
424 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

TS-PVM: A Fault Tolerant PVM

Extension for Real Time Applications

Usama Badawi

Department of Mathematics, Faculty of Science, Egypt

Abstract: In this research work, a fault tolerant extension of the de facto message passing system parallel virtual machine,

TS- parallel virtual machine, is introduced. This extension enables real time applications over parallel virtual machine. In

PVM and similar message passing systems, if the message receiver is not available, due to network failure or machine crash, a

failure is reported and data must be resent. If the transferred data is persistent, i.e. should not be lost, then it is important to

provide the system with failure recovery mechanisms. The idea behind the proposed extension, TS- parallel virtual machine, is

to integrate a fault tolerant distributed shared memory layer, in parallel virtual machine. Such layer has been inherited from

the TRIPS system that supports fault tolerance over a DSM. The challenge of this research work is the integration of a DSM

layer in a message passing system. The proposed parallel virtual machine extension would have bad performance if compared

to the pure message passing one. On the other hand, the real time application can be completed in spite of failures occurrence.

Keywords: Fault tolerance, persistent data, PVM, real time applications, tuple space.

Received January 14, 2007; accepted May 12, 2008

1. Introduction

Parallel Virtual Machine (PVM) is a standard message

passing system. It has gained its standardization

because of its simple set of operators that enables users

to parallelize the program by adding few lines to the

existing sequential code. It is designed to link

computing resources and to provide users with parallel

platforms to run their applications [3]. In spite of the

many advantages of the PVM system, it still lacks for

being fault tolerance. Such failures may lead not only

to cause performance problems but also to stop the

application execution. Sometimes, the transferred data

in real time applications, such as mobile

communication, is Persistent Data (PD) i.e., should not

be lost. For this type of applications, failure recovery

must be guaranteed. Integrating a fault tolerance layer

that introduces dynamic detection and recovery

mechanisms to the system is one solution for this

problem. PVM has been supplied by failure detection

mechanisms that enable the system to identify some

types of failures such as machine loose. It has no way

to recover from the failure dynamically [13].

On the other hand, TRIPS is a fault tolerance system

that introduces a DSM that enables dynamic failure

detection and recovery using dynamic replication [8].

In this research work, a proposed fault tolerant

extension of PVM, called TS-PVM, is introduced. The

proposed extension is based on the idea of integrating

the DSM fault tolerance layer introduced by TRIPS in

PVM. TS-PVM is the suitable solution for real time

applications with persistent data PDRTA such as

mobile communication.

2. Related Works

One example of systems that support PVM with fault

tolerance capabilities is the Task-Oriented Parallel

progrAmming System environment (TOPAS). One of

the system objectives is to provide the parallel

application with facilities for fault tolerance [12].

TOPAS uses transactions to ensure all or none delivery

of messages among different clients. TOPAS

automatically analyzes data dependence among tasks

and synchronizes data, which reduces the time needed

for parallel program developments. It also provides

supports for scheduling, dynamic load balancing and

fault tolerance. Experiments show simplicity and

efficiency of parallel programming in TOPAS

environment with fault-tolerant integration, which

provides graceful performance degradation and quick

reconfiguration time for application recovery.

Another example is the new general purpose

transport protocol called Stream Control Transmission

Protocol (SCTP) [10]. SCTP associations support

multi-homing to provide redundancy at the endpoint

level, which increases connection level fault tolerance.

The characteristics of SCTP closely match with the

message passing semantic of PVM and have motivated

the development of SCTP-PVM, a PVM extension,

enabled to take advantage of the features of SCTP for

direct communications among PVM tasks. In SCTP-

PVM, the messages among tasks are directly mapped

in SCTP associations and streams. Messages that must

reach the same task with different tags can be assigned

to different streams and can travel in the network

independently. In addition, the PVM standard library

TS-PVM: A Fault Tolerant PVM Extension for Real Time Applications 425

is extended to permit programmers to use the SCTP

protocol [13].

3. The TRIPS System

TRIPS is a system that enables DSM based

applications to tolerate with failures. It constructs a

distributed environment for parallel processing using

the Linda model. Linda model has presented the tuple

space concept, which is an associative shared memory

DSM accessible to all application processes. It is

associative in the since that it contains entries, which

may be retrieved by their contents rather than by

physical addresses, using a matching mechanism [1]. It

introduces a set of operations to access the DSM. This

section introduces TRIPS system structure and its fault

tolerance mechanism.

3.1. TRIPS System Structure

TRIPS consists of three main layers as shown in Figure

1. The first layer is the transis event layer. It is a layer

inherited from the transis group communication

system. This layer is geared towards high throughput

local communication. Transis-layer supports group

communication service with strong semantics. All-or-

none delivery semantics are guaranteed. Transient

network failures are transparent, and message ordering

is supplied. It reports membership changes. Once a

process joins the application, it creates a singleton

group, and receives a “mailbox” to which messages

arrive [2], [4]. This layer is composed of two sub-

layers, namely, the network layer and the

communication layer. The network layer is responsible

for handling the socket connection and the physical

routing of the data. The communication layer includes

the membership mechanisms that enable the member

to identify the group configuration, and

communication mechanisms that enable the member to

communicate and broadcast messages to the other

members [1].

Figure 1. TRIPS System structure.

The second layer in TRIPS is the Library of Parallel

Systems (LiPS) Library of Parallel Systems). This

layer introduces control processes for distributed

applications, called lipsds. They manage the DSM and

application message log, start and control the

application processes, and replicate their data to other

equivalent processes. Server failures are handled using

replication. This layer is composed of two sub-layers,

namely, Trips middle layer and local tuple space layer.

TRIPS middle layer includes the interface operations

that enable the application to interact with the DSM.

Examples are Mid_out(), to write entries, Mid_rd(), to

read entries, and Mid_in(), to extract entries. These

operations are constructed using the Linda tuple space

model implemented by the LiPS system. The local

tuple-space layer includes the DSM structures. The

LiPS tuple space structure is used to construct this

layer as a system repository. All processes are

controlled by the lipsd located on their machine [9].

The third layer in TRIPS is the TRIPS message

handling layer that includes the fault tolerance

protocol, which handles different types of messages. It

includes a protocol, called “state change protocol”, to

handle both configuration change and regular DSM

messages. This layer is activated as soon as a message

is received either from one of the members to access

the DSM, or from the membership layer indicating

view changes.

3.2. Fault Tolerance in TRIPS

TRIPS uses dynamic replication to enforce fault-

tolerance. An important part of the TRIPS message

handling layer is the scheduler that is responsible for

receiving the state change message and deciding its

type, i.e., either configuration (membership) change

message or a regular DSM access message. Then it

directs the message to the suitable routine to be

handled [1]. Figure 2 shows the scheduler and its

behavior. If a configuration change message arrives to

the scheduler while handling a DSM message, an

interrupt request is sent to the DSM handler. Control is

returned to the scheduler without performing the DSM

operation to handle configuration changes first.

Figure 2. TRIPS scheduler.

To ensure the availability of the distributed

application processes, TRIPS uses the “State Change

 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009426

Protocol”. This protocol is responsible for handling the

possible state changes occurring to the distributed

application. The protocol guarantees that the data is not

lost in the DSM in spite of failures. Whenever a new

member is started, the global queue and the DSM data

structures are initialized. Then, the control is passed to

the configuration change handler, which is responsible

for membership change events handling. State changes

are categorized into two main types; regular DSM

changes and membership configuration changes [1].

4. The Proposed Extension

PVM is a message passing system that permits a

heterogeneous collection of computers networked

together to be viewed by a user's program as a single

parallel computer [11]. It is designed to link computing

resources and to provide users with parallel platform to

run their computer applications, irrespective of the

number of computers they use and where the

computers are located. In this section, the

characteristics and structure of the PVM system are

presented. Then the modifications required to build the

proposed PVM extension, TS-PVM, are introduced as

well.

4.1. PVM Structure and Behavior

PVM transparently handles all message routing, data

conversion, and task scheduling across a network of

heterogeneous architectures [5]. Messages are tagged

at sending time with a user defined integer code and

can be selected for receipt by source address or tag.

The sender of a message does not wait for an

acknowledgment from the receiver, instead, it

continues as soon as the message has been handed to

the network and the message buffer can be safely

deleted or reused. If one node sends several messages

to another, they will be received in the same order.

PVM is also able to withstand host and network

failures. It does not recover an application after a

crash, it only provides polling and notification

primitives to allow fault tolerant applications to be

built. The virtual machine is dynamically

reconfigurable [7]. Its tasks may possess arbitrary

control structures. At any execution point of concurrent

applications, any task may start/stop other tasks or it

may add machines to or delete ones from the virtual

machine. Any process may communicate and

synchronize with other processes. The PVM system

structure is based on two main components, namely,

the PVM daemon, called pvmd, and the system

function library of PVM routines. These two main

components are discussed here.
The pvmd is a control process that is responsible for

controlling the behavior of the application processes

running on a given host participating in the virtual

machine. In order to reduce security risk and minimize

the impact of one PVM user to another, pvmds owned

by one user do not interact with those owned by others.

The pvmd serves as a message router and controller. It

provides a point of contact, authentication, process

control, and fault detection. A pvmd occasionally

checks that its peers are still running. Even if

application programs crash, pvmds continue to run, to

aid in debugging [6].The first pvmd is designated as

the master one, while the others; started by the master;

are called slaves. During normal operation, all are

considered equal. Only the master can start new slaves

and add them to the configuration. Figure 3 shows

PVM processes communication. The communication

between any two processes on top of PVM must be

done through the pvmds allocated on their machines.

Figure 3. Process communication in PVM.

The PVM function library, libpvm allows a task to

interface with the pvmds and other tasks. It contains

functions for packing and unpacking messages, and

functions to perform PVM system calls. The top level

of the libpvm library includes the programming

interface functions such as pvm-send() to send a

message and pvm-receive() to receive a message. For

simplicity, the proposed extension will be applied to

these two functions. The protocol can be easily

generalized to other interface functions. These

functions are written in a machine independent style.

The bottom level is kept separate and can be

modified or replaced with machine specific files when

porting PVM to a new environment. Message packing

in the pvmd is very simple. Messages are handled using

a structure called mesg. There are encoders for

different data types to be utilized within PVM

modules.

Pvmds communicate through UDP sockets. Since

the UDP sockets introduce an unreliable delivery,

therefore packets can be lost, duplicated or reordered.

An acknowledgment and retry mechanism is used.

UDP also limits packet length; therefore, PVM

fragments long messages. Pvmds usually do not

communicate with foreign tasks (those of other users).

The pvmd has message re-assembly buffers for each

TS-PVM: A Fault Tolerant PVM Extension for Real Time Applications 427

task it manages. To free up the re-assembly buffer for a

foreign task, if the task dies, the pvmd would have to

request notification from the task's pvmd. A PVM task

can send messages directly to another task via one of

the point-to-point communication primitives, or across

a set of tasks by first joining the corresponding group

and then using the appropriate communication

primitive. However, PVM groups can be dynamically

created [6].

4.2. TS-PVM Structure

PVM does not guarantee PD delivery. Therefore, it is

not suitable for real time applications with persistent

data. It should be provided with fault tolerance

mechanisms in order to survive the application. The

TS-PVM extension handles the application processes

and daemons on different machines as TRIPS

application processes. The PVM user should not notice

any change in his interface primitives. Therefore, the

PVM send and receive primitives, pvm-send() and

pvm-receive(), are used in the proposed extension. In

the lower level, pvm-send() and pvm-receive() are

used as masks for the TRIPS corresponding primitives,

Mid_out() and Mid_in() respectively. To construct the

proposed protocol, two layers, namely the interface

layer and the kernel layer, have been integrated in

PVM.

4.2.1. TS-PVM Interface Layer

The interface layer deals with PVM user interface

functions. PVM has a compact set of interface

functions that enable the user to interact with the low-

level system routines. In the interface layer, the PVM

standard set of interface operations are used as masks

for the TRIPS primitives that are used actually to

access the DSM. Each PVM primitive contains a call

to the corresponding TRIPS primitive that handles the

actual work. The attributes of the PVM primitive are

directed to be allocated as parameters to the

corresponding TRIPS primitive.

Figure 4 shows the TS-PVM interface layer. The

Interface layer routines use the data in the pvm-send()

call to generate a new entry to the DSM using

Mid_out(). Similarly, the data extracted from the DSM

using the Mid_in() call is used to be facilitated by the

pvm-receive() call. A new entry is generated for each

message sent through the virtual machine that includes

data about the sender, the receiver, and the message

body. All this information is accessed using the

attributes of the PVM interface functions.

4.2.2. TS-PVM Kernel Layer

This layer includes routines to enable lipsd; the TRIPS

control process; to control the behavior of the pvmd

located on the same machine. pvmds must be under the

control of the TRIPS daemons (lipsds), therefore, the

communications among the pvmds do not occur in a

direct way as usual. Instead, every pvmd sends its

requests to the lipsd located on the same machine. In

this case, all operations done by the PVM real time

application processes are controlled by the TRIPS

dynamic allocation routines. To construct this layer,

many integrity constraints are applied. One important

constraint is to make the CLUSTER file, which defines

the set of hosts participating in the TRIPS

configuration and the HOSTFILE, which defines the

set of machines participating in the PVM virtual

machine, have the same members. Otherwise a conflict

may occur while handling the send/receive requests.

Figure 4. TS-PVM Interface layer.

To run the applications under this protocol, the

following steps are applied. First, TRIPS system is

started, then the master pvmd is started. It is started

under the control of TRIPS runtime. There exists a

lipsd on the same machine. Then, the slave pvmds are

started in the regular way. All these steps are

considered preparation steps before starting the PVM

application. Figure 5 shows the following facts. First,

pvmd-pvmd communication is performed through the

TRIPS DSM. Direct communication among pvmds is

not allowed.

Figure 5. TS-PVM Kernel layer.

Any PVM interface request is converted, by the TS-

PVM interface layer, and is directed to the local TRIPS

DSM. Moreover, all application processes and pvmds

 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009428

are under the control of the lipsd located on the same

machine. This enables lipsds to be the main controller

on each machine. Moreover, lipsds are linked to a

separated DSM, different from the TS-PVM local

DSM. This is done to trace the existence of different

lipsds and to enable the data exchange among different

lipsds.

4.2.3. TS-PVM Control Processes

On each machine participating in the virtual machine,

there exist two control processes, namely a lipsd and a

pvmd. Conflicts may occur if the two processes are

working independently. Therefore, there should exist a

way to manage the activities of both processes.

One possible way is to implement a scheduler that is

responsible for managing the behavior of the two

processes. This approach costs too much in terms

communication. There will exist a huge amount of

heavy weight process-process communication within

the system. Real time applications require fast response

to external events. However, another solution is to deal

with the two processes as threads within the same

heavy weight process. This reduces the process

communication cost. Moreover, it reduces the use of

the UDP sockets unreliable delivery. Figure 6 shows

the structure of the new heavy wait control process.

Figure 6. TS-PVM Control process structure.

The control flow in the process is organized by the

scheduler. As soon as the PVM application process

connects to the pvmd thread, it directs the request to

the scheduler, which in turn forwards it to the lipsd

thread. The lipsd thread may send the request to the

TRIPS global DSM and/or other lipsds. When the

required data is collected, it is returned to the lipsd

thread that directs it to the scheduler, which in turn

sends it to the pvmd thread. Finally, the pvmd thread

contacts the PVM application process.

5. TS-PVM Measuring and Results

To test the performance of the proposed protocol, two

types of tests have been applied. First, a fault tolerance

test has been performed to test the system availability.

Second, PVM send/ receive primitives performance

has been measured. The measurements are performed

by using four PC's. with Intel Pentium 2.4 G.H

processors and 512 RAM for each. 100 Mbps Ethernet

is used for processor inter-communication. The

operating system in use is Windows XP professional.

5.1. Fault Tolerance Test

In this section, it is shown that the system tolerates

with failures. This has been achieved by applying the

following scenario; A client puts a counter in the

system; using pvm_send (). It is an entry that contains

an integer. The client procedure writes the entry,

another client; on another machine reads that entry;

using pvm_recieve (), increases the counter by 1 and

then rewrites the entry with the new value. The two

clients repeat these steps in a large number of

iterations. While the clients are doing this process one

of them is enforced to fail; by dropping his machine

from the virtual machine.

Figure 7. Availability skeleton code test.

The TS-PVM system, in this situation should wait

until the failed client rejoins the virtual machine. The

counter increases correctly. Figure 7 shows a skeleton

code for a scheduler process that manages the test

steps. In this figure, the test loop is infinite. The

written entry is taken to be increased and is rewritten

again with the new value.

Figure 8 shows the output of the pervious test. Part

(A) shows output messages of the entry counter value

while writing and reading entry. The second part of the

figure (B) shows the lipsd trace output messages. In

part (A), it is observed that, while the failure occurs,

the counter value stops. The clients continue their

operations as soon as client 2 connected again. The

counter values are sequential. client 2 has been

enforced to be failed and rejoined during the test.

Figure 8. Output of the availability test.

5.2. System Primitives Performance

Send only and send/receive tests for different message

sizes have been performed. The results have been

compared with those from the original PVM run and

those from a TRIPS run. Figure 9 gives the results in

case of send only. It shows the performance of the send

operation in cases of PVM (pvm-send()) and TRIPS

(out()) and the TS-PVM send. Figure 10 shows the

corresponding results in case of send/receive

operations.

While (true){

pvm_send(C1-id,C2_id, counter);

pvm_recive(C1_id,C2_id, counter);

counter= counter +1;

pvm_send(c2_id, c1_id, counter);

}

TS-PVM: A Fault Tolerant PVM Extension for Real Time Applications 429

Figure 9. Send operation results.

In both cases, it is observed that the performance of

the standard PVM send/receive operations is the best.

Then comes the performance of the TRIPS

send/receive primitives. The highest times are those of

the TS-PVM protocol. These results are logic. It is a

fact that the best performance among all environments

is the pure message passing system PVM. Moreover,

FT-PVM uses the TRIPS protocols and hence its

primitives times must be larger. The TS-PVM protocol

uses the primitives of both PVM and TRIPS.

Therefore, it is logic to find that the time of a given

operation in the proposed extension is up to the sum of

times of the corresponding operations in PVM and

TRIPS. The situation here is better than the worst case

due to the use of threads instead of heavy wait

processes for control. Otherwise, the results may be

worse.

Figure 10. Send/receive operations results.

6. Conclusions

In this research work, a fault tolerant extension of

PVM, that is suitable for real time applications, has

been introduced. The proposed extension (TS-PVM) is

based on integrating the TRIPS system fault tolerance

mechanisms in PVM. Two layers have been integrated

in PVM. The first layer, the interface layer, has been

introduced to mask the actual primitives that are used

by the protocol and to give the PVM user the ability to

use the PVM original interface operations. The second

layer, the kernel layer, is designed to enforce the PVM

control processes, pvmds, to run under the control of

the TRIPS control processes, lipsds that has fault

tolerance capabilities. The two control processes,

namely pvmd, and lipsd, have been integrated in one

heavy weight process with a scheduler to reduce the

communication costs. The proposed extension does not

deal with nested configuration changes. The next step

in TS-PVM, is to enable it to handle such case. The

same protocol can be used for other message passing

systems similar to PVM.

References

[1] Badawi A., “A Single System Image Supporting

Distributed Objects,” PhD Thesis, Cairo

University, 2000.

[2] Dolev D. and Malki D., “The Transis Approach

to High Availability Communication,” in

Proceedings of Communication of ACM, USA,

pp. 94-102, 1996.

[3] Fatourou P. and Spirakis P., “Efficient

Scheduling of Strict Multithreaded

Computations,” Computer Journal of Theory of

Computing Systems, vol. 33, no. 2, pp. 173-232,

2000.

[4] Liefke T., “Extension of the Trips Prototype,”

Technical Report 1.0, University of Texas, 1998.

[5] Pruyne J. and Livny M., “Interfacing Condor and

PVM to Harness The Cycles of Workstation

Clusters,” Computer Journal of Future

Generation Computer Systems, vol. 12, no. 1, pp.

67-67, 1996.

[6] Rajkumar B., High Performance Cluster

Computing Programming and Applications,

Prentice Hall, 1999.

[7] Servissoglou L., Kanellopoulos E., and Kaletta

D., Fault Tolerant Message Passing under PVM,

Hermes, 1995.

[8] Setz T., Integration Von Mechanismen Zur

Unterstutzung Der Fehlertoleranz in LiPS, PhD

Thesis, University of Saarbrucken, 1996.

[9] Setz T., “Fault Tolerant Distributed Applications

in Lips,” Technical Report SFB 124 09/1997,

Hamburg University, 1997.

[10] Stewart R. and Xie Q., Stream Control

Transmission Protocol (SCTP): A Reference

Guide, Addison Wesley, 2002.

[11] Sun Microsystems, http://java .sun.com/products

/javaspaces, 2005.

[12] Tran D., Nguyen T., and Motocova M.,

“Integrating Fault Tolerant Features Intoduction

Topas Parallel Programmming Environment for

Distributed Systems,” International Conference

on Parallel Computing in Electrical Engineering

(PARELEC), Poland, pp. 453-459, 2002.
[13] Zarrelli R., Petrone M., and Iannaccio A.,

“Enabling PVM to Exploit the SCTP Protocol,”

Computer Journal of Parallel Distributed

Computing, vol. 66, no. 3, pp. 1472-1479, 2008.

 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009430

Usama Badawi received his Master

degree in the field of object oriented

databases. He has finished his PhD

in distributed systems in 2001 from

the technical University of

Darmstadt, Germany. Currently, he

is working as a lecturer in the

Faculty of Science, Cairo University.

431 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

432 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

