,S)> ⇒

<RT:Router/(Messages,Ack(R,S))>

Routing–Pck : <RT:Router/(Messages,Pck(S,D,R)>

⇒<RT:Router/(Pck–Out, (S,D,R))>

Routing–Ack : < RT:Router /(Messages,Ack(R,S)> ⇒

<RT:Router/(Ack–Out, (R,S))>

R100 : Pck(S,D,R)<RT:Router> ⇒ <RT:Router/(Pck–

In,Pck(S,D,R))> /règle associée à la place Pck–In.

R200 : Ack(R,S)<RT:Router> ⇒ <RT:Router/(Ack–In,

Ack(R,S))> / règle associée à la place Ack–In.

R300 : <RT:Router/(Pck–Out, (S,D,R))> ⇒ <RT:Router>

(S,D,R) / règle associée à la place Pck–Out.

R400 : <RT:Router/(Ack–Out, (R,S))> ⇒<RT:Router >

(R,S) /règle associée à la place Ack–Out.

ENDOMOD

References

[1] Aoumeur N. and Saake G., “A Component-Based

Petri Net Model for Specifying and Validating

Cooperative Information Systems,” Data and

Knowledge Engineering, vol. 42, no. 2, pp. 143-

187, 2002.

[2] Baldassari M., Bruno G., and Castella A.,

“PROTOB: An Object Oriented CASE Tool for

Modelling and Prototyping Distributed Systems,”

Software Practice and Experience, vol. 21, no. 8,

pp. 823-844, 1991.

94 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

[3] Baresi L. and Pezzè M., “Improving UML with

Petri Nets,” Electronic Notes in Theoretical

Computer Science, vol. 44, no. 4, pp. 107-119,

2001.

[4] Bastide R., “Approaches in Unifying Petri Nets

and the Object-Orientation Approach,” in the 1
st

Workshop on Object-Oriented Programming and

Models of Concurrency, Italy, 1995.

[5] Bettaz M. and Maouche M., “How to Specify

Non-Determinism and True Concurrency With

Algebraic Term Nets,” Lecture Notes in

Computer Science, vol. 655, pp 164-180, 1992.

[6] Bettaz M. and Maouche M., “Modeling of Object

Based Systems with Hidden Sorted ECATNets,”

in the Proceedings of the Third International

Workshop on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems,

pp. 307-311, USA, 1995.

[7] Bettaz M. and Maouche M., “On the

Specification of Protocol Objects,” in the

Proceedings of the 10
th
 ADT and Compass

General Meeting, Italy, 1994.

[8] Bettaz M., Maouche M., Soualmi M., and

Boukebeche M., “Protocol Specification Using

ECATNets,” Networking and Distributed

Computing, vol. 3, no. 1, pp. 7-35, 1993.

[9] Boudiaf N., Barkaoui K., and Chaoui A.,

“Implémentation des règles de Réduction Des

ECATNets Dans MAUDE,” in 6
th
 Conférence

Francophone de MOdélisation et SIMulation, pp.

505-514, Morroco, 2006.

[10] Bounoua O. and Bettaz M., “A Graphical Editor-

Simulator for Algebraic Term Nets,” in the

Proceedings of the Second Maghrebian

Conference on Software Engineering and

Artificial Intelligence, pp. 2-16, 1992.

[11] Buchs D. and Guelfi N., “A Formal Specification

Framework for Object-Oriented Distributed

Systems,” IEEE Transactions on Software

Engineering, vol. 26, no. 7, pp. 635-652, 2000.

[12] Clavel M., Durán F., Eker S., Lincoln P., Martí-

Oliet N., Meseguer J., and Talcott C., “The

MAUDE 2.0 System,” in Proceedings of

Rewriting Techniques and Applications,

Springer-Verlag LNCS 2706, pp. 76-87, 2003.

[13] Djemame K., Gilles D., Mackenzie L., and

Bettaz M., “Performance Comparison Of High-

Level Algebraic Nets Distributed Simulation

Protocols,” Computer of Journal of Systems

Architecture, vol. 44, no. 6-7, pp 457-472, 1998.

[14] Dovland J., Johnsen E., and Owe O.,

“Observable Behavior of Dynamic Systems:

Component Reasoning for Concurrent Objects,”

Electronic Notes in Theoretical Computer

Science, vol. 203, pp. 19-34, 2008.

[15] Engelfriet J., Leth G., and Rozenberg G., “Net

Based Description of Parallel Object Based

Systems or POTs and POPs,” Technical Report,

Noordwij Kerhool Fool Workshop, 1990.

[16] Eshuis R. and Dehnert J., “Reactive Petri Nets

for Workflow Modelling,” in Application and

Theory of Petri Nets, pp. 295-314, Eindhoven,

2003.

[17] Goguen C., Kirshner H., Meseguer J., Megrelis

A., and Winkler T., “An Introduction to OBJ3,”

in Proceedings of the 1
st
 International Workshop

on Conditional Term Rewriting Systems, pp. 258-

263, France, 1987.

[18] Guan S. and Lim S., “Modeling with Enhanced

Prioritized Petri Nets: EP-Nets,” Computer

Communications, vol. 25, no. 8, pp. 812-824,

2002.

[19] Hicheur A., Barkaoui K., and Boudiaf N.,

“Modeling Workflows with Recursive

ECATNets,” in the Proceedings of 8
th
 IEEE

International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing,

pp. 389-398, Romania, 2006.

[20] Holvoet T. and Kielmann T., “Behaviour

Specification of Parallel Active Objects,”

Parallel Computing, vol. 24, no. 7, pp. 1107-

1135, 1998.

[21] Hong E. and. Bae H., “Software Modelling and

Analysis Using a Hierarchical Object-Oriented

Petri Net,” Information Sciences, vol. 130, no. 1-

4, pp 133-164, 2000.

[22] Lakos A. and Keen D., “Modelling Layered

Protocols in LOOPN,” in the Proceedings of the

Fourth International Workshop on Petri Nets and

Performance Models, pp. 22-30, Melbourne,

1991.

[23] Meseguer J., “A Logical Theory of Concurrent

Objects and Its Realization in the MAUDE

Language,” Technical Report, SRI International,

1992.

[24] Meseguer J., “Conditional Rewriting Logic as a

Unified Model of Concurrency,” Theoretical

Computer Science, vol. 96, no. 1, pp. 73-155.

[25] Souissi Y. and Memmi G., “Composition of Nets

ViaaA Communication Medium,” Advances in

Petri Nets, LNCS 483, pp. 457-470, 1990.

[26] Wang C. and Wu S., “Modeling with Colored

Timed Object-Oriented Petri Nets for Automated

Manufacturing Systems,” Computers and

Industrial Engineering, vol. 34, no. 2, pp. 463-

480, 1998.

[27] Wilbur Ham M., “Numerical Petri Nets: A Guide

Version 2,” Telecom Australia, Research

Laboratories, 1987.

Specification and Prototyping of Reactive Distributed Systems with Algebraic Term Nets 95

Faiza Bouchoul is a lecturer in

software engineering at Ferhat

Abbas University, Algeria, she holds

engineer diploma in software

engineering at Ferhat Abbas

University, and Magister Diploma at

Mentoury University, Algeria,

currently preparing Doctorate Diploma and activates as

a research member in LAS laboratory in Ferhat Abbas

university, she’s working on paradigms and tools for

specifying and verifying modern manufacturing

systems models.

Mohammed Mostefai is senior

lecturer in automatism with the title

of professor at Ferhat Abbas

University, Algeria. He holds

engineer Diploma in electronics in

1988 at Ferhat Abbas University, the

Masters and then the PhD of

automatic and industrial software at Lille University,

France in 1994. His research interests are in the area of

monitoring of complex systems.

