
The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010 79

Modelling of Updating Moving Object Database

Using Timed Petri Net Model

Hatem Abdul-Kader and Warda El-Kholy

Faculty of Computers and Information, Menoufya University, Egypt

Abstract: Tracking moving objects is one of the most common requirements for many location-based applications. The

location of a moving object changes continuously but the database location of the moving object cannot update continuously.

Modelling of such moving object database should be considered to facilitate study of the performance and design parameters

for this database feature. Such study is essential for selecting the optimal solution in order to minimize the implementation of

the overhead cost. Location updating strategy for such type of database is the most important criteria. This paper proposed a

timed Petri net model based on one of the most common updating strategies, namely the distance updating strategy. In

addition, a method for estimating the time needed to update moving object database using the concept of the minimum cycle

time in timed Petri nets is presented. This time is the main criterion, which can be used to study the overhead communication

cost for moving object database. A typical numerical example is given to demonstrate the advantages of proposed modelling

technique.

Keywords: Updating moving object database, deterministic timed Petri net, deviation update policy, tracking moving object

database.

Received June 15, 2008; accepted September 3, 2009

1. Introduction

Recent advances in wireless communication systems

and Global Position System (GPS) are the main issues

that make position tracking of moving objects is

feasible. Tracking is an enabling technology for many

location-based services. As a result, a wide interest of

many new applications that depend on location

management can be shown in the literature [1, 5], and

[6]. Tourist services, mobile E-commerce and digital

battlefield are examples of these applications [4]. Other

application classes that will benefit from tracking

include transportation, traffic control, mobile resource

management, and mobile workforce. This brought to

database researchers a new challenge in the area of

Moving Object Database (MOD).

Traditional Database Management System (DBMS)

is not equipped to handle continuously changing data

such as the transient position of moving object. This

means that traditional DBMS deals with static data

attributes at a given time [6], leading to a rather

discrete database model. Therefore, in many MOD

applications a continuous model for these dynamic

objects will be essential in order to mange such

moving objects [5, 6, 3]. In this case, an updating

strategy for a moving object is required. The objective

of this strategy is to accurate track the current location

of moving object while minimizing the number of

updates. It is obvious that the more often data is

updated, the more accurate the data will be. However,

the cost of updating data increases with the

frequency updating the data. That is, there is a trade-

off between updating cost and information accuracy in

designing MOD systems. The most common approach

is distance update policy, which updates the database

every x units of distance. So it provides a certain error

in response to a query about the location of any object

(e.g., retrieve the current location of an object?) The

answer is within a circle of radius x centred at location

L (which is provided in the last updating for database).

This approach is used in many applications due to its

simplicity [8, 5].

Petri nets are graphical and mathematical modelling

tools applicable to many systems. They are promising

tools for describing and studying information

processing systems that are characterized as being

concurrent, asynchronous, distributed, parallel,

nondeterministic and or stochastic as a graphical tool

[3]. In this paper, a timed Petri net is presented for

updating a MOD. The moving object in this model

uses a deviation update policy to update its database

location. Then, the minimum cycle time method of

Petri net is used to estimate the required time to update

the MOD [3, 4]. The number of moving objects, the

number of wireless communication agents, and the

number of processors of the DBMS affect this time

duration. The rest of this paper is organized as follows.

Moving object database architecture is presented

section 2. Section 3 describes the Petri net basics. The

model for updating the MOD using Petri net is

presented in section 4. Section 5 gives an illustration

80 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

example of the proposed model and how the minimum

cycle time technique can be used to estimate the

updating time. Section 6 discusses some applications

of the proposed model. Finally, conclusions and a

proposal for future work are drawn in section 7.

2. Moving Object Database Architecture

and Modelling

The architecture of MOD system which will be

modelled in this paper consists of:

• A number of moving objects each of which is

equipped with a GPS receiver, a processor for

calculating the deviation of moving object based on

deviation updating policy and a local database.

• A database server with a number of processors,

which controls a database for all moving objects,

and can be centralized or distributed.

• Wireless agents that provide communication

services between moving objects and the DBMS.

The history of a moving object’s location and time

is stored in the database at the database server. The

component of this architecture is shown in Figure 1.

 Figure 1. Architecture of the MOD updating system.

In the MOD model, the number of available

communication agents is limited and there is, more

number of moving objects needs to update their

location in the central database system. Thus, an

overhead results from increasing both the number of

update message and the number of wireless

communication agents. Therefore, this paper proposed

Timed Petri net model to decrease both the number of

update messages and overhead of communication cost

of the moving object database in an efficient manner.

3. Petri Net Basics

A Petri net is a graphical and mathematical modelling

tool. It consists of three types of object. These objects

are places, transitions, and arcs that connect them. In

graphical representation, places are drawn as circles,

transitions as bars or boxes. Arcs are labelled with their

weights (positive integers). Where a K-weighted arc

can be interpreted as the set of K parallel arcs. Labels

for unity weight are usually omitted. Input arcs connect

places with transitions, while output arcs start at a

transition and end at a place. Places can contain tokens;

the current state of the modelled system (the marking)

is given by the number (and type if the tokens are

distinguishable) of tokens in each place. Transitions

are active components. They model activities, which

can occur (the transition fires), thus changing the state

of the system (the marking of the Petri net). Transitions

are only allowed to fire if they are enabled, which

means that all the preconditions for the activity must

be fulfilled (there are enough tokens available in the

input places). When the transition fires, it removes

tokens from its input places and adds some at all of its

output places. The number of tokens removed/added

depends on the cardinality of each arc [4, 3]. In

modelling using the concept of conditions and events,

places represent conditions, and transitions represent

events. For instance, input (output) places may

represent preconditions (post-conditions) to an event

(transition). Some typical interpretation of transitions

and their input places and output places are shown in

Table 1. A formal definition of a Petri net is given in

Table 2 [3].

 Table 1. Some typical interpretations and places.

Input places Transition Output places

Preconditions Event Post-conditions

Conditions Clause in logic Conclusions

Input signals
Signal
processor

Output signals

Buffers Processor Buffers

Table 2. The definition of a Petri net.

Formally a Petri net (PN) can be defined as follows

PN = (P ,T, I , O, M0) Where
P = { p1, p2, p3, , pm} is a finite set of places

T = {t1, t2, t3,........,tn} is a finite set of transitions where P U T≠ Φ,

and P∩T = Φ
I : (P x T) → N is an input function that defines the directed

arcs from places to transitions, and N is a set of nonnegative

integer
O : (P x T) → N is an output function that defines the directed

arcs from transitions to places , and

M0: P→ N is the initial marking.

 The classical Petri nets do not include any notion of

time; in order to use the Petri net formalism for the

quantitative analysis of the performance and reliability

of system versus time, a class of Timed Petri net has

been introduced. The time delay variables associated

with the Petri net can be either deterministic variables

(leading to the class of models called deterministic

Petri net), or random variables (leading to the class of

models called Stochastic Petri net) [3]. When time

delay is associated with transitions, this type of net is

called timed transition, Petri net [4]. Suppose there is a

Modelling of Updating Moving Object Database Using Timed Petri Net Model 81

time delay associated with transition this means that

when this transition is enabled tokens remain on the

input places of a transition for a time at least equal to

the time delay associated with enabled transition

before their removal by firing this transition.

4. Model of MOD Updating System Using

Timed Petri Net

This section presents an application of timed Petri net

model for MOD. This model system is shown in Figure

2, which consists of three items:

• Moving objects and GPS receivers: each moving

object is equipped with one GPS receiver (for

collecting the current real location of the object),

one processor (for calculation), and local database

(to store the previous location of moving object and

a threshold which are used to calculate the deviation

of the moving object). The functionality of this part

is that moving objects get the information on

location and time, and applies distance update

policy to generate an updating message, if the

deviation exceeds a specific threshold or if the

moving object stops moving, which will be sent to

the database server.

• Communication Services: this part includes several

wireless agents, which provide communication

services. The functionality of this part is to provide

the communication between moving objects and the

database server.

• Database server: the information of all moving

objects is stored in a database and handled by the

DBMS, which is equipped with a number of

processors. The main functionality of this part is to

update the database with the received messages and

generate return messages to update the pervious

location of the moving object. The operation of each

transition, the tokens in each place and the meaning

of each arc inscription of Figure 2 model are given

in Tables 3, 4 and 5, respectively.

Figure 2. Petri net model for updating MOD system.

Table 3. The operation of each transition.

Transition Operation

t1
A moving object gets its current location and

time. Signal from satellites.

t2 All GPS's receiving the signal from satellites.

t3
The moving object (mid) stops moving, so

sending < mid, cl, ct> to P10.

t4
Calculating the deviation (did)for each moving
object mid.

t5 Passing all < mid, pl>'s from P6 to P5.

t6
Comparing did with thid and the result is did >

thid.

t7
Comparing did with thid and the result is did
≤thid.

t8 Passing all < mid, thid>'s from P9 to P8.

t9
A wireless agent sends the message <mid, mcl,

mct,> from the moving object mid to the
database.

t10
A moving object generates a transaction for

updating the database.

t11
A database processor executes the transactions for
appending the received message <mid, mcl, mct>

for the moving object mid.

t12
 A wireless agent Updating the location of the
previous update for each moving object mid

t15
Moving object gets its previous location and time

after updating database

Table 4. The tokens of each place.

Place Token

P1

<mid> All moving objects, waiting for current location
and time. Initially all n moving objects are here.

P2 <gid, gcl, gct>, GPS receivers after collecting the

information from satellites.

P3 All GPS's, n , waiting for receiving the signal from
satellites

P4 <mid, mcl, mct, >, moving objects with the current

location and time waiting for calculation or directly

sending to the database server.

P5 <mid, plid>, waiting for sending pl to the moving

objects. Initially all locations of the previous update for

all n moving object are here.

P6 <mid, plid>, waiting for passing to P5.

P7 The set <mid, did, cl, ct> moving objects with the

current location ,current time and deviation

P8 The thresholds for all moving objects, i.e. the set <mid,
thid>, waiting for comparison. Initially all threshold

values for all n moving object are here.

P9 The thresholds for all moving objects, i.e. the set <mid,

thid>, waiting for passing < mid, thid > to P8.

P10 The set <mid , cl, ct>, waiting for sending to the

database server.

P11 <wid> wireless agents. Initially there is r = the set of all

wireless agents, waiting for receiving the information
on moving objects.

P12 <mid, mcl, mct>, the messages of moving objects that

are waiting for updating the database.

P13 <db, mid>, waiting for receiving the information on
moving objects. Initially all n moving objects are here.

P14 <db, mid, mcl, mct>, transactions waiting for appending

the information on the moving objects to the database
db.

P15 <pid>, processors. Initially there is K = the set of all k

processors managing the database of n moving objects

P16 <mid, cl>, waiting for updating the locations of the
previous updates.

5. Illustration Example with Calculation of

the Minimum Cycle Time

The minimum cycle time is defined as the minimum

time required completing a firing sequence returning to

the initial marking after firing each transition at least

82 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

once [3]. This measure is used only for the timed net.

Figure 2 net can be converted into a timed Petri net as

shown in Figure 3. A Petri net MATLAB toolbox

which was available at [2] is used to build the proposed

model. Since, we can move the delays d1, d2, d3, d4,

d5 of all the outgoing arcs of t4, t6, t7, t9, t11, t12 to their

corresponding transitions. We consider these delays

are deterministic and the proposed model is

deterministic timed Petri net. Firings of transitions t3

and t4 give two different cases. The first one uses t3 for

the moving objects which stop their moving, while in

the second case uses t4 for the moving objects which

continue their motion and need to calculate the

deviation. In addition, firings of transitions t6 and t7

give two different cases. The first one uses t6 for the

moving objects which their deviation exceeds the

threshold while the second case uses t7 for the moving

objects which their deviation does not exceed the

threshold. To simplify the analysis, it is assumed that

these two cases occur with equal probabilities. In

addition, the self loops (t9-P11, t12-P11 and t11-P15) as

shown in Figure 2 are transformed into the loops as

shown in Figure 3. From studying the structural

properties of Figure 3 net, we can say that this net is

bounded, conservative, repetitive and consistent. Also,

the incidence matrix A of this net can be written as

follows [3]:

 -

o i
A A A=

where 0A output matrix and Ai is is the input matrix.

The entries of the incidence matrix are defined as

follows: aij = aij
+
 - aij

-
where aij

+
= w (i, j) is the weight

of the arc from transitions i to its output place j and aij
-

= w (i, j) is the weight of the arc to transition i from its

input place j. When transition ti fires, aij
+
 represents

the number of tokens deposited on it is output place pj ,

aij
-
 represents the of tokens removed from is input

place pj , aij represents the change in the number of

tokens in place pj. Figure 4 shows the resulted

incidence matrix from the Petri net MATLAB toolbox

of Figure 3 net.

Figure 3. Deterministic timed Petri net model obtained from Figure

2.

Table 5. The explanation of each arc inscription.

Arcs Explanation

a1 <mid>, where mid is the identification number of a

moving object.

a2 <gid, gcl, gct>, where gid is the identification number of

a GPS receiver, gcl is current location of the moving
object which has the same identification number as gid,

and gct is the time for gcl.

a3 <mid, mcl, mct, >. A moving object mid has the current
location and time (mcl, mct).

a4 <mid, pl> A set of locations of the previous update for all

moving objects where mid = a moving object, pl = the

location of the previous update for mid, id = 1, 2, …, n}

a5 <mid, did, cl, ct> (where mid = a moving object, did =

the Euclidean distance between pl and cl, cl = the current

location of mid, and ct = the time point when midis at cl i
= 1, 2, …, n)

a5, d1 d1 is the time delay for calculation of the deviation of

each moving object.

a4, d1 d1 is the time delay for calculation of the deviation of
each moving object.

a6 <mid, thid>A set of thresholds for all moving objects,

thid=the threshold for mid, id = 1, 2, …, n}

a3 ,d2 d2 is the time delay for Comparing did with thid for each
moving object.

a7 <wid> The id of wireless communication agent wid

a6 ,
d2

d2 is the time delay for Comparing did with thid for each
moving object.

a3 ,d3 d3 is the time delay associated with wireless

communication for sending an update message

a7,d5 d5 is the time delay for wireless communication for
sending Updating of the location of the previous update

for each moving object mid

a8 <mid, cl> the moving objects current locations send to
update the previous location where mid = a moving

object ,cl = the current location of mid, id = 1, 2, …, n

a9 <db, mid>, where db is the name of the database handling

the information of the moving object mid.

a9,a3 <db, mid, mcl, mct, >, a transaction of the database db for

updating the current location and time (mcl, mct)

a8,d4 d4 is the time delay for the service provided by the
processor pid in the database server that’s the time to

execute a transaction of the database db.

a10 <pid> The id of processor pid in the database server.

a9,d4 d4 is the time delay for the service provided by the

processor pid in the database server, that’s the time to
execute a transaction of the database db.

Figure 4. The input matrix of Figure 3 net.

Two concepts related to the incidence matrix are

especially useful in studying properties of Petri net

models and finding the minimum cycle time. They are

(1)

Modelling of Updating Moving Object Database Using Timed Petri Net Model 83

T-invariant, and P-invariant [4, 3]. An integer solution

X of A
T
X=0 is called a T-invariant. The nonzero entries

in a T-invariant represent the firing counts of the

corresponding transition that belong to a firing

sequence transforming a marking M0 back to M0.

Although a T-invariant states the transitions

comprising the firing sequence transforming a marking

M0 back to M0, and the number of times these

transitions appear in this sequence, it does not specify

the order of transitions firings. An integer solution Y of

AY=0 is called a P-invariant. The P-invariant can be

explained intuitively in the following way. The

nonzero entries in a P-invariant represent the weights

associated with the corresponding places so that the

weighted sum of tokens on theses places is constant for

all markings reachable from an initial marking. In

Figure 3, there is a firing sequence from a marking M

back to the same marking M after firing each transition

at least once. Such as <<<t2, t1, t4, t5, t7, t8>t2, t1, t3, t13,

t9, t10, t11, t14, t13, t12, t15>t2, t1, t4, t5, t6, t8, t13, t9, t10, t11,

t14, t13, t12, t15>. The firing count vector x of this firing

sequence is given by:

 (3 3 1 2 2 1 1 2 2 2 2 2 4 2 2) TX = (2)

An integer solution y of Ay= 0 is the P-invariant. This

satisfies the following invariant property:

 0 T T

iy M y M= (3)

where M0 is the initial marking and iM is any

marking reachable from M0. The none zero entries in a

P-invariant represent weights associated with the

corresponding places so that the weight sum of tokens

on these places is constant for all markings reachable

from an initial marking. There are six (minimum,

independent) P- invariants which are given by:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T

1

T

2

 P P P P P P P P P P P P P P P P P P

y = (0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),

y = (0 0 0 0 0 0 1 1 0 0 0 0 0 0

T

3

T

4

T

5

 0 0 0 0),

y (0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0),

y = (0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0),

y = (0 0 0 0 0 0 0 0 0 0

=

T

6

 0 0 0 0 1 0 0 1) and

y = (1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0).

 (4)

The minimum cycle time can be found by the

following equation [8]:

0 { (() / } T T T

k i kMinimum Cycle Time Max y A DX y M= (5)

where

(X) n x1 is the T-invariant.

(Yk) m x1 is the P-invariants.

(Ai) n x m is the input matrix.

(di) is the time delay associated with transition ti , i = 1,

2,…, n.

(D)n x n is the diagonal matrix of di.

(M0) m x 1 is the initial marking.

T

0

181716151413121110987654321

) 0 0 0k 0n 0r 0 0n 0 0n 0n 0n (M

ppppp p p p p p p p p p p p p p

=

where n is the number of moving objects, r is the

number of wireless communication agents, and k is the

number of database server processors. Therefore, Yk
T

M0 are found as follows
T

1 0

T

2 0

T

3 0

T

4 0

T

5 0

T

6 0

y M n

y M n

y M r

y M n

y M k

y M 2n

=

=

=

=

=

=

The input matrix Ai is given by the following matrix:

The delay matrix D of Figure 3 net is a diagonal matrix

which is given by:

Thus:

1 1 2 2 3 4 4 5 3 5() (0 0 0 2 2 0 2 2 0 2 0 0 0 2 2 2 2 2 0) T T

iA DX d d d d d d d d d d= +

and
T T T

1 i 1 0

T T T

2 i 2 0 2

T T T

3 i 3 0 3 5

T T T

4 i 4 0 4

T T T

5 i 5 0 4

T T T

6 i 6 0 1 2 3 4 5

y (A) DX / y M =0

y (A) DX / y M = 4d /n

y (A) DX / y M = (2d +2d) /r

y (A) DX / y M = 2d /n

y (A) DX / y M = 2d / k

y (A) DX / y M = (4d +2d +2(d +d +d)) /2n

Finally from equation 5, the minimum cycle time of

Figure 3 net can be given by:

D =

Ai
=

84 The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010

 /2n}))dd2(d 2d (4d

k,/ 2d /n,2d /r,)d2(d /n,4d {0,Max timecycle minimum The

54321

44532

++++

+= (6)

6. Application of the Proposed Model

The minimum cycle time for the timed net of Figure 3

is given by equation 6. This is corresponding to the

minimum time needed to check if the update is

necessary for both stopped moving object or the

moving object with deviation greater than a specific

threshold and, if so, update once for each of n moving

objects [4]. For example, in Figure 3 net it is assumed

that the time delays in time units is given as follows:

d1= 0.0002 , d2 = 0.0002 , d3= 0.01, d4 = 1 and d5

= 0.01 . Also it is assumed that n= 100, r=10 and k=1.

Finally in equation 6, it is assumed that the minimum

cycle time is given 2d4/k = 2 time unit.

If the GPS receiver collects the location information

every three-time units then each object can complete

one update through 2 time units, so the system is safe.

In other words, the system is safe if the GPS receiver

collects the location information every t time unit since

t > minimum cycle time.

Moreover, according to equation 6, the following

elements can be increased 4d2/n, (2d3+2d5)/r, 2d4/n

and (4d1 + 2d2 + 2(d3 + d4 + d5))/2n from their

values to 2d4/k without affecting the minimum cycle

time. For example we can increase (2d3 + 2d5) /r to

2d4/k by decreasing the number of wireless agents

from r =10 to r=1 without affecting the performance

of he system. The system with one agent allows each

moving object to make its update to the database. This

can reduce the paid cost for wireless communication

services. We can also increase the number of moving

objects without affecting the minimum cycle time.

From this, we can deduce that a large number of

moving objects can maintain their current locations in

the database without needing to increase the number of

wireless agents.

Suppose that the GPS receiver collects the location

information more frequently, e.g., every 1 time unit,

then the above minimum cycle time (2 time units) for

each object may be too slow. That is, not all GPS

signals can be recorded and the location information of

some moving objects may be lost. In this case, it is

necessary to decrease 2d4/k; by either decreasing d4 or

increasing k. Upgrading the DBMS software so as to

speed up transactions in the DBMS which can reduce

the delay d4. Adding more DBMS processors can

increase the value of k consequently reducing the

minimum cycle time. For the DBMS with more than

one processor, the database can be processed in

parallel, reducing the time needed for update.

7. Conclusions and Future Work

This paper presents a timed Petri net model for

updating moving object database system. This model is

developed based on distance-updating strategy. In

addition, a method for calculation of the minimum

cycle time for updating the database is proposed. A

Petri net MATLAB toolbox is used to study the

structural properties of the proposed model. The

presented model can be more complex by refining

some items in the model structure. For example,

transitions t9 and t12 can be refined in order to model

other wireless communication protocols. Transitions t10

and t11 also can be expanded to simulate a specific

DBMS architecture. Moreover, other updating strategy

such as a deviation updating strategy can be used

instead of distance updating policy.

References

[1] Hartmut R. and Schneider M., Moving Object

Databases, Morgan Kaufmann Publishers, USA

2005.

[2] Mahullea C., Hanako M., and Pasttravanu O.,

“The Timed Petri-Net Simulator,” Computer

Journal of Petri Net Toolbox for MATLAB, vol.

15, no. 3, pp. 211-228, 2006.

[3] Murata T., “Petri Nets: Properties, Analysis and

Application,” in Proceedings of the IEEE, Japan,

pp. 541-580, 1989.

[4] Murata T., Yim J., Yin H., and Wolfson O.,

“Petri-Net Model and Minimum Cycle Time for

Updating a Moving Objects Database,” The

International Journal of Computer Systems

Science and Engineering, vol. 21, no. 3, pp. 207-

213, 2006.

[5] QUALCOMM Inc, www.qualcomm.com, 2006.

[6] Wolfson O., Chamberlain S., Sistla P., Xu B.,

and Zhou J., “Domino: Databases for Moving

Objects Tracking,” in Proceedings of the ACM-

SIGMOD International Conference on

Management of Data, Philadelphia, pp. 547-549,

1999.

[7] Wolfson O., Jiang L., Chamberlain S., and Xu B.,

“Moving Object Databases: Issues and

Solutions,” in Proceedings of the 10
th

International Conference on Scientific and

Statistical Database Management, Italy, pp. 111-

122, 1998.

[8] Wolfson O. and Yin H., “Accuracy and Resource

Consumption in Tracking and Location

Prediction,” in Proceedings of 8
th
 International

Symposiums on Spatial and Temporal Databases,

Greece, pp. 325-343, 2003.

[9] Wolfson O., Jiang L., Sistla P., Chamberlain S.,

Rishe N., and Deng M., “Databases for Tracking

Mobile Units in Real Time,” in Proceedings of

Modelling of Updating Moving Object Database Using Timed Petri Net Model 85

the 7
th
 International Conference on Database

Theory, Jerusalem, pp. 169-186, 1999.

[10] Wolfson O., Jiang L., Chamberlain S., and Dao

S., “Location Management in Moving Object

Databases,” in Proceedings of The 2
ed

International Workshop on Satellite-Based

Information Services, Hungary, pp. 422-432,

1997.

[11] Wolfson O., Sistla P., Xu B., Zhou J.,

Chamberlain S., Yesha Y., and Rishe N.,

“Tracking Moving Objects Using Database

Technology in Domino,” in Proceedings of the

4
th
 Workshop on Next Generation Information

Technologies and Systems, Israel, pp. 112-199,

1999.

[12] Zurawski R. and Zhou M., “Petri Nets and

Industrial Application: A Tutorial,” in

Proceedings of the IEEE Transactions on

Iindustrial Electronics, New Jersey, pp. 567-583,

1994.

Hatem Abdul-Kader obtained

his BS and MSC, both in electrical

engineering from the Alexandria

University, Faculty of Engineering,

Egypt, 1990 and 1995, respectively.

Obtained his PhD degree in electrical

engineering also from Alexandria

University, Faculty of Engineering, Egypt in 2001,

specializing in neural networks and its applications. He

is currently a lecturer in the Information Systems

Department, Faculty of Computers and Information,

Menoufya University, Egypt, since 2004.

Warda El-Kholy obtained her BSc

in 2002 from the Electronic

Engineering Department of

Computer Science and Engineering,

Faculty of Electronic Engineering,

Menoufya University. In 2007, she

obtained her MSc of computers and

information from Information Systems Department,

Faculty of Computers and Information, Menoufya

University. Currently, she is pursuing her PhD from

the Faculty of Engineering and Computer Science,

Concordia University, Canada.

The International Arab Journal of Information Technology, Vol. 7, No. 1, January 2010 26

