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Abstract: Many multi-branch companies transact from different branches. Each branch of such a company maintains a 
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1. Introduction 

Due to the liberalization of government policies across 

the globe, the number of multi-branch companies is 

increasing over time. Many multi-branch companies 

deal with multiple databases. Thus, the study of data 

mining on multiple databases is an important issue. 

Data mining and knowledge discovery on multiple 

databases has been recently recognized [1], [17] as an 

important area of research in data mining community.  

Many of these multi-branch companies also deal 

with transactional time-stamped data. Transactional 

data collected over time at no particular frequency is 

called transactional time-stamped data [11]. Some 

examples of transactional time-stamped data are point 

of sales data, inventory data, and trading data. Little 

work has been reported on the area of mining multiple 

transactional time-stamped databases. Many important 

and useful applications might involve transactional 

time-stamped data.  

All the transactions in a branch might get stored 

locally. A transaction could be viewed as a collection of 

items with a unique identifier. An interesting 

characteristic of an item is its variation of sales over 

time. The items having less variation of sales over time 

are useful in devising strategies for a company. Thus it 

is important to study such items. In the following 

example, we consider a few sample time series of 

supports corresponding to different items. 

Example 1: let i
th
 series be the time series of supports 

corresponding to item xi, for i = 1, 2, 3, 4, 5. 

(1) .03, .20, .31, .11, .07, .35, .82, .62, .44, .13 

(2) .19, .20, .18, .21, .20, .20, .19, .18, .21, .20 

(3) .05, .11, .07, .20, .16, .12, .13, .08, .17, .10 

(4) .03, .04, .03, .07, .08, .12, .09, .15, .17, .12 

(5) .04, .04, .03, .05, .04, .06, .04, .05, .06, .05 

Among the support series corresponding to 

different items, we observe that the variation of sales 

corresponding to item x5 is the least. Thus, the 

company would prefer to devise strategy based on 

item x5.  

   Rest of the paper is organized as follows. We 

discuss related work in section 2. In section 3, we 

propose a model of mining multiple transactional 

time-stamped databases. We state our problem in 

section 4. In section 5, we design an algorithm for 

clustering of items in multiple databases. 

Experimental results are provided in section 6. 

 

2. Related Work  

Liu et al. [12] have proposed stable association rules 

based on testing of hypothesis. In this case, the 

distribution of test statistic under null hypothesis is 

normal for large sample size. Thus, the stable 

association rules are determined based on some 

assumptions. Due to these reasons, we define stable 

items based on the concept of stationary time series 

data [6]. 

In the context of interestingness measures, Tan et 

al. [14] have described several key properties of 

twenty one interestingness measures proposed in 

statistics, machine learning and data mining literature. 

Wu et al. [16] have proposed two similarity measures 

for clustering a set of databases. 
Zhang et al. [19] have proposed an efficient and 

scalable data clustering method BIRCH based on a 
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new in-memory data structure called CF-tree. Estivill-

Castro and Yang [7] have proposed an algorithm that 
remains efficient, generally applicable, multi-

dimensional but is more robust to noise and outliers. 

Jain et al. [10] have presented an overview of pattern 

clustering methods from a statistical pattern recognition 

perspective, with a goal of providing useful advice and 

references to fundamental concepts accessible to the 

broad community of clustering practitioners. In this 

paper, we cluster items in multiple databases based on 

supports of items. Thus, the above algorithms might not 

be suitable under this framework.  

Yang and Shahabi [18] have proposed an algorithm 

to determine the stationarity of multivariate time series 

data for improving the efficiency of many correlation 

based data analysis.  

Zhang et al. [20] designed a local pattern analysis 

for mining multiple databases. Zhang et al. [21] studied 

various issues related to multi-database mining.  

 

3. A Model Of Multiple Transactional Time 

Stamped Databases 

Consider a multi-branch company that has n branches. 

Let Di be the transactional time-stamped database 

corresponding to i
th
 branch, for i = 1, 2, …, n. Web sites 

and transactional databases contain a large amount of 

time-stamped data related to an organization’s suppliers 

and / or customers over time. Mining these types of 

time-stamped data could help business leaders make 

better decisions by listening to their suppliers or 

customers via their transactions collected over time 

[11]. We propose a model of mining global patterns in 

multi-databases over time.  

   Adhikari and Rao [2] have proposed an extended 

model of mining multiple databases using local pattern 

analysis. The limitation of this model is that it provides 

approximate global pattern. Thus, we propose a new 

model of mining global patterns in multiple 

transactional time-stamped databases. The proposed 

model in Figure 1 has a set of interfaces and a set of 

layers. Each interface is a set of operations that 

produces dataset(s) (or, knowledge) based on the lower 

layer dataset(s). There are five distinct interfaces of the 

proposed model of synthesizing global patterns from 

local patterns. The function of each interface is 

described below. Interface 2/1 cleans / transforms / 

integrates / reduces data at the lowest layer. By 

applying these procedures we get processed database 

from the original database. In addition, interface 2/1 

applies a filtering algorithm on each database for 

separating relevant data from outlier data. E.g., if we 

are interested in studying the durable items then the 

transactions containing only non-durable items could be 

treated as outlier transactions. Also, it loads data into 

the respective data warehouse. At interface 3/2, each 

processed database PDi is partitioned into k time 

databases DTij, where DTij is the processed database (if 

available) for the j
th
 time slot at the i

th
 branch, for j = 

1, 2, …, k, and i = 1, 2, …, n. The j
th
 time databases of 

all branches are merged into a single time database 

DTj, for j = 1, 2, …, k. A traditional data mining 

technique could be applied on database DTj at the 

interface 5/4, for j = 1, 2, …, k. Let PBj be pattern base 

corresponding to the time database DTj, for j = 1, 2, 

…, k. Finally, all the pattern bases are processed for 

synthesizing knowledge or, making decision at the 

interface 6/5. Other undirected lines in Figure 1 are 

assumed to be directed from bottom to top. The 

proposed model of mining global patterns over time is 

efficient, since we get the exact global patterns in 

multiple databases over time.  

In layer 4, we have collection of all time databases. 

If any one of these databases is too large to apply a 

traditional data mining technique then this data mining 

model would fail. In this situation, we could apply an 

appropriate sampling technique to reduce the size of a 

database. Thus, we get approximate patterns over 

time. 

 
 

Figure 1. A model of mining global patterns in multiple 

transactional time-stamped databases. 

 

4. Problem Statement 

With reference to Figure 1, let DTj be the database 

corresponding to the j
th
 year, for j = 1, 2, …, k. Each 

of these databases corresponds to a specific period of 

time. Thus, we could call them as time databases. 

Each of these time databases is mined using a 

traditional data mining technique [9], [4]. For the 

specific requirement of this problem, we need to mine 

only items in the time databases. Let I be the set of all 

items in these databases. Each itemset X in a database 

D is associated with a statistical measure, called 

support [3], denoted by supp(X, D). The support of an 

itemset is defined as the fraction of transactions 

containing the itemset. The variation of sales of an 

item over the time is an important issue in determining 

stability of the item. Stable items are useful in many 

applications, e.g., stable items could be useful to 

promote sales of other items. Modeling with stable 

item is more justified than modeling with unstable 

item. 
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Let µs(x)(t) be the mean support of item x in the 

database DT1, DT2, …, DTt. Thus, µs(x)(t) is obtained by 

the following formula: 

µs(x)(t)= ( ) )size(DT)size(DT )DT supp(x, i

t

1  iii

t

1  i == ∑×∑ ,  

t =1, 2, …, k                                               (1) 
 

Let σ(µs(x)) be the standard deviation of µs(x)(t), for t 

= 1, 2, …, k. We call σ(µs(x)) as the variFexapation of 

means corresponding to support of x. Let γs(x)(t, t + h) 

be the autocovariance of supp(x, DTt) at lag h, for t = 1, 

2, …, k-1. Thus, γs(x)(t, t + h) is obtained by the 

following formula: 

γs(x)(t,t+h)= 
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σ(γs(x)(t, t + h)) be the standard deviation of  γs(x)(t, t + 

h), for h = 1, 2, … , k-1. We call this σ(γs(x)(t, t + h)) as 

variation of autocovariances corresponding to support 

of x. We have chosen standard deviation as a measure 

of dispersion [5]. Standard deviation and mean 

deviation about mean are relevant measures of 

dispersion. These measures take into account of 

variation due to each support unlike the measure range. 

Skewness, being a descriptive measure of dispersion is 

not suitable in this context. Before we define stability 

of an item, we study the following time series of 

supports corresponding to an item. In the following 

example, we compute σ(µ) and σ(γ) of support series 

corresponding to different items. 

Example 2: we continue with Example 1. The 

variations of means and autocovariances of above 

series are given as follows: (1) σ(µ) = 0.09342, σ(γ) = 

0.01234, (2) σ(µ) = 0.00230, σ(γ) = 0.00002, (3) σ(µ) = 

0.02351, σ(γ) = 0.00039, (4) σ(µ) = 0.02114, σ(γ) = 

0.00076, (5) σ(µ) = 0.0027986, σ(γ) = 0.0000124. We 

observe that the value of total variation, σ(µ) + σ(γ), is 

the least corresponding to item x5.  

We define stable items based on the concept of 

stationary time series data [6]. In finding σ(µ), we first 

compute a set of means of support values. Then we 

compute standard deviation of these mean values. Thus, 

we find standard deviation of a set of fractions. In 

finding σ(γ), we first compute a set of autocovariances 

of support values. Then we compute standard deviation 

of these autocovariances. An autocovariance of 

supports is an average of a set of squared fractions. 

Thus, we find standard deviation of a set of squared 

fractions. So, σ(µ) ≥ σ(γ). In fact, σ(γ) is close to 0. 

Thus, we define our first measure of stability stable1 as 

follows.  

Definition 1: an item x is stable if σ(µs(x)) ≤ δ, where 

δ  is user defined maximum threshold.  

More strictly, we may wish to impose restrictions on 

both σ(µ) and σ(γ). Thus we define our second 

measure of stability stable2 as follows. 

Definition 2: an item x is stable if σ(µs(x)) + σ(γs(x)) 

≤  δ, where δ is user defined maximum threshold.  

In Definition 2, the expression σ(µs(x)) + σ(γs(x)) is the 

determining factor of stability of an item. We define 

degree of variation of an item x as follows. 

          degOfVar(x) = σ(µs(x))+ σ(γs(x))                       (3)  

Higher value of degOfVar implies lower degree of 

stability of the item. Based on above discussion, we 

state our problem as follows.  

Let Di and DTj be the databases corresponding to i
th
 

branch and j
th
 year of a multi-branch company as 

depicted in Figure 1, respectively for i = 1, 2, …, n, 

and  j = 1, 2, …, k. Each of the time (year) databases 

has been mined using a traditional data mining 

technique. Based on the mining results, degree of 

variation of each item has been computed as discussed 

above. Find the best non-trivial partition (if it exists) 

of the items in D1, D2, …, Dn based on degree of 

variation of an item. 

A partition [13] is a specific type of clustering. 

Formal definition of non-trivial partition is given in 

section 4.  

 

5. Clustering Items 

The proposed clustering technique is based on the 

notion of degree of stability of an item. Again, the 

degree of stability is based on the variations of means 

and autocovariances. The clustering technique requires 

computing the degree of variation for each item in the 

databases. Let I be the set of all items in the databases. 

Given a set of yearly databases, the difference in 

variations between every pair of items could be 

expressed by a square matrix, called difference in 

variation (diffInVar). We construct diffInVar as 

follows.  

diffInVar(i, j) = | degOfVar (xi) – degOfVar(xj) |,  

xi, xj ∈ I.                                                          (4) 

In the following example, we compute diffInVar 

corresponding to Example 1.  

Example 3: we continue here with Example 1. 

Matrix diffInVar is given as follows.  

 

0018.0020.0001.0102.0

018.00002.0019.0084.0

020.0002.00021.0082.0

001.0019.0021.00103.0

102.0084.0082.0103.00























=diffInVar

 

Matrix diffInVar is symmetric square matrix. We shall 

use this matrix for clustering items in multiple 

databases.  

Intuitively, if the difference in variations between 

two items is close to zero then they may be put in the 
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same class. Before clustering the items, we define a 

class as follows.  

Definition 3: let I = {i1, i2, …, ip} be the set of items. 

A class formed at the level of difference in variation α 

is defined as follows. 





=⊆

∈≤≥⊆
=   

1  |X| I,  X : X

X   x,for x , ) x,(x    and 2,  |X| I, X : X
  )(I,

2121 α
α

degOfVar
class

Based on the above definition of a class, we define a 

clustering as follows. 

Definition 4: let I = {i1, i2, …, ip} be the set of items. 

Let π(I, α) be a clustering of items in I at the level of 

difference in variation α. Then, π(I, α) = {X: X∈  ρ(I), 

and X is a class(I, α) }, where ρ(I) is the power set of I.  

During the clustering process we may like to impose 

the restriction that each item belongs to at least one 

class. This restriction makes a clustering complete. We 

define a complete clustering as follows. 

Definition 5: let I = {i1, i2,  …, ip} be the set of items. 

Let π (I, α) = {C1 (I, α), C2 (I, α),  …, Cm (I, α)}, 

where Ck (I, α) is the k-th class of the cluster π, for k = 

1, 2, …, m. π is complete, if )(I,Ck

m

1 k α=U = I.  

In a complete clustering, two classes may have 

common items. We may be interested in finding out a 

cluster containing mutually exclusive classes. A 

mutually exclusive cluster could be defined as follows. 

Definition 6: let I = {i1, i2,  …, ip} be the set of items. 

Let π (I, α) = {C1 (I, α), C2 (I, α), …, Cm (I, α)}, where 

Ck (I, α) is the k-th class of the cluster π, for k = 1, 2, 

…, m. π is mutually exclusive if  Ci (I, α) ∩ Cj (I, α)  = 

φ,   i ≠ j, and 1 ≤ i, j ≤ m.  

We may be interested in finding out such a mutually 

exclusive and complete cluster. A partition of a set of 

items I is defined as follows. 

Definition 7: let π (I, α) be a mutually exclusive and 

complete cluster of a set of items I at the level of 

difference in variation α. π (I, α) is called a non-trivial 

partition if 1 < |π| < m.  

A partition is a cluster. But a cluster is not 

necessarily be a partition. In the next section, we find 

the best non-trivial partition (if it exists) of a set of 

items. The items in a class are similar with respect to 

their variations. We are interested in the classes of a 

partition where the variations of items are less. The 

items in these classes are useful in devising strategies 

for the company. Thus, we define average degree of 

variation adv, of a class as follows. 

Definition 8: let C be a class of partition π. Then, 

Σ= ∈   (x).
|C|

1
)|(C C x degOfVaradv π  

 

5.1. Finding the Best Non-Trivial Partition 

With reference to Example 1, we arrange all non-zero 

and distinct values of diffInVar in non-decreasing order 

for finding all the non-trivial partitions, for 1 ≤ i < j ≤ 5. 

The arranged values of diffInVar are given as follows: 

0.001, 0.002, 0.018, 0.019, 0.020, 0.021, 0.082, 0.084, 

0.102, 0.103. We get two non-trivial partitions at α = 

0.001, and 0.002. The partitions are given as follows: 

π0.001
 = {{x1}, {x2, x5}, {x3}, {x4}}, and π0.002

 = {{x1}, 

{x2, x5}, {x3, x4}}. We observe that at different levels 

of α we have different partitions. We would like to 

find the best partition among these partitions. The best 

partition is based on the principle of minimizing the 

intra-class variation and minimizing the inter-class 

similarity. Intra-class variation and inter-class 

similarity are defined as follows. 

Definition 9: the intra-class variation intra-var of a 

partition π at the level α is defined as follows. 

ΣΣ= <∈= |)(x-)(x|)(π jix x;C   x,x

|π|

1k jikji
degOfVardegOfVarintra-var

α

   Definition 10: the inter-class similarity inter-sim of a 

partition π at the level α is defined as follows.  

inter-sim(πα)= 

ΣΣ ∈∈<∈ )}(x ),(x{ minimum jiC   x,C   xqp π;c,c q jpiqp
degOfVardegOfVar

    The best partition among a set of partitions is 

selected on the basis of goodness value of a partition. 

Goodness measure goodness, of a partition is defined 

as follows. 

Definition 11: the goodness of a partition π at level 

α is defined as follows: goodness(πα) = intra-var(πα) 
+ inter-sim(πα) - |πα|, where |πα| is the number of 

classes of π.  

We have subtracted |πα| from the sum of intra-class 

variation and inter-class similarity to remove the bias 

of goodness value of a partition. Better partition is 

obtained at higher goodness value. We would like to 

partition the set of items in Example 1 using above 

goodness measure. 

Example 4: with reference to Example 2, we 

calculate goodness value of each of the non-trivial 

partitions. intra-var(π0.001
) = 0.001, inter-sim(π0.001

) = 

0.081, and |π0.001
| = 4. Thus, goodness(π0.001

) = -3.916.  

intra-var(π0.002
) = 0.003, inter-sim(π0.002

) = 0.06, and 

|π0.002
| = 3. Thus, goodness(π0.002

) = -2.937.  

The goodness value corresponding to the partition 

π0.002
 is the maximum. Thus, the partition π0.002

 is the 

best among the non-trivial partitions. Let us return 

back to Example 1. There are five series of supports 

corresponding to five items. Based on variation among 

the supports in a series, we could partition the series as 

follows: {series 1}, {series 2, series 5}, {series 3, 

series 4}. Hence, we get the following partition: {x1}, 

{x2, x5}, {x3, x4}. The proposed clustering technique 

also identifies the same partition as the best partition. 

Thus, it verifies the correctness of the proposed 

clustering technique. adv ({x1}| π0.002
) = 0.105,  adv 

({x2, x5}| π0.002
) = 0.0025  and adv ({x3, x4}| π0.002

) =  

0.022. We find that the average degree of variation of 

{x2, x5} is the least among the classes of π0.002
. Thus, 

the items x2 and x5 are most suitable among all the 

items in the given databases for making strategies of 

the company. We design an algorithm for finding best 
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non-trivial partition of items in multiple databases. First 

we describe different data structures used in designing 

an algorithm for finding the best partition of items. For 

each item there are k supports corresponding to k 

different years.  

We maintain m × k supports for m items in array 

supports. The i
th
 row of supports stores supports 

corresponding to i
th
 item for k years, for i = 1, 2,…, m. 

Let means be a two dimensional array such that the i-th 

row stores means of supports corresponding to different 

years for i
th
 item, for i = 1, 2,…, m. Let autocovariances 

be a two dimensional array such that the i
th
 row stores 

autocovariances of supports corresponding to different 

lags for i
th
 item, for i = 1, 2,…, m. For year j, we 

compute mean value of supports for year 1 to j. Thus 

we get different mean values for different years. Let 

stdDevMeans be the standard deviation of these mean 

values. For year j, we also compute autocovariances of 

supports for year 1 to j at different lags. Thus we get 

different autocovariances for different lags 

corresponding to a year. Let stdDevAutocovars be the 

standard deviation of these autocovariances. The 

degrees of variation of different items are stored in 

array degInVar. Variable S is a one dimensional array 

containing 
m
C2 difference in variations. adv is a one 

dimensional array which stores the average degree of 

variation for the items in each class. The algorithm is 

presented below. 

Algorithm 1: find best non-trivial partition (if it 

exists) of items in multiple databases. 

Procedure BestPartition (m, supports) 
Inputs: 

m: number of items 

supports: array of supports of different items corresponding 

to different years  

Outputs:  

Best non-trivial partition (if it exists) of items in multiple 

databases 

01:  for i = 1 to m do 

02:    compute means(i) using formula (1) at different 

          years; 

03:    let stdDevMeans = standard deviation of mean 

         values for different years; 

04:    compute autocovariance(i) using formula (2) at  

         different time lags; 

05:    let stdDevAutocovars = standard deviation of 

         autocovariances;  

06:    compute degOfVar(i) = stdDevMeans +  

         stdDevAutocovar; 

07:  end for 

08:  for row = 1 to m do 

09:     for col = (row + 1) to m do 

10:       compute diffInVar(row, col) using formula (4); 

11:     end for 

12:  end for 

13:  sort distinct elements in the upper triangle of 

       diffInVar in non-decreasing order into S; 

14:  let k = 1; let maxGoodness = -9999; π = φ; 

15:  while (k ≤ |S|) do 

16:     let curRow = 1; let curClass = 1; 

17:     for i = 2 to m do 

18:        classLabel(i) = 0; 

19:     end for 

20:     let classLabel(1) = 1; 

21:     let curDiffVar = S(k); 

22:     for col = curRow + 1 to m do 

23:        if (diffInVar(curRow, col) ≤ curDiffVar) then 

24:           if (classLabel (col) = 0) then 

25:             classLabel(col) = curClass; 

26:           else if (classLabel (col) ≠ curClass) then 

27:              partition does not exist at this level; 

28:              go to line 49; 

29:           end if 

30:          end if 

31:     end for 

32:     increased curRow by 1; 

33:     if (classLabel(curRow) = 0) then 

34:        increased curClass by 1;  

35:        classLabel(curRow) = curClass;  

36:     else curclass = classLabel(curRow); 

37:     end if 

38:     if (curRow ≤ m) go to line 22; end if 

39:     let j = 0; 

40:     while ((classLabel(j) ≠ 0) and (j < m)) do  

41:        increase j by 1;  

42:     end while  

43:     if (j = m + 1) then 

44:        if (maxGoodness < goodness value of current 

             partition) then 

45:           maxGoodness = goodness value of current  

                partition; 

46:           store current partition into π; 

47:       end if 

48:    end if 

49:    increase k by1; 

50:  end while 

51:  return π; 

end procedure 

 

In this paragraph, we explain different lines of 

above algorithm. Algorithm 1 computes degreeOfVar 

for all items using lines 1-7. Matrix diffInVar is 

constructed using lines 8-12. We check the existence 

of partition at every value in S. We start checking 

partition by assigning the first item to classLabel 1. 

Also, clustering process is performed row by row, 

starting from row number 1. At the i
th
 row, all the 

items greater than i are classified. During this process, 

if a labeled item gets another label then we conclude 

that partition does not exist at the current level. After 

increasing the current row by 1 we check the class 

label corresponding to current row. Each row 

corresponds to an item in the database. If the current 

row is not labeled yet then we increase the class label 
by 1. If the goodness value of the current partition is 
less than the goodness value of another partition then 

the current partition is ignored. 

Lemma 1: algorithm 1 executes in O(m
4
) time.  

Proof: line 2 takes O(k) time to compute means(i), for 

some i = 1, 2, …, m. Also, line 3 takes O(k) time to 

compute standard deviation of mean values. To 
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compute formula 2, we require O(k) time. Thus, line 4 

takes O(k
2
) time. In line 5, we compute standard 

deviation of k-1 autocovariance values. Thus, line 5 takes 

O(k
2
) time. The for-loop in lines 1-7 repeat m times. Thus, 

the for-loop in lines 1-7 take O(m×k
2
) time. For 

computing diffInVar at a given row and column, it takes 

O(1) time. Thus, lines 8-12 take O(m
2
) time. There are 

maximum 
m-1

C2 elements in the upper triangle of 

diffInVar. Thus, line 13 takes O(m
2
×log(m)) time. The 

while-loop at line 15 repeats maximum 
m-1

C2 times. Each 

of the loops at lines 17, 22, and 40 takes O(m) time. To 

store a partition it takes O(m) time. To compute goodness 

value for a particular partition, it takes O(m
2
) time. Thus, 

the lines 15-50 take O(m
4
) time. The time complexity of 

bestPartition algorithm is O(m
4
).  

In finding stable items in multiple databases, a class 

having minimal average degree of variation in the best 

partition might not be a best class at a given degree of 

stability. In many applications, we may need to find stable 

items at a given degree of stability. In this case, it might 

not be a requirement that the stable items need to form a 

class of a non trivial partition. Thus, the question of 

finding a partition might not arise always. To find such a 

class we shall follow a different approach.  

 

5.2. Finding a Best Class 

Before finding a best class, we first define the concept 

of best class as follows.   

Definition 12: let C be a class of items. C is called a 

best class at the level of difference in variation α if (i) 

|x – y| ≤ α, for x, y ∈ C, (ii) adv(C) is the minimum 

among all classes of maximal size, and (iii) C has a 

maximal size.  

In Lemma 1, we show that it might not be possible 

to find two classes of maximal size having the same 

average degree of variation.  

Lemma 2: best class is unique. 

Proof: let x1, x2,…, xm be the items sorted on non-

decreasing degree of variation. We conclude that item 

x1 has maximum stability, and the item xm has 

minimum stability. At level α, let the stabilities of 

items x1, x2,…, xk be less than or equal to α, and the 

stabilities of items xk+1, xk+2, …, xm be greater than α, 

for 1 ≤ k ≤ m. The best class has least average degree of 

variation. Also, the difference in variation of two items 

in the class is less than or equal to α. Thus, {x1, x2,…, 

xk} forms the best class. We are not concerned whether 

it becomes a member of a partition.  adv({x1, x2,…, 

xk}) is the minimum, and hence best class is unique.  

We might be interested in finding best class of items 

in multiple databases. We use array class to hold the 

best class of items. In the following, we provide an 

algorithm in finding best class of items in multiple 

databases. 

Algorithm 2: find the best class of items in multiple 

databases induced by stability. 

Procedure BestClass (m, α, supports) 

Inputs:  

m: number of items 

α:  level of degree of variation 

supports: array of supports of different items corresponding 

to different years  

Outputs:  

Best class of items in multiple databases  

01:  perform lines 01 – 07 of Algorithm 1; 

02:  sort array degOfVar in non-decreasing order; 

03:  let class (1) = degOfVar(1); let count = 1;  

       let   avgVar = 0; 

04:  for i = 2 to m do 

05:     class (i) = -1;  

06:  end for 

07:  for i = 2 to m do 

08:     if ((degOfVar(i) – degOfVar(1)) ≤ α) 

09:        class (i) = degOfVar(i);  

10:        increase count by 1; 

11:        avgVar = avgVar + degOfVar(i); 

12:  end for 

13:  avgVar = avgVar / count; 

14:  return (class, count, avgVar); 

end procedure 

In this paragraph, we explain different lines of 

above algorithm. We compute degree of variations for 

all items using lines 1-7 and store them in array 

degreeOfVar in non-decreasing order. The best class 

would contain the first item of degreeOfVar. The item 

with least degreeOfVar is assigned to class 1. An item 

i is included in the best class if (degOfVar(i) – 

degOfVar(1)) ≤ α. Algorithm 2 returns best class 

class, the number of items in the best class count, and 

the average degree of variation of the best class 

avgVar.  

Lemma 3. Algorithm 2 executes in maximum             

{ O(m×k
2
),  O(m×log(m)) }time.  

Proof. Line 1 executes in O(m×k
2
) time [Lemma 2], 

where k is the number of years. There are two for 

loops in algorithm 2 apart from loops placed in line 1. 

Each of these loops executes in O(m) time. Line 2 

takes O(m×log(m)) time. Thus, the lemma follows. 

 

6. Experiments 

We have carried out several experiments to study the 

effectiveness of our approach. All the experiments have 

been implemented on a 1.6 GHz Pentium IV with 256 

MB of memory, using the software visual C++ (version 

6.0). We present the experimental results using two real 

datasets mushroom [8], and ecoli [15]. Dataset ecoli is a 

subset of ecoli database and it has been processed for the 

purpose of conducting experiments. 
 

Table 1. Dataset characteristics. 
 

  Dataset NT ALT AFI NI 

Mushroom 8124 24.00000 1624.80000 120 

Ecoli 336 7.00000 25.83517 91 

Random-68 3000 5.46033 280.98529 68 
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Let DB, NT, ALT, AFI, and NI denote database, the 

number of transactions, average length of a transaction, 

average frequency of an item, and number of items 

respectively. We present some characteristics of these 

datasets in Table 1. Each dataset has been divided into 

10 databases, called input databases, for the purpose of 

conducting experiments. The input databases obtained 

from mushroom and ecoli are named as Mi, and Ei, for i 

= 0, 1, …, 9. We present some characteristics of the 

input databases in Table 2. 

In Table 3, we present top stable items in multiple 

databases. In Table 4, we present five best classes and 

their average degree of variation for a given value of α 

for each database.   
The best partition of items in mushroom dataset is 

obtained at level 0.24760. The amount of intra 

variation, inter similarity, and goodness value are 

413.59719, 377.58308, and 789.18027 respectively. 

The best partition contains two classes.  The best class 

is given as follows: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 

74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 

89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 

114, 115, 116, 117, 118, 119 }. 

It has average degree of variation 0.05682. The best 

partition of items in ecoli dataset is obtained at level 

0.05632. The amount of intra variation, inter similarity, 

and goodness value are 44.17961, 185.60862, and 

227.78823 respectively. The best partition contains two 

classes. The best class is given as follows: {0, 1, 3, 4, 5, 

6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 

 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 

39, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 

72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 

87, 88, 89, 90, 91, 92, 94, 99, 100}. It has average 

degree of variation 0.01829. 

 

 

 

The best partition of items in random-68 dataset is 

obtained at level 0.013670. The amount of intra 

variation, inter similarity, and goodness value are 

4.627779, 18.608446, and 21.236225 respectively. 

The best partition contains two classes. The best class 

is given as follows:  {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68}.  

It has average degree of variation 0.006382. 

We have studied execution time with respect to 

number of data sources. We observe in Figures  2, 3 

and 4 that the execution time increases as the number 

of data sources increases. 
 

 
 

Figure 2. Execution time vs. number of data sources obtained from 

mushroom. 

                              

 
 

Figure 3. Execution time vs. number of data sources obtained from 

ecoli. 

 

 

 

DB NT ALT AFI NI DB NT ALT AFI NI 

M0 812 24.00000 295.27272 66 M5 812 24.00000 221.45454 88 

M1 812 24.00000 286.58823 68 M6 812 24.00000 216.53333 90 

M2 812 24.00000 249.84615 78 M7 812 24.00000 191.05882 102 

M3 812 24.00000 282.43478 69 M8 812 24.00000 229.27058 85 

M4 812 24.00000 259.84000 75 M9 816 24.00000 227.72093 86 

E0 33 7.00000 4.62000 50 E5 33 7.00000 3.91525 59 

E1 33 7.00000 5.13333 45 E6 33 7.00000 3.50000 66 

E2 33 7.00000 5.50000 42 E7 33 7.00000 3.91525 59 

E3 33 7.00000 4.81250 48 E8 33 7.00000 3.39706 68 

E4 33 7.00000 3.39706 68 E9 39 7.00000 4.55000 60 

R0 300 5.59000 28.67647 68 R5 300 5.14000 26.67647 68 

R1 300 5.41667 28.00000 68 R6 300 5.51000 28.35294 68 

R2 300 5.36000 27.64706 68 R7 300 5.49667 28.33823 68 

R3 300 5.54333 28.45588 68 R8 300 5.53667 28.47059 68 

R4 300 5.53333 28.38235 68 R9 300 5.47667 28.23530 68 

Table 2. Time database characteristics. 
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Figure 4. Execution time vs. number of data sources obtained from 

random-68 data. 

 

7. Conclusion 

Stable items are useful for modeling various strategies 

of an organization. Thus, it is necessary to identify 

stable items. We propose the notion of degree of 

stability of an item. We design an algorithm for 

clustering items in multiple databases based on degree 

of stability. The proposed technique is useful and 

effective.  

 

References 

[1] Adhikari A. and Rao R., “Enhancing Quality of 

Knowledge Synthesized from Multi-Database 

Mining,” Computer Journal of Pattern 

Recognition Letters, vol. 28, no. 16, pp. 2312- 

2324, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

[2] Adhikari A. and Rao R., “Synthesizing Heavy 

Association Rules from Different Real Data 

Sources,”    Computer   Journal     of         

Pattern Recognition Letters, vol. 29, no. 1, pp. 

59-71, 2008. 

[3] Agrawal R., Imielinski T., and Swami A., 

“Mining Association Rules between Sets of 

Items in Large Databases,” in Proceedings ACM 

SIGMOD Conference Management of Data, 

Canada, pp. 207-216, 1993. 

[4] Agrawal R. and Srikant R., “Fast Algorithms for 

Mining Association Rules,” in Proceedings of 

20
th
 Very Large Databases (VLDB) Conference, 

Santiago, pp. 487-499, 1994. 

[5] Bluman G., Elementary Statistics: A Step by Step 

Approach, McGraw Hill, 2006. 

[6] Brockwell J. and Richard D., Introduction to 

Time Series and Forecasting, Springer, 2002. 

[7] Estivill V. and Yang J., “Fast and Robust 

General Purpose Clustering Algorithms,” 

Computer Journal of Data Mining and 

Knowledge Discovery, vol. 8, no. 2, pp. 127-150, 

2004. 

[8] Frequent Itemset Mining Dataset Repository, 

http://fimi.cs.helsinki.fi/data, 2004. 

[9] Han J., Pei J., and Yiwen Y., “Mining Frequent 

Patterns without Candidate Generation,” in 

Proceedings ACM SIGMOD Conference 

Management of Data, New York, pp. 1-12, 

2000.    

 

Mushroom 

 

Ecoli Random-68 

Item 

 

degOfVar 

 

Item 

 

degOfVar 

 

Item 

 

degOfVar 

 

85 0.00000 
 

1 0.00129 42 0.00121 

8 0.00018 
 

99 0.00181 41 0.00182 

12 0.00027 
 

91 0.00225 37 0.00231 

75 0.00030 
 

4 0.00252 67 0.00272 

89 0.00030 
 

94 0.00363 11 0.00281 

62 0.00090 

 

15 0.00385 45 0.00287 

22 0.00104 

 

12 0.00389 18 0.00301 

20 0.00107 

 

19 0.00402 56 0.00310 

82 0.00124 

 

3 0.00404 3 0.00310 

33 0.00141 

 

10 0.00443 28 0.00312 

Mushroom Ecoli Random-68 

αααα Items adv αααα Items adv αααα Items adv 

0.00025 {85, 8} 0.00009 0.0020 {1, 99, 91, 4} 0.00196 0.0010 {42,41} 0.00152 

0.0003 {85, 8, 12, 75, 89} 0.00021 0.0025 {1, 99, 91, 4, 94} 0.00230 0.0015 {42,41,37} 0.00178 

0.0010 {85, 8, 12, 75, 89, 62} 0.00033 0.0030 {1, 99, 91, 4, 94, 15,12,19, 3} 0.00303 0.0017 {42,41,37,67,11,45} 0.00229 

0.0012 {85, 8, 12, 75, 89, 62, 22, 20} 0.00051 0.0035 
{1, 99, 91, 4, 94, 15,12,19, 

3,10,6} 
0.00331 0.0020 {42,41,37,67,11,45,18,56,3, 28} 0.00261 

0.0014 
{85, 8, 12, 75, 89, 62, 22,20, 

82} 
0.00059 0.0050 

{1, 99, 91, 4, 94, 15,12,19, 
3,10,6,18} 

0.00354 0.0022 
{42,41,37,67,11,45,18,56,3,28,7,

53} 
0.00271 

 

Table 4. Five best classes in multiple databases. 

Table 3. Top 10 stable item in multiple database. 



402                                                         The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009                                                             

[10] Jain K., Murty N., and Flynn J., “Data Clustering: 

A Review,” Computer Journal of ACM 

Computing Surveys, vol. 31, no. 3, pp. 264-323, 

1999.  

[11] Leonard M. and Wolfe B., “Mining Transactional 

and Time Series Data,” SUGI 30 Proceedings, 

UK, pp. 080-30, 2005. 

[12] Liu B., Ma Y., and Lee R., “Analyzing the 

Interestingness of Association Rules from the 

Temporal Dimension,” IEEE International 

Conference on Data Mining, Silicon Valley,  377-

384, 2001. 

[13] Liu L., Elements of Discrete Mathematics, 

McGraw-Hill, 1985. 

[14] Tan N., Kumar V., and Srivastava J., “Selecting 

the Right Interestingness Measure for Association 

Patterns,” in Proceedings of SIGKDD 

Conference, Canada, pp. 32-41, 2002. 

[15] UCI ML Repository Content Summary, http:// 

www.ics.uci.edu/~mlearn /MLSummary.html, 

2002. 

[16] Wu X., Zhang C., and Zhang S., “Database 

Classification for Multi Database Mining,” 

Computer Journal of Information Systems, vol. 

30, no. 1, pp.71-88, 2005. 

[17] Wu X. and Zhang S., “Synthesizing High-

Frequency Rules from Different Data Sources,” 

Computer Journal of IEEE Transactions on 

Knowledge and Data Engineering, vol. 14, no .2, 

pp. 353-367, 2003. 

[18] Yang K. and Shahabi C., “On the Stationarity of 

Multivariate Time Series for Correlation-Based 

Data,” in Proceedings of ICDM, Italy, pp. 805-

808, 2005. 

[19] Zhang T., Ramakrishnan R., and Livny M., 

“BIRCH: A New Data Clustering Algorithm and 

Its Applications,” Computer Journal of Data 

Mining and Knowledge Discovery, vol. 1, no. 2, 

pp. 141-182, 1997. 

[20] Zhang S., Wu X., and Zhang C., “Multi Database 

Mining,” Computer Journal of IEEE 

Computational Intelligence Bulletin, vol. 2, no. 1, 

pp. 5-13, 2003. 

[21] Zhang S., Zhang C., and Wu X., Knowledge 

Discovery in Multiple Databases, Springer, 2004. 

 

 

Jhimli Adhikari received Master of 

computer application from Jadavpur 

University, Kolkata. At present, she is 

a lecturer in the Department of 

Computer Science, Narayan Zantye 

College, India. Currently, she is part-

time PhD student in the Department 

of Computer Science and Technology, Goa University, 

India.  

 

 

Pralhad Rao received Master of 

science and PhD degrees, both in 

mathematics, from Karnataka 

University and Indian Institute of 

Technology, Mumbai, respectively. 

At present, he is a professor in the 

Department of Computer Science 

and Technology, Goa University, India. His areas of 

interest include graph theory, knowledge discovery 

and data mining and data warehousing. He has twenty 

seven published papers. 

 

 

Animesh Adhikari received Master 

of technology in computer science 

and PhD in computer science and 

technology degrees from Indian 

Statistical Institute and Goa 

University, respectively. At present, 

he is a lecturer in the Department of 

Computer Science, S P Chowgule College, India. His 

areas of interest include data mining and knowledge 

discovery, decision support systems, database systems 

and artificial intelligence. He has twelve papers 

published in different international journals and 

conferences. 

 

 

 

 

 

 

 

 

 

 


