
The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009 359

Towards Reengineering Web Applications

 to Web Services

Bouchiha Djelloul, Malki Mimoun, and Mostefai Abd El Kader

EEDIS Laboratory, University of Sidi Bel Abbes, Algeria

Abstract: Web services technology and service-oriented architectures are rapidly developing and widely supported. However,

it is fairly difficult for existing web applications to expose functionality as services in a service-oriented architecture, because

when web applications were built, they served as monolithic systems. This paper describes a framework called WA2WS, which

can be used for constructing web Services from existing web applications. This framework consists of two phases. First, an

abstraction phase which consists in extracting UML conceptual schema from a web application using domain ontology.

Second, an implementation phase which consists in generating the JAVA code of web service from the UML conceptual

schema using mapping rules.

Keywords: Reengineering, web services, service-oriented architectures, web applications, ontology, UML.

Received December 11, 2007; accepted April 9, 2008

1. Introduction

The world wide web is rapidly being adopted as the

medium of collaboration among organizations. Web

applications are today legacy systems, which constitute

valuable assets to the organizations that own them. A

web application is an application delivered to users

from a web server over networks such as the Internet or

an intranet. Web applications are popular due to the

ubiquity of the web browser as a client [7].

Figure 1. Three-tier model of web application architecture.

A web application is commonly structured as a

three-tiered application as shown in Figure 1. In the

most common form of the three-tier web application

model, the web browser is the first tier, an engine using

some dynamic web content technology (such as CGI,

PHP, JSP or ASP) is the middle tier, and a database is

the third tier. The web browser sends requests to the

middle tier, which serves its client by making queries

and updates against the database and by generating a

user Interface (HTML responses).

On the other hand, web services technology is

rapidly developing and widely supported. It consists of

a set of related specifications that define how

components should be specified through the Web

Service Description Language (WSDL), how they

should be advertised so that they can be discovered

and reused through the Universal Description,

Discovery, and Integration API (UDDI), and how they

should be invoked at run time through the Simple

Object Access Protocol API (SOAP).

Web services are based on Service Oriented

Architectures (SOA), which is the keystone of service

oriented computing. SOA includes some architectural

components, such as service providers, service

consumers and service repository. All the service

usage, such as delivery, acquisition, consumption,

composition and so on, is based on this architecture.

SOA is an important paradigm that supports service

management. It is an architecture evolution, and it

affects the software life cycle from the service point of

view. SOA is particularly applicable when multiple

applications running on varied technologies and

platforms have to communicate with each other [5].

This situation necessitates the development of

automated reengineering methods for constructing

web services out of existing functionalities already

offered through web application of organizations

today.

2. Related Work

Many approaches were proposed to revitalise web

applications in network environment with service-

oriented technology: Eleni and et al. present a general

method for constructing wrappers for web-based

applications, so that they exchange data with shared

semantics such as defined in the XML domain model

[2].

Browser Data base App logic

Client Application server Data server

 360 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

Yingtao at al. [10] choose to reverse-engineer the

presentation layer of the web application, in order to

extract from its behaviour the set of functionalities it

currently delivers. The extracted functionalities can

then be specified in terms of WSDL web-service

specifications, and they can be deployed through

proxies accessing the original web server and parsing

its responses.

Jianzhi et al. [6] propose a grid services-oriented

reengineering approach to create stateful resources

from conventional HTML web sites, which applies

hierarchical cluster and wrapper techniques to extract

and translate web sites resources. It supports services

identification and packaging and archives web site

evolution into grid services environment by exploiting

WRSF.

Hoang et al. [4] propose a mechanism to wrap

existing CGI-based web sites in web services. These

services inherit all features from the sites while can be

enriched with other web service features like UDDI

publishing, semantic describing, etc.

Robert et al. [8] propose an integration approach,

which consists in exploiting web application interface,

and converting HTML responses documents to XML

documents. Wrapper technology is used for extracting

appropriate information from HTML documents and

translating this information to XML documents, which

can be treated later automatically.

Michiaki et al. [7] propose a framework called

H2W, which can be used for constructing web Service

wrappers from existing multi-paged web applications.

H2W's contribution is mainly for service extraction,

rather than for the widely studied problem of data

extraction.

The described approaches above can be classified

according to two criterions: either by the analysed

element in input (interface or source code), or by the

generated element at output (wrapper, new web service

or other). With the first criterion [2], [6], [7], [8] and

[10] analyze the interface, i.e., analyse HTML

responses documents of HTTP requests and not the

source code of the web application. However, [4]

analyses the source code (CGI queries) of the web

application. With the second criterion which is the

generated element at output [2], [4], [6], [7] and [8]

generate a wrapper to wrap the web application as a

web service. Whereas, [10] generates WSDL

specification, which can be exploited to use the web

application as a web service.

Web applications need to undergo a sequence of

preliminary activities to evolve toward web services. In

our work, these activities may be conceived as the

cascade of two phases: an abstraction phase centered

around a preliminary reverse-engineering activity.

Followed by an implementation phase, i.e., a sequence

of forward engineering steps leading to the new web

service.

3. Proposed Framework

In this paper we propose a framework called WA2WS

for constructing web services from existing web

applications. We regard our framework as mainly for

data extraction, because many of the web applications

around us are data-intensive, where the main purpose

of the application is to present a large amount of data

to their users [9]. Our goal is to migrate an existing

web application to new web service by combining a

reverse-engineering approach first and a forward

engineering approach after as shown in Figure 2.

Figure 2. WA2WS framework.

4. Abstraction Phase

Bouchiha and al. propose a new approach for reverse-

engineering web applications. The approach aims to

generate an UML conceptual schema modeling the

web application. The major contribution of this

approach is the use of ontology in the abstraction

process [1].

Ontology based web reverse-engineering approach

consists of three successive phases as shown in Figure

3, first is the extraction of useful information from

HTML pages. Second phase is the analysis of the

extracted information using domain ontology. Last

phase is the generation of corresponding UML

conceptual schema.

Figure 3. Ontology based web application reverse-engineering

process.

Reverse-
engineering

process

Domain

ontology

UML Conceptual schema

Analysis

Extraction of useful information

Useful information
(tables, listes …)

Conceptualization

Enriched set of concepts
and relations

Page Web Page Web Web pages

UML Conceptual
schema

Page

Web
Page

Web

Web

pages

OntoWeR WeSerBuilder

JAVA code

R
ev
er
se
-e
n
g
in
ee
ri
n
g

(A
b
st
ra
ct
io
n
 p
h
as
e)
 F

o
rw
ard

 en
g
in
eerin

g

(Im
p
lem

en
tatio

n
 p
h
ase)

Towards Reengineering Web Applications to Web Services 361

OntoWeR: is software supporting an ontology based

web Reverse-engineering approach, covering the

abstraction phase by recovering a presentation schema

using domain ontology. The presentation schema is

stored through UML language.

Web Service Builder (WeSerBuilder) is a Computer

Aided Software Engineering (CASE) tool covering the

implementation phase (web service forward

engineering) by generating a JAVA code from the

UML conceptual schema using mapping rules (between

conceptual level and logical level).

4.1. Extraction of Useful Information

This phase starts with filtering HTML pages, followed

by the extraction of DOM and finally the extraction of

useful information from DOM. Filtering consists in

browsing the source code of HTML pages, eliminate

useless tags, and preserve useful ones as <form>,

<table>, <td>, <tr>, , , etc., The result of this

stage is a set of cleaned HTML pages. Cleaned HTML

pages will be presented in DOM logical format in order

to facilitate its manipulation. From this DOM logical

format, we can now extract useful information hidden

in tables, lists, forms etc.

4.2. Analysis

The analysis phase consists of three stages. First is a

Morphological analysis applied on the fields of tables

and the elements of lists, extracted from HTML pages.

We obtain a set of terms which can be identified later

as concepts of the ontology. Second stage is the

calculation of semantic distance which aims to quantify

how much two concepts are alike. Last stage is the

inference which consists in inferring new concepts and

relations before generating the UML conceptual

schema. The inference starts with the deduction of new

concepts and relations to obtain a set of concepts and

relations with which we can form a set of groups. Each

group represents a connected graph. Before generating

the final conceptual schema, the resulting groups from

the previous stage must be unified in a single group.

4.3. Conceptualization

From the enriched set of concepts and relations, we can

now construct an UML conceptual schema as follow:

each concept and relation will be presented respectively

by an UML class and relation. The relation expressed

by the term part-of will be presented as an UML

aggregation relation. The subsumption relations will be

translated as a generalization relationship. Multiplicities

of the relations are also extracted from the domain

ontology to be presented in the UML conceptual

schema.

4.4. OntoWeR Tool

This approach is supported by a tool named

OntoWeR. This tool is composed of four subsystems

as shown Figure 4:

• Acquisition module: allows the acquisition of

HTML pages, as well as the domain ontology.

• Extractor: allows extracting useful information

from the acquired HTML pages.

• Analyzer: executes operations, which aim to

generate an UML conceptual schema.

• Viewer: allows viewing the resulting conceptual

schema.

Figure 4. OntoWeR architecture.

4.5. Example

To see that this approach is efficient, feasible and

reliable, a detailed example has been presented in [1].

For their experimentation they chose ontology for a

semantic web of tourism. It describes the tourism

domain. The web site on which they perform their

experiments is http://www.hm-usa.com/. It is a web

site for tourism in the USA. The UML conceptual

schema obtained after applying their approach on the

chosen site is presented in Figure 5.

Figure 5. UML Conceptual schema of the chosen site.

5. Implementation Phase

This phase consists of two successive steps as shown

in Figure 6, first step is mapping to DLM, which

Domain

ontology

Acquisition
module

Extractor

Viewer

Analyzer

User

Web application

Object

Activity

Sightseeing

Museums

Destination

Beach

City

Capital

Accommodatio

n

Hotel

AccommodationRati

ng

RuralArea UrbanArea

hasAcommodatio
n

0..

*

0..
*

hasActivity 0..

*
0..

*

isOfferedAt 0..

*

0..
*

hasRating 0..

*
0..
*

0..

*

hasPart

hasContact 0..

*

0..

*

Contact

-

hasZipCode

- hasStreet

- hasEmail
- hasCity

Farmland

 362 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

consists in applying mapping rules to have the

corresponding Data Logical Model (DLM). Second

step is the generation of JAVA source code, which

consists in generating the source code of the new web

service.

Figure 6. Forward engineering process.

5.1. Mapping to DLM

For representing data at a logical level, we have chosen

the relational model, because it is simple and easy to be

manipulated. Mapping rules, which are applied to have

a relational DLM from UML conceptual schema, are as

follows:

• Each class becomes a relation. Attributes of the class

become attributes of the relation. The class identifier

becomes a primary key of the relation.

• Each 1-1 association is translated by including the

primary key of one of the two relations as a foreign

key into the other relation.

• Each 1-N association is translated by including the

primary key of the relation, of which the maximal

multiplicity is *, as a foreign key in the other

relation.

• Each M-N association is translated by creating a new

relation, of which the primary key is the

concatenation of the two primary keys of

participating relations. Attributes of the association

class are inserted into this new relation, if it is

necessary.

• For the generalization relationship, the superclass

and subclass are each one represented by a relation.

The two relations share the same primary key.

Discriminator must appear as an attribute in the

relation corresponding to the superclass.

• Aggregations follow the same rules as associations.

5.2. Generation of JAVA Code Source

For each relation of DLM, we must create many

methods corresponding to the operations of

manipulation of the data base table described by this

relation. The most important operations are: listing,

insertion, suppression, updating and research.

• The listing method allows displaying the content of

the data base table corresponding to the relation.

This method has not any parameter.

• The insertion method allows adding a new element

in the data base table. It has as parameters the

attributes of the relation.

• The suppression method allows deleting an element

from the data base table. It has as parameter the

element code to be deleted.

• The updating method allows modifying the values

of an element of the data base table. It has as

parameters the element code to be modified, plus

the new values to be saved.

• The research method allows finding an element in

the data base table. It has as parameter the element

code to be found.

Finally, all methods, which allow the manipulation of

the entire data base, will be integrated in one web

service.

5.3. WebSerBuilder CASE

The implementation phase is supported by a CASE

tool named WeSerBuilder. This CASE tool is

composed of three subsystems as shown in Figure 7:

• Acquisition module: allows the acquisition of UML

conceptual schema.

• Mapping engine: allows the generation of the

source code after applying the mapping rules.

• Viewer: allows viewing the resulting DLM and

JAVA code source.

Figure 7. WeSerBuilder architecture.

5.4. Example

For a stock management system, we have the

following information: a customer is characterized by

a customer code, first name, last name, birth date and

address. He orders products at a given date and with a

given amount. A product is characterized by a code

product and a unit price. A product can be either a

paper or a pen. A paper is characterized by its width

UML Conceptual

schema

Acquisition
module


~~~~~~ 

~~~ 

~~~~~~ 

~~~~~ 


Viewer

 Mapping
engine

User

Forward

engineering

process

Mapping to DLM

Relational DLM

Generation of JAVA

source code

Source code of the new

web service

UML Conceptual schema

Towards Reengineering Web Applications to Web Services 363

and its height. A pen is characterized by its color. Each
product is ordered from only one supplier (but the

supplier can provide many products). A supplier is

characterized by a supplier code and name. The UML

conceptual schema describing such system can be

represented as follow:

Figure 8. The UML conceptual schema of a stock management

system.

When WeSerBuilder tool receives in input the UML

conceptual schema given above, it applies the mapping

rules to have the following data logical model.

CUSTOMER (CodeCus, Fname, Lname, Birth D, Adress)

PRODUCT (CodeProd, Type, UnitPrice, CodeSupp)

PAPER(CodeProd, Width, Height)

PEN(CodeProd, Color)

SUPPLIER (CodeSupp, NameSupp)

ORDER (CodeCus, CodeProd, Date, Amount)

We can see that each class is represented by a

relation. The ORDER association class is also

represented by a relation, with adding the customer

code and the supplier code as attributes in the ORDER

relation. The 1-N association between supplier and

product is translated by adding the supplier code to the

PRODUCT relation. We add the Type discriminator to

the PRODUCT relation. We add also the code of

PRODUCT superclass to PAPER and PEN relations.

Now, WeSerBuilder generates the source code of

web service which allows the manipulation of a data

base named Stock and represented by the previous

DLM. Next, we present an extract of the generated

code source.

import java.io.*;

import java.sql.*;

public class Stock {

 public Stock() { }

 private static Connection dbCon;

 static String Tab[][]=new String[10][2];

 static Connection connect() throws

ClassNotFoundException, SQLException {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 dbCon =

DriverManager.getConnection("jdbc:odbc:Stock","","");

 return dbCon;

 }

 static void close() throws SQLException {

 dbCon.close();

 }

 public static int Inserer(int CodeSupp, String NameSupp)

throws SQLException, ClassNotFoundException {

 dbCon=connect(); int rs = 0;

 try {

 Statement s = dbCon.createStatement();

 rs= s.executeUpdate("INSERT INTO Supplier

 (CodeSupp, NameSupp) VALUES (" + CodeSupp +", '"

 + NameSupp +"')");

 }catch(SQLException e) {}

 close();

return rs; }

…

This part of the source code contains: java API

declaration, class constructor, declaration of the used

variables, connection and closing functions of the data

base and a function which allows the insertion of one

supplier.

6. Conclusion and Future Work

Reengineering is the process of analyzing a subject

system to identify the system components and their

interrelationships, and to create representations of the

system in an improved or a new form. The work we

have described in this paper focuses clearly on the

latter goal. The basic idea underlying our work is to

reverse-engineering the existing data driven web

application to create representations at a higher level

of abstraction, then we apply mapping rules to create a

new web service with the same functionalities of the

initial web application. In this paper, we proposed a

fundamental framework, called WA2WS, for web

service construction from existing web applications by

combining a reverse-engineering approach first and a

forward engineering approach after.

The strong point of the reverse-engineering process

is that it relies on a very rich semantic reference which

is the domain ontology. However, it focuses on

removing presentation design and recovering

structural information from only HTML interface of

the existing web Application. As future work, we have

to investigate also the code source to have not only

static abstraction but also dynamic one. The forward

engineering process must be enhanced by new rules

for implementing dynamic aspect.

Customer

CodeCus

Fname
Lname

Birth D
Adress

Product

CodeProd

UnitPrice

Order

Date

Amount

Paper

Width

Height

Pen

 Color

Supplier

CodeSupp

NameSupp

* *

*

1
Provide

 364 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

The work reported in this paper is clearly work in

progress, but we believe that the results of our initial

experimentation are quite promising, and we continue

to develop and evaluate this process.

References

[1] Bouchiha D., Malki M., and Benslimane S.,

“Ontology Based Web Application Reverse

Engineering Approach,” INFOCOMP Journal of

Computer Science, vol. 6, no. 1, pp. 37-46, 2007.

[2] Eleni S., Judi T., and Gina S., “Constructing

XML Speaking Wrappers for WEB Applications

Towards an Interoperating WEB,” in Proceedings

of the 7
th
 Working Conference on Reverse

Engineering, Australia, pp. 59-68, 2000.

[3] Gruber T., “A Translation Approach to Portable

Ontology Specifications,” Knowledge Acquisition

vol. 5, no. 2, pp. 199-220, 1993.

[4] Hoang P., Takahiro K., and Tetsuo H., “Web

Service Gateway a Step Forward to e-Business,”

in Proceedings of the 2004 IEEE International

Conference on Web Services (ICWS'04), Japan,

pp. 648-655, 2004.

[5] Jen-Yao C., Kwei-Jay L., and Richard G., “Web

Services Computing: Advancing Software

Interoperability,” Computer Journal of IEEE, vol.

26, no. 4, pp. 35-37, 2003.

[6] Jianzhi L. and Hongji Y., “Towards Evolving

Web Sites into Grid Services Environment,” in

Proceedings of the 7
th
 IEEE International

Symposium on Web Site Evolution (WSE’05), UK,

pp. 1171-1187, 2005.

[7] Michiaki T. and Kenichi T., “Decomposition and

Abstraction of Web Applications for Web Service

Extraction and Composition,” in Proceedings of

the 2006 IEEE International Conference on Web

Services (ICWS 2006), USA, pp. 859-868, 2006.

[8] Robert B., Georg G., Marcus H., and Wolfgang

S., “Interactively Adding Web Service Interfaces

to Existing Web Applications,” in Proceedings of

Symposium on Applications and the Internet

(SAINT'04), California, pp. 74-74, 2004.

[9] Stefano C., Piero F., and Maristella M.,

“Conceptual Modeling of Data Intensive Web

Applications,” Computer Journal of IEEE

Internet Computing, vol. 6, no. 4, pp. 20-30,

2002.

[10] Yingtao J. and Eleni S., “Towards Reengineering

Web Sites to Web Services Providers,” in

Proceedings of the 8
th
 European Conference on

Software Maintenance and Reengineering

(CSMR’04), England, pp. 296-305, 2004.

Bouchiha Djelloul received his MS

degree in computer science from the

University of Sidi Bel Abbes in

2003. Now he is currently a

researcher in the Department of

Computer Science, University of

Saida, Algeria. His research interests

include: data base reverse engineering, web reverse

engineering, semantic web service and ontology

engineering.

Malki Mimoun received the BS

degree in computer science from

Sidi Bel Abbes University, Algeria,

in 1993, and the PhD degree in

2003. He jointed the faculty of the

Department of Computer Science as

a Lector. He became an Assistant

Professor in the Department of Computer Science,

Sidi Bel Abbes University since August 2004.

Mostefai Abd El Kader received

his MS degree in computer science

from the University of Sidi Bel

Abbes in 2007. Currently, he is a

researcher in the Department of

Computer Science, University of

Saida, Algeria. His research

interests include: wrapper generation, wrapper

maintenance, semantic web service and ontology

engineering.

