
394 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

Clustering Items in Different Data

Sources Induced by Stability

Jhimli Adhikari
1
, Pralhad Rao

2
, and Animesh Adhikari

3

1
Department of Computer Science, Narayan Zantye College, India

2
Department of Computer Scence and Tecnology, India

3
Department of Computer Science, Chowgule College, India

Abstract: Many multi-branch companies transact from different branches. Each branch of such a company maintains a

separate database over time. The variation of sales of an item over time is an important issue. Thus, we introduce the notion of

stability of an item. Stable items are useful in making many strategic decisions for a company. Based on the degree of stability

of an item, we design an algorithm for clustering items in different data sources. We have proposed the notion of best cluster

by considering average degree of variation of a class. Also, we have designed an alternative algorithm to find best cluster

among items in different data sources. Experimental results are provided on three transactional databases.

Keywords: Clustering, data mining, dispersion, multiple databases, stability.

Received March 12, 2007; accepted May 20, 2008

1. Introduction

Due to the liberalization of government policies across

the globe, the number of multi-branch companies is

increasing over time. Many multi-branch companies

deal with multiple databases. Thus, the study of data

mining on multiple databases is an important issue.

Data mining and knowledge discovery on multiple

databases has been recently recognized [1], [17] as an

important area of research in data mining community.

Many of these multi-branch companies also deal

with transactional time-stamped data. Transactional

data collected over time at no particular frequency is

called transactional time-stamped data [11]. Some

examples of transactional time-stamped data are point

of sales data, inventory data, and trading data. Little

work has been reported on the area of mining multiple

transactional time-stamped databases. Many important

and useful applications might involve transactional

time-stamped data.

All the transactions in a branch might get stored

locally. A transaction could be viewed as a collection of

items with a unique identifier. An interesting

characteristic of an item is its variation of sales over

time. The items having less variation of sales over time

are useful in devising strategies for a company. Thus it

is important to study such items. In the following

example, we consider a few sample time series of

supports corresponding to different items.

Example 1: let i
th
 series be the time series of supports

corresponding to item xi, for i = 1, 2, 3, 4, 5.

(1) .03, .20, .31, .11, .07, .35, .82, .62, .44, .13

(2) .19, .20, .18, .21, .20, .20, .19, .18, .21, .20

(3) .05, .11, .07, .20, .16, .12, .13, .08, .17, .10

(4) .03, .04, .03, .07, .08, .12, .09, .15, .17, .12

(5) .04, .04, .03, .05, .04, .06, .04, .05, .06, .05

Among the support series corresponding to

different items, we observe that the variation of sales

corresponding to item x5 is the least. Thus, the

company would prefer to devise strategy based on

item x5.

 Rest of the paper is organized as follows. We

discuss related work in section 2. In section 3, we

propose a model of mining multiple transactional

time-stamped databases. We state our problem in

section 4. In section 5, we design an algorithm for

clustering of items in multiple databases.

Experimental results are provided in section 6.

2. Related Work

Liu et al. [12] have proposed stable association rules

based on testing of hypothesis. In this case, the

distribution of test statistic under null hypothesis is

normal for large sample size. Thus, the stable

association rules are determined based on some

assumptions. Due to these reasons, we define stable

items based on the concept of stationary time series

data [6].

In the context of interestingness measures, Tan et

al. [14] have described several key properties of

twenty one interestingness measures proposed in

statistics, machine learning and data mining literature.

Wu et al. [16] have proposed two similarity measures

for clustering a set of databases.
Zhang et al. [19] have proposed an efficient and

scalable data clustering method BIRCH based on a

Clustering Items in Different Data Sources Induced by Stability 395

new in-memory data structure called CF-tree. Estivill-

Castro and Yang [7] have proposed an algorithm that
remains efficient, generally applicable, multi-

dimensional but is more robust to noise and outliers.

Jain et al. [10] have presented an overview of pattern

clustering methods from a statistical pattern recognition

perspective, with a goal of providing useful advice and

references to fundamental concepts accessible to the

broad community of clustering practitioners. In this

paper, we cluster items in multiple databases based on

supports of items. Thus, the above algorithms might not

be suitable under this framework.

Yang and Shahabi [18] have proposed an algorithm

to determine the stationarity of multivariate time series

data for improving the efficiency of many correlation

based data analysis.

Zhang et al. [20] designed a local pattern analysis

for mining multiple databases. Zhang et al. [21] studied

various issues related to multi-database mining.

3. A Model Of Multiple Transactional Time

Stamped Databases

Consider a multi-branch company that has n branches.

Let Di be the transactional time-stamped database

corresponding to i
th
 branch, for i = 1, 2, …, n. Web sites

and transactional databases contain a large amount of

time-stamped data related to an organization’s suppliers

and / or customers over time. Mining these types of

time-stamped data could help business leaders make

better decisions by listening to their suppliers or

customers via their transactions collected over time

[11]. We propose a model of mining global patterns in

multi-databases over time.

 Adhikari and Rao [2] have proposed an extended

model of mining multiple databases using local pattern

analysis. The limitation of this model is that it provides

approximate global pattern. Thus, we propose a new

model of mining global patterns in multiple

transactional time-stamped databases. The proposed

model in Figure 1 has a set of interfaces and a set of

layers. Each interface is a set of operations that

produces dataset(s) (or, knowledge) based on the lower

layer dataset(s). There are five distinct interfaces of the

proposed model of synthesizing global patterns from

local patterns. The function of each interface is

described below. Interface 2/1 cleans / transforms /

integrates / reduces data at the lowest layer. By

applying these procedures we get processed database

from the original database. In addition, interface 2/1

applies a filtering algorithm on each database for

separating relevant data from outlier data. E.g., if we

are interested in studying the durable items then the

transactions containing only non-durable items could be

treated as outlier transactions. Also, it loads data into

the respective data warehouse. At interface 3/2, each

processed database PDi is partitioned into k time

databases DTij, where DTij is the processed database (if

available) for the j
th
 time slot at the i

th
 branch, for j =

1, 2, …, k, and i = 1, 2, …, n. The j
th
 time databases of

all branches are merged into a single time database

DTj, for j = 1, 2, …, k. A traditional data mining

technique could be applied on database DTj at the

interface 5/4, for j = 1, 2, …, k. Let PBj be pattern base

corresponding to the time database DTj, for j = 1, 2,

…, k. Finally, all the pattern bases are processed for

synthesizing knowledge or, making decision at the

interface 6/5. Other undirected lines in Figure 1 are

assumed to be directed from bottom to top. The

proposed model of mining global patterns over time is

efficient, since we get the exact global patterns in

multiple databases over time.

In layer 4, we have collection of all time databases.

If any one of these databases is too large to apply a

traditional data mining technique then this data mining

model would fail. In this situation, we could apply an

appropriate sampling technique to reduce the size of a

database. Thus, we get approximate patterns over

time.

Figure 1. A model of mining global patterns in multiple

transactional time-stamped databases.

4. Problem Statement

With reference to Figure 1, let DTj be the database

corresponding to the j
th
 year, for j = 1, 2, …, k. Each

of these databases corresponds to a specific period of

time. Thus, we could call them as time databases.

Each of these time databases is mined using a

traditional data mining technique [9], [4]. For the

specific requirement of this problem, we need to mine

only items in the time databases. Let I be the set of all

items in these databases. Each itemset X in a database

D is associated with a statistical measure, called

support [3], denoted by supp(X, D). The support of an

itemset is defined as the fraction of transactions

containing the itemset. The variation of sales of an

item over the time is an important issue in determining

stability of the item. Stable items are useful in many

applications, e.g., stable items could be useful to

promote sales of other items. Modeling with stable

item is more justified than modeling with unstable

item.

396 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

Let µs(x)(t) be the mean support of item x in the

database DT1, DT2, …, DTt. Thus, µs(x)(t) is obtained by

the following formula:

µs(x)(t)= ())size(DT)size(DT)DT supp(x, i

t

1 iii

t

1 i == ∑×∑ ,

t =1, 2, …, k (1)

Let σ(µs(x)) be the standard deviation of µs(x)(t), for t

= 1, 2, …, k. We call σ(µs(x)) as the variFexapation of

means corresponding to support of x. Let γs(x)(t, t + h)

be the autocovariance of supp(x, DTt) at lag h, for t = 1,

2, …, k-1. Thus, γs(x)(t, t + h) is obtained by the

following formula:

γs(x)(t,t+h)=

()

()

 µ−

 µ−∑

+

=
(k) DT x,supp

(k) DT x,supp
k

1

s(x)ht

s(x)t
h-k
1 t

 (2)

σ(γs(x)(t, t + h)) be the standard deviation of γs(x)(t, t +

h), for h = 1, 2, … , k-1. We call this σ(γs(x)(t, t + h)) as

variation of autocovariances corresponding to support

of x. We have chosen standard deviation as a measure

of dispersion [5]. Standard deviation and mean

deviation about mean are relevant measures of

dispersion. These measures take into account of

variation due to each support unlike the measure range.

Skewness, being a descriptive measure of dispersion is

not suitable in this context. Before we define stability

of an item, we study the following time series of

supports corresponding to an item. In the following

example, we compute σ(µ) and σ(γ) of support series

corresponding to different items.

Example 2: we continue with Example 1. The

variations of means and autocovariances of above

series are given as follows: (1) σ(µ) = 0.09342, σ(γ) =

0.01234, (2) σ(µ) = 0.00230, σ(γ) = 0.00002, (3) σ(µ) =

0.02351, σ(γ) = 0.00039, (4) σ(µ) = 0.02114, σ(γ) =

0.00076, (5) σ(µ) = 0.0027986, σ(γ) = 0.0000124. We

observe that the value of total variation, σ(µ) + σ(γ), is

the least corresponding to item x5.

We define stable items based on the concept of

stationary time series data [6]. In finding σ(µ), we first

compute a set of means of support values. Then we

compute standard deviation of these mean values. Thus,

we find standard deviation of a set of fractions. In

finding σ(γ), we first compute a set of autocovariances

of support values. Then we compute standard deviation

of these autocovariances. An autocovariance of

supports is an average of a set of squared fractions.

Thus, we find standard deviation of a set of squared

fractions. So, σ(µ) ≥ σ(γ). In fact, σ(γ) is close to 0.

Thus, we define our first measure of stability stable1 as

follows.

Definition 1: an item x is stable if σ(µs(x)) ≤ δ, where

δ is user defined maximum threshold.

More strictly, we may wish to impose restrictions on

both σ(µ) and σ(γ). Thus we define our second

measure of stability stable2 as follows.

Definition 2: an item x is stable if σ(µs(x)) + σ(γs(x))

≤ δ, where δ is user defined maximum threshold.

In Definition 2, the expression σ(µs(x)) + σ(γs(x)) is the

determining factor of stability of an item. We define

degree of variation of an item x as follows.

 degOfVar(x) = σ(µs(x))+ σ(γs(x)) (3)

Higher value of degOfVar implies lower degree of

stability of the item. Based on above discussion, we

state our problem as follows.

Let Di and DTj be the databases corresponding to i
th

branch and j
th
 year of a multi-branch company as

depicted in Figure 1, respectively for i = 1, 2, …, n,

and j = 1, 2, …, k. Each of the time (year) databases

has been mined using a traditional data mining

technique. Based on the mining results, degree of

variation of each item has been computed as discussed

above. Find the best non-trivial partition (if it exists)

of the items in D1, D2, …, Dn based on degree of

variation of an item.

A partition [13] is a specific type of clustering.

Formal definition of non-trivial partition is given in

section 4.

5. Clustering Items

The proposed clustering technique is based on the

notion of degree of stability of an item. Again, the

degree of stability is based on the variations of means

and autocovariances. The clustering technique requires

computing the degree of variation for each item in the

databases. Let I be the set of all items in the databases.

Given a set of yearly databases, the difference in

variations between every pair of items could be

expressed by a square matrix, called difference in

variation (diffInVar). We construct diffInVar as

follows.

diffInVar(i, j) = | degOfVar (xi) – degOfVar(xj) |,

xi, xj ∈ I. (4)

In the following example, we compute diffInVar

corresponding to Example 1.

Example 3: we continue here with Example 1.

Matrix diffInVar is given as follows.

0018.0020.0001.0102.0

018.00002.0019.0084.0

020.0002.00021.0082.0

001.0019.0021.00103.0

102.0084.0082.0103.00

=diffInVar

Matrix diffInVar is symmetric square matrix. We shall

use this matrix for clustering items in multiple

databases.

Intuitively, if the difference in variations between

two items is close to zero then they may be put in the

Clustering Items in Different Data Sources Induced by Stability 397

same class. Before clustering the items, we define a

class as follows.

Definition 3: let I = {i1, i2, …, ip} be the set of items.

A class formed at the level of difference in variation α

is defined as follows.

=⊆

∈≤≥⊆
=

1 |X| I, X : X

X x,for x ,) x,(x and 2, |X| I, X : X
)(I,

2121 α
α

degOfVar
class

Based on the above definition of a class, we define a

clustering as follows.

Definition 4: let I = {i1, i2, …, ip} be the set of items.

Let π(I, α) be a clustering of items in I at the level of

difference in variation α. Then, π(I, α) = {X: X∈ ρ(I),

and X is a class(I, α) }, where ρ(I) is the power set of I.

During the clustering process we may like to impose

the restriction that each item belongs to at least one

class. This restriction makes a clustering complete. We

define a complete clustering as follows.

Definition 5: let I = {i1, i2, …, ip} be the set of items.

Let π (I, α) = {C1 (I, α), C2 (I, α), …, Cm (I, α)},

where Ck (I, α) is the k-th class of the cluster π, for k =

1, 2, …, m. π is complete, if)(I,Ck

m

1 k α=U = I.

In a complete clustering, two classes may have

common items. We may be interested in finding out a

cluster containing mutually exclusive classes. A

mutually exclusive cluster could be defined as follows.

Definition 6: let I = {i1, i2, …, ip} be the set of items.

Let π (I, α) = {C1 (I, α), C2 (I, α), …, Cm (I, α)}, where

Ck (I, α) is the k-th class of the cluster π, for k = 1, 2,

…, m. π is mutually exclusive if Ci (I, α) ∩ Cj (I, α) =

φ, i ≠ j, and 1 ≤ i, j ≤ m.

We may be interested in finding out such a mutually

exclusive and complete cluster. A partition of a set of

items I is defined as follows.

Definition 7: let π (I, α) be a mutually exclusive and

complete cluster of a set of items I at the level of

difference in variation α. π (I, α) is called a non-trivial

partition if 1 < |π| < m.

A partition is a cluster. But a cluster is not

necessarily be a partition. In the next section, we find

the best non-trivial partition (if it exists) of a set of

items. The items in a class are similar with respect to

their variations. We are interested in the classes of a

partition where the variations of items are less. The

items in these classes are useful in devising strategies

for the company. Thus, we define average degree of

variation adv, of a class as follows.

Definition 8: let C be a class of partition π. Then,

Σ= ∈ (x).
|C|

1
)|(C C x degOfVaradv π

5.1. Finding the Best Non-Trivial Partition

With reference to Example 1, we arrange all non-zero

and distinct values of diffInVar in non-decreasing order

for finding all the non-trivial partitions, for 1 ≤ i < j ≤ 5.

The arranged values of diffInVar are given as follows:

0.001, 0.002, 0.018, 0.019, 0.020, 0.021, 0.082, 0.084,

0.102, 0.103. We get two non-trivial partitions at α =

0.001, and 0.002. The partitions are given as follows:

π0.001
 = {{x1}, {x2, x5}, {x3}, {x4}}, and π0.002

 = {{x1},

{x2, x5}, {x3, x4}}. We observe that at different levels

of α we have different partitions. We would like to

find the best partition among these partitions. The best

partition is based on the principle of minimizing the

intra-class variation and minimizing the inter-class

similarity. Intra-class variation and inter-class

similarity are defined as follows.

Definition 9: the intra-class variation intra-var of a

partition π at the level α is defined as follows.

ΣΣ= <∈= |)(x-)(x|)(π jix x;C x,x

|π|

1k jikji
degOfVardegOfVarintra-var

α

 Definition 10: the inter-class similarity inter-sim of a

partition π at the level α is defined as follows.

inter-sim(πα)=

ΣΣ ∈∈<∈)}(x),(x{ minimum jiC x,C xqp π;c,c q jpiqp
degOfVardegOfVar

 The best partition among a set of partitions is

selected on the basis of goodness value of a partition.

Goodness measure goodness, of a partition is defined

as follows.

Definition 11: the goodness of a partition π at level

α is defined as follows: goodness(πα) = intra-var(πα)
+ inter-sim(πα) - |πα|, where |πα| is the number of

classes of π.

We have subtracted |πα| from the sum of intra-class

variation and inter-class similarity to remove the bias

of goodness value of a partition. Better partition is

obtained at higher goodness value. We would like to

partition the set of items in Example 1 using above

goodness measure.

Example 4: with reference to Example 2, we

calculate goodness value of each of the non-trivial

partitions. intra-var(π0.001
) = 0.001, inter-sim(π0.001

) =

0.081, and |π0.001
| = 4. Thus, goodness(π0.001

) = -3.916.

intra-var(π0.002
) = 0.003, inter-sim(π0.002

) = 0.06, and

|π0.002
| = 3. Thus, goodness(π0.002

) = -2.937.

The goodness value corresponding to the partition

π0.002
 is the maximum. Thus, the partition π0.002

 is the

best among the non-trivial partitions. Let us return

back to Example 1. There are five series of supports

corresponding to five items. Based on variation among

the supports in a series, we could partition the series as

follows: {series 1}, {series 2, series 5}, {series 3,

series 4}. Hence, we get the following partition: {x1},

{x2, x5}, {x3, x4}. The proposed clustering technique

also identifies the same partition as the best partition.

Thus, it verifies the correctness of the proposed

clustering technique. adv ({x1}| π0.002
) = 0.105, adv

({x2, x5}| π0.002
) = 0.0025 and adv ({x3, x4}| π0.002

) =

0.022. We find that the average degree of variation of

{x2, x5} is the least among the classes of π0.002
. Thus,

the items x2 and x5 are most suitable among all the

items in the given databases for making strategies of

the company. We design an algorithm for finding best

398 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

non-trivial partition of items in multiple databases. First

we describe different data structures used in designing

an algorithm for finding the best partition of items. For

each item there are k supports corresponding to k

different years.

We maintain m × k supports for m items in array

supports. The i
th
 row of supports stores supports

corresponding to i
th
 item for k years, for i = 1, 2,…, m.

Let means be a two dimensional array such that the i-th

row stores means of supports corresponding to different

years for i
th
 item, for i = 1, 2,…, m. Let autocovariances

be a two dimensional array such that the i
th
 row stores

autocovariances of supports corresponding to different

lags for i
th
 item, for i = 1, 2,…, m. For year j, we

compute mean value of supports for year 1 to j. Thus

we get different mean values for different years. Let

stdDevMeans be the standard deviation of these mean

values. For year j, we also compute autocovariances of

supports for year 1 to j at different lags. Thus we get

different autocovariances for different lags

corresponding to a year. Let stdDevAutocovars be the

standard deviation of these autocovariances. The

degrees of variation of different items are stored in

array degInVar. Variable S is a one dimensional array

containing
m
C2 difference in variations. adv is a one

dimensional array which stores the average degree of

variation for the items in each class. The algorithm is

presented below.

Algorithm 1: find best non-trivial partition (if it

exists) of items in multiple databases.

Procedure BestPartition (m, supports)
Inputs:

m: number of items

supports: array of supports of different items corresponding

to different years

Outputs:

Best non-trivial partition (if it exists) of items in multiple

databases

01: for i = 1 to m do

02: compute means(i) using formula (1) at different

 years;

03: let stdDevMeans = standard deviation of mean

 values for different years;

04: compute autocovariance(i) using formula (2) at

 different time lags;

05: let stdDevAutocovars = standard deviation of

 autocovariances;

06: compute degOfVar(i) = stdDevMeans +

 stdDevAutocovar;

07: end for

08: for row = 1 to m do

09: for col = (row + 1) to m do

10: compute diffInVar(row, col) using formula (4);

11: end for

12: end for

13: sort distinct elements in the upper triangle of

 diffInVar in non-decreasing order into S;

14: let k = 1; let maxGoodness = -9999; π = φ;

15: while (k ≤ |S|) do

16: let curRow = 1; let curClass = 1;

17: for i = 2 to m do

18: classLabel(i) = 0;

19: end for

20: let classLabel(1) = 1;

21: let curDiffVar = S(k);

22: for col = curRow + 1 to m do

23: if (diffInVar(curRow, col) ≤ curDiffVar) then

24: if (classLabel (col) = 0) then

25: classLabel(col) = curClass;

26: else if (classLabel (col) ≠ curClass) then

27: partition does not exist at this level;

28: go to line 49;

29: end if

30: end if

31: end for

32: increased curRow by 1;

33: if (classLabel(curRow) = 0) then

34: increased curClass by 1;

35: classLabel(curRow) = curClass;

36: else curclass = classLabel(curRow);

37: end if

38: if (curRow ≤ m) go to line 22; end if

39: let j = 0;

40: while ((classLabel(j) ≠ 0) and (j < m)) do

41: increase j by 1;

42: end while

43: if (j = m + 1) then

44: if (maxGoodness < goodness value of current

 partition) then

45: maxGoodness = goodness value of current

 partition;

46: store current partition into π;

47: end if

48: end if

49: increase k by1;

50: end while

51: return π;

end procedure

In this paragraph, we explain different lines of

above algorithm. Algorithm 1 computes degreeOfVar

for all items using lines 1-7. Matrix diffInVar is

constructed using lines 8-12. We check the existence

of partition at every value in S. We start checking

partition by assigning the first item to classLabel 1.

Also, clustering process is performed row by row,

starting from row number 1. At the i
th
 row, all the

items greater than i are classified. During this process,

if a labeled item gets another label then we conclude

that partition does not exist at the current level. After

increasing the current row by 1 we check the class

label corresponding to current row. Each row

corresponds to an item in the database. If the current

row is not labeled yet then we increase the class label
by 1. If the goodness value of the current partition is
less than the goodness value of another partition then

the current partition is ignored.

Lemma 1: algorithm 1 executes in O(m
4
) time.

Proof: line 2 takes O(k) time to compute means(i), for

some i = 1, 2, …, m. Also, line 3 takes O(k) time to

compute standard deviation of mean values. To

Clustering Items in Different Data Sources Induced by Stability 399

compute formula 2, we require O(k) time. Thus, line 4

takes O(k
2
) time. In line 5, we compute standard

deviation of k-1 autocovariance values. Thus, line 5 takes

O(k
2
) time. The for-loop in lines 1-7 repeat m times. Thus,

the for-loop in lines 1-7 take O(m×k
2
) time. For

computing diffInVar at a given row and column, it takes

O(1) time. Thus, lines 8-12 take O(m
2
) time. There are

maximum
m-1

C2 elements in the upper triangle of

diffInVar. Thus, line 13 takes O(m
2
×log(m)) time. The

while-loop at line 15 repeats maximum
m-1

C2 times. Each

of the loops at lines 17, 22, and 40 takes O(m) time. To

store a partition it takes O(m) time. To compute goodness

value for a particular partition, it takes O(m
2
) time. Thus,

the lines 15-50 take O(m
4
) time. The time complexity of

bestPartition algorithm is O(m
4
).

In finding stable items in multiple databases, a class

having minimal average degree of variation in the best

partition might not be a best class at a given degree of

stability. In many applications, we may need to find stable

items at a given degree of stability. In this case, it might

not be a requirement that the stable items need to form a

class of a non trivial partition. Thus, the question of

finding a partition might not arise always. To find such a

class we shall follow a different approach.

5.2. Finding a Best Class

Before finding a best class, we first define the concept

of best class as follows.

Definition 12: let C be a class of items. C is called a

best class at the level of difference in variation α if (i)

|x – y| ≤ α, for x, y ∈ C, (ii) adv(C) is the minimum

among all classes of maximal size, and (iii) C has a

maximal size.

In Lemma 1, we show that it might not be possible

to find two classes of maximal size having the same

average degree of variation.

Lemma 2: best class is unique.

Proof: let x1, x2,…, xm be the items sorted on non-

decreasing degree of variation. We conclude that item

x1 has maximum stability, and the item xm has

minimum stability. At level α, let the stabilities of

items x1, x2,…, xk be less than or equal to α, and the

stabilities of items xk+1, xk+2, …, xm be greater than α,

for 1 ≤ k ≤ m. The best class has least average degree of

variation. Also, the difference in variation of two items

in the class is less than or equal to α. Thus, {x1, x2,…,

xk} forms the best class. We are not concerned whether

it becomes a member of a partition. adv({x1, x2,…,

xk}) is the minimum, and hence best class is unique.

We might be interested in finding best class of items

in multiple databases. We use array class to hold the

best class of items. In the following, we provide an

algorithm in finding best class of items in multiple

databases.

Algorithm 2: find the best class of items in multiple

databases induced by stability.

Procedure BestClass (m, α, supports)

Inputs:

m: number of items

α: level of degree of variation

supports: array of supports of different items corresponding

to different years

Outputs:

Best class of items in multiple databases

01: perform lines 01 – 07 of Algorithm 1;

02: sort array degOfVar in non-decreasing order;

03: let class (1) = degOfVar(1); let count = 1;

 let avgVar = 0;

04: for i = 2 to m do

05: class (i) = -1;

06: end for

07: for i = 2 to m do

08: if ((degOfVar(i) – degOfVar(1)) ≤ α)

09: class (i) = degOfVar(i);

10: increase count by 1;

11: avgVar = avgVar + degOfVar(i);

12: end for

13: avgVar = avgVar / count;

14: return (class, count, avgVar);

end procedure

In this paragraph, we explain different lines of

above algorithm. We compute degree of variations for

all items using lines 1-7 and store them in array

degreeOfVar in non-decreasing order. The best class

would contain the first item of degreeOfVar. The item

with least degreeOfVar is assigned to class 1. An item

i is included in the best class if (degOfVar(i) –

degOfVar(1)) ≤ α. Algorithm 2 returns best class

class, the number of items in the best class count, and

the average degree of variation of the best class

avgVar.

Lemma 3. Algorithm 2 executes in maximum

{ O(m×k
2
), O(m×log(m)) }time.

Proof. Line 1 executes in O(m×k
2
) time [Lemma 2],

where k is the number of years. There are two for

loops in algorithm 2 apart from loops placed in line 1.

Each of these loops executes in O(m) time. Line 2

takes O(m×log(m)) time. Thus, the lemma follows.

6. Experiments

We have carried out several experiments to study the

effectiveness of our approach. All the experiments have

been implemented on a 1.6 GHz Pentium IV with 256

MB of memory, using the software visual C++ (version

6.0). We present the experimental results using two real

datasets mushroom [8], and ecoli [15]. Dataset ecoli is a

subset of ecoli database and it has been processed for the

purpose of conducting experiments.

Table 1. Dataset characteristics.

 Dataset NT ALT AFI NI

Mushroom 8124 24.00000 1624.80000 120

Ecoli 336 7.00000 25.83517 91

Random-68 3000 5.46033 280.98529 68

400 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

Let DB, NT, ALT, AFI, and NI denote database, the

number of transactions, average length of a transaction,

average frequency of an item, and number of items

respectively. We present some characteristics of these

datasets in Table 1. Each dataset has been divided into

10 databases, called input databases, for the purpose of

conducting experiments. The input databases obtained

from mushroom and ecoli are named as Mi, and Ei, for i

= 0, 1, …, 9. We present some characteristics of the

input databases in Table 2.

In Table 3, we present top stable items in multiple

databases. In Table 4, we present five best classes and

their average degree of variation for a given value of α

for each database.
The best partition of items in mushroom dataset is

obtained at level 0.24760. The amount of intra

variation, inter similarity, and goodness value are

413.59719, 377.58308, and 789.18027 respectively.

The best partition contains two classes. The best class

is given as follows: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,

114, 115, 116, 117, 118, 119 }.

It has average degree of variation 0.05682. The best

partition of items in ecoli dataset is obtained at level

0.05632. The amount of intra variation, inter similarity,

and goodness value are 44.17961, 185.60862, and

227.78823 respectively. The best partition contains two

classes. The best class is given as follows: {0, 1, 3, 4, 5,

6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38,

39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 92, 94, 99, 100}. It has average

degree of variation 0.01829.

The best partition of items in random-68 dataset is

obtained at level 0.013670. The amount of intra

variation, inter similarity, and goodness value are

4.627779, 18.608446, and 21.236225 respectively.

The best partition contains two classes. The best class

is given as follows: {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68}.

It has average degree of variation 0.006382.

We have studied execution time with respect to

number of data sources. We observe in Figures 2, 3

and 4 that the execution time increases as the number

of data sources increases.

Figure 2. Execution time vs. number of data sources obtained from

mushroom.

Figure 3. Execution time vs. number of data sources obtained from

ecoli.

DB NT ALT AFI NI DB NT ALT AFI NI

M0 812 24.00000 295.27272 66 M5 812 24.00000 221.45454 88

M1 812 24.00000 286.58823 68 M6 812 24.00000 216.53333 90

M2 812 24.00000 249.84615 78 M7 812 24.00000 191.05882 102

M3 812 24.00000 282.43478 69 M8 812 24.00000 229.27058 85

M4 812 24.00000 259.84000 75 M9 816 24.00000 227.72093 86

E0 33 7.00000 4.62000 50 E5 33 7.00000 3.91525 59

E1 33 7.00000 5.13333 45 E6 33 7.00000 3.50000 66

E2 33 7.00000 5.50000 42 E7 33 7.00000 3.91525 59

E3 33 7.00000 4.81250 48 E8 33 7.00000 3.39706 68

E4 33 7.00000 3.39706 68 E9 39 7.00000 4.55000 60

R0 300 5.59000 28.67647 68 R5 300 5.14000 26.67647 68

R1 300 5.41667 28.00000 68 R6 300 5.51000 28.35294 68

R2 300 5.36000 27.64706 68 R7 300 5.49667 28.33823 68

R3 300 5.54333 28.45588 68 R8 300 5.53667 28.47059 68

R4 300 5.53333 28.38235 68 R9 300 5.47667 28.23530 68

Table 2. Time database characteristics.

0

200

400

600

800

1000

4 5 6 7 8 9 10

Number of data sources

E
x

ec
u
ti

o
n

 t
im

e
(s

ec
.)

0

500

1000

1500

2000

2500

3000

4 5 6 7 8 9 10

Number of data sources

E
x

ec
u
ti

o
n

 t
im

e
(s

ec
.)

Clustering Items in Different Data Sources Induced by Stability 401

7

9

11

13

15

17

4 5 6 7 8 9 10

Number of data sources

E
x
e
c
u
tio
n
 t
im
e
(s
e
c
.)

Figure 4. Execution time vs. number of data sources obtained from

random-68 data.

7. Conclusion

Stable items are useful for modeling various strategies

of an organization. Thus, it is necessary to identify

stable items. We propose the notion of degree of

stability of an item. We design an algorithm for

clustering items in multiple databases based on degree

of stability. The proposed technique is useful and

effective.

References

[1] Adhikari A. and Rao R., “Enhancing Quality of

Knowledge Synthesized from Multi-Database

Mining,” Computer Journal of Pattern

Recognition Letters, vol. 28, no. 16, pp. 2312-

2324, 2007.

[2] Adhikari A. and Rao R., “Synthesizing Heavy

Association Rules from Different Real Data

Sources,” Computer Journal of

Pattern Recognition Letters, vol. 29, no. 1, pp.

59-71, 2008.

[3] Agrawal R., Imielinski T., and Swami A.,

“Mining Association Rules between Sets of

Items in Large Databases,” in Proceedings ACM

SIGMOD Conference Management of Data,

Canada, pp. 207-216, 1993.

[4] Agrawal R. and Srikant R., “Fast Algorithms for

Mining Association Rules,” in Proceedings of

20
th
 Very Large Databases (VLDB) Conference,

Santiago, pp. 487-499, 1994.

[5] Bluman G., Elementary Statistics: A Step by Step

Approach, McGraw Hill, 2006.

[6] Brockwell J. and Richard D., Introduction to

Time Series and Forecasting, Springer, 2002.

[7] Estivill V. and Yang J., “Fast and Robust

General Purpose Clustering Algorithms,”

Computer Journal of Data Mining and

Knowledge Discovery, vol. 8, no. 2, pp. 127-150,

2004.

[8] Frequent Itemset Mining Dataset Repository,

http://fimi.cs.helsinki.fi/data, 2004.

[9] Han J., Pei J., and Yiwen Y., “Mining Frequent

Patterns without Candidate Generation,” in

Proceedings ACM SIGMOD Conference

Management of Data, New York, pp. 1-12,

2000.

Mushroom

Ecoli Random-68

Item

degOfVar

Item

degOfVar

Item

degOfVar

85 0.00000

1 0.00129 42 0.00121

8 0.00018

99 0.00181 41 0.00182

12 0.00027

91 0.00225 37 0.00231

75 0.00030

4 0.00252 67 0.00272

89 0.00030

94 0.00363 11 0.00281

62 0.00090

15 0.00385 45 0.00287

22 0.00104

12 0.00389 18 0.00301

20 0.00107

19 0.00402 56 0.00310

82 0.00124

3 0.00404 3 0.00310

33 0.00141

10 0.00443 28 0.00312

Mushroom Ecoli Random-68

αααα Items adv αααα Items adv αααα Items adv

0.00025 {85, 8} 0.00009 0.0020 {1, 99, 91, 4} 0.00196 0.0010 {42,41} 0.00152

0.0003 {85, 8, 12, 75, 89} 0.00021 0.0025 {1, 99, 91, 4, 94} 0.00230 0.0015 {42,41,37} 0.00178

0.0010 {85, 8, 12, 75, 89, 62} 0.00033 0.0030 {1, 99, 91, 4, 94, 15,12,19, 3} 0.00303 0.0017 {42,41,37,67,11,45} 0.00229

0.0012 {85, 8, 12, 75, 89, 62, 22, 20} 0.00051 0.0035
{1, 99, 91, 4, 94, 15,12,19,

3,10,6}
0.00331 0.0020 {42,41,37,67,11,45,18,56,3, 28} 0.00261

0.0014
{85, 8, 12, 75, 89, 62, 22,20,

82}
0.00059 0.0050

{1, 99, 91, 4, 94, 15,12,19,
3,10,6,18}

0.00354 0.0022
{42,41,37,67,11,45,18,56,3,28,7,

53}
0.00271

Table 4. Five best classes in multiple databases.

Table 3. Top 10 stable item in multiple database.

402 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

[10] Jain K., Murty N., and Flynn J., “Data Clustering:

A Review,” Computer Journal of ACM

Computing Surveys, vol. 31, no. 3, pp. 264-323,

1999.

[11] Leonard M. and Wolfe B., “Mining Transactional

and Time Series Data,” SUGI 30 Proceedings,

UK, pp. 080-30, 2005.

[12] Liu B., Ma Y., and Lee R., “Analyzing the

Interestingness of Association Rules from the

Temporal Dimension,” IEEE International

Conference on Data Mining, Silicon Valley, 377-

384, 2001.

[13] Liu L., Elements of Discrete Mathematics,

McGraw-Hill, 1985.

[14] Tan N., Kumar V., and Srivastava J., “Selecting

the Right Interestingness Measure for Association

Patterns,” in Proceedings of SIGKDD

Conference, Canada, pp. 32-41, 2002.

[15] UCI ML Repository Content Summary, http://

www.ics.uci.edu/~mlearn /MLSummary.html,

2002.

[16] Wu X., Zhang C., and Zhang S., “Database

Classification for Multi Database Mining,”

Computer Journal of Information Systems, vol.

30, no. 1, pp.71-88, 2005.

[17] Wu X. and Zhang S., “Synthesizing High-

Frequency Rules from Different Data Sources,”

Computer Journal of IEEE Transactions on

Knowledge and Data Engineering, vol. 14, no .2,

pp. 353-367, 2003.

[18] Yang K. and Shahabi C., “On the Stationarity of

Multivariate Time Series for Correlation-Based

Data,” in Proceedings of ICDM, Italy, pp. 805-

808, 2005.

[19] Zhang T., Ramakrishnan R., and Livny M.,

“BIRCH: A New Data Clustering Algorithm and

Its Applications,” Computer Journal of Data

Mining and Knowledge Discovery, vol. 1, no. 2,

pp. 141-182, 1997.

[20] Zhang S., Wu X., and Zhang C., “Multi Database

Mining,” Computer Journal of IEEE

Computational Intelligence Bulletin, vol. 2, no. 1,

pp. 5-13, 2003.

[21] Zhang S., Zhang C., and Wu X., Knowledge

Discovery in Multiple Databases, Springer, 2004.

Jhimli Adhikari received Master of

computer application from Jadavpur

University, Kolkata. At present, she is

a lecturer in the Department of

Computer Science, Narayan Zantye

College, India. Currently, she is part-

time PhD student in the Department

of Computer Science and Technology, Goa University,

India.

Pralhad Rao received Master of

science and PhD degrees, both in

mathematics, from Karnataka

University and Indian Institute of

Technology, Mumbai, respectively.

At present, he is a professor in the

Department of Computer Science

and Technology, Goa University, India. His areas of

interest include graph theory, knowledge discovery

and data mining and data warehousing. He has twenty

seven published papers.

Animesh Adhikari received Master

of technology in computer science

and PhD in computer science and

technology degrees from Indian

Statistical Institute and Goa

University, respectively. At present,

he is a lecturer in the Department of

Computer Science, S P Chowgule College, India. His

areas of interest include data mining and knowledge

discovery, decision support systems, database systems

and artificial intelligence. He has twelve papers

published in different international journals and

conferences.

