
412 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

Survivable System by Critical Service Recovery

Model: Single Service Analysis

Irving Paputungan and Azween Abdullah

Computer and Information Science Department, University Technology Patroness, Malaysia

Abstract: This paper reported another recovery model to enhance system survivability. The model focuses on how to preserve

the system and resume its critical service while incident occurs by reconfiguring the damaged critical service resources based

on available resources without affecting the stability and functioning of the system. There are three critical requisite

conditions in this recovery model: the number of pre-empted non-critical service resources, the response time of resource

allocation, and the cost of reconfiguration, which are used in some scenarios to find and re-allocate the available resource for

the reconfiguration. To validate the viability of the approach, one instance case is provided. The adoption of fault-tolerance

and survivability using redundancy re-allocation in this recovery model is discussed from a new perspective.

Keywords: Critical service, recovery, resources reconfiguration, survivability.

Received August 16, 2007; accepted May 12, 2008

1. Introduction

System survivability is the ability of a system to

maintain its essential service in a timely manner when

it is suffering from attacks, fault, or accidents [14, 2].

The basic idea of survivability is that the systems can

achieve their critical services and recover the damaged

services as soon as possible when intrusions succeed

[5], even after the main components or the resources

are damaged. The condition of any system is that there

is no absolute security to avoid from failure because of

attacks, faults, or accidents [9]. To ensure the system

delivers services stably and reliably when fault occurs,

we must consider a technique for enhancing system

survivability [6].

Recently, the correlated techniques that ensure

system survivability are mainly from the views of fault

resistance and recognition, which is not satisfying

enough to the basic properties of survivability. [9]

Developed a model that simulates complete episodes

of attacks on network computer systems and the

responses of these systems. This approach has involved

developing a flexible template that can be used to

analyze survivability of network systems. [15]

Proposed a novel quantitative analysis method based

on grey analysis for network survivability. Both of

these techniques assert that the returning of the system

to the normal state should be considered in the future.

Another property of survivability is recovery, an

ability to maintain or restore the essential or critical

service from damage as early as possible to fulfil its

mission as conditions permit. Recovery depends on the

severity of the damage (i.e., how many resources have

been affected), recovery strategies and remaining

undamaged resources that are in place. As long as

system can reconfigure the destroyed resources under

faults, and ultimately keep the critical services running

all along, the system will survive.

In the recovery model, we take the concepts of time

factor [8, 13], cost factor [9, 10, 13], resource re-

allocation/reconfiguration concept [1, 13], and

resource redundancy concept [1, 7, 12], as different

approach in fault tolerance perspective to return the

system back to normal condition. The stability of the

entire system is based on active and accurate

functioning of each and every service nodes. The

system becomes unstable when at least one active

service nodes becomes dysfunctional and it resources

are pre-empted or denied access.

Firstly, the state transition diagram of the system

has been built, which is the simplification of

Popstojanova’s work [4] to describe the behaviour of a

system, then mapping the recovery actions to this

transition model. Since our objective is to recover the

system when incident occurs, we set the system

degrade gracefully when recovery process running

[11]. It is a good thought, because most of the recovery

techniques placed after incident occurred, the system

fails to running. In this paper services and processes

are used interchangeably.

2. Problem Definition

The problem can be described as: there is a Real Time

System (RTS) which has critical services and non-

critical services. Some critical service resources are

destroyed by a fault. To maintain the stability and

mission of the system, the system has adaptive abilities

to recover by re-allocating available resources

dynamically to critical service. The recovery process

Survivable System by Critical Service Recovery Model: Single Service Analysis 413

works under RTS circumstance, hence the duration of

the process is a great concern. The duration included

the response time and the usage time. This work

focuses on the response time of the available resources.

That is the first requisite condition. The problem is to

find out how to reconfigure the critical service

resources which can ensure sustainable operation of

critical services. It brings along to the next requisite

condition, cost. The cost of reconfiguration is

calculated by the number of resources and cost of

resource. It is assumed that error detection

(monitoring) and damage assessment are taken care by

some other mechanism such as control system

architecture [7]. It is assumed that there will be no

further error when a critical service being faulted.

Figure 1 provides a typical example of interconnected

system structure that contains a master resource

controller, some critical services and some non-critical

services, where the recovery could be applied.

Resource reconfiguration computation will be done by

the recovery engine. This paper is limited to single

fault on single critical service analysis. It is also

assumed that there will be no further error when a

critical service being faulted.

Figure 1. Real time system structure.

The critical service differs in three levels: high,

medium and low level depending on its function at the

system. The replacement resources to reconfigure the

damage can be taken from:

• Redundant resources of critical service.

• Unused/idle redundant resources of the system.

• Released/redundant resources of non-critical

service.

• Pre-empted resources of non-critical service that are
currently being used.

To avoid instability of the system and more cost while

reconfiguring, the response time of available resources

should be as quick as possible and the cost of available

resources should be as cheap as possible. Furthermore,

the number of pre-empted non-critical service

resources, if need to be utilized, should be as few as

possible, this is considered the third requisite

condition.

3. The System Model

Figure 2 depicts the state transition diagram which is

used as a framework for describing the behaviour of

the system. The system contains 4 states: good state,

vulnerable state, fault state, and recovery state. The

system moves to vulnerable state if a user violates

security policy to access a resource without

authorization. Vulnerability is the property of the

system, its attendant software and/or hardware, or its

administrative procedures, which causes it to enter

vulnerable state [4]. The system enters fault state when

vulnerability is successfully exploited and the fault

unmasked by simple fault tolerance. In the next state,

recovery state, the system will be recovered. To limit

the damage and protect the system from denial of

service while maintaining the critical services, it sets

into graceful degradation mode. Critical services are

defined as the functions of the system that must be

maintained to meet the system requirements even when

the failures occurred [2]. In order to survive the critical

service, it is critically assumed the recovery process

will always be successful; hence there is no fail state.

Good State

Vulnerable

State

Fault State

Recovery

State

Pre-attack

actions occurs

Exploit begins and

fault unmasked

Recovery action

triggered

System

recovered

Figure 2. State transition diagram.

4. The Recovery Model

It will often be the case that the effects of a fault will

leave the system with greatly reduced resources

(processing services, communications capacity, etc.,)

and substantial changes in the services provided to the

users will be necessary. The ability to tolerate certain

types of fault is the only practical approach to achieve

survivability. In this work, there are several fault types:

single fault, multiple sequential faults, and multiple

concurrent faults for multiple critical services. In this

paper, we only focus on single fault as our basic and

the reconfiguration refers to resource redistribution and

not structural or topological reconfiguration.

414 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

4.1. Reconfiguration Process

Figure 3 described the recovery action that is mapped

into the recovery state. The process starts with

diagnosing the destroyed resources of the critical

services. The diagnosis part will determine where the

damage occurred. The analysis part calculates the

amount of damaged resources. In order to move back

to good state, the available resources to reconfigure

critical services resources must be found and re-

allocated.

Allocate

Analyze

Diagnose
Recovery State

Fault State

Good State

Figure 3. Modules in recovery action.

The process to find the available resource for

reconfiguration is based on the tabular method. The

four types of resources described in previous sections

are defined in three tables, master resources allocation

table, critical services table, and non-critical services

table. These three tables will be created automatically

(dynamic table creation) when the system begins

operation, and will be destroyed when the system cease

to exist by the OS or by another process within the

current system. For the purpose of our discussion we

assume the table creation process is spawned by the

recovery engine.

The master resource allocation Table 1 shows the

total resources currently used and allocated for

redundancy inside the running system. Required

resources means the resources that the system needs to

run all the services i.e., the total of all resources used

by the services, critical and non-critical. Used-

redundant means the redundant resources that are

currently used by the system’s service and unused-

redundant means the idle redundant resources that are

not currently used by the system.

Table 1. Master resource allocation.

Resource S1 S2 Sa

Required (MQR)

Used Redundant (MUR)

Unused Redundant (MUNR)

The critical services resources Table 2 shows the

resources used by the service, redundant resources that

are available for that service, and the resources that are

destroyed by fault.

Table 2. Critical service resource.

Resource R1 R2 Rb

Resource Currently Used (CSCU)

Redundant (CSR)

Damage (CSD)

The non-critical services resources Table 3 shows

the resources used by the service and the resources that

are released while the services are in progress.

Resources are taken-up and released when it is not

required.

Table 3. Non critical service resource.

Resource r1 r2 rc

Resource Currently Used (NCSCU)

Released (NCSR)

In the allocation process, there are four scenarios to

be analyzed after an error/damage occurs to the critical

service resources that find the available resources for

reconfiguration. They are:

• Redundant resources available with critical service.
The process will check the redundant resources of

the critical service. If it is available, then the

problem can be fixed without affecting any other

services i.e., the required resources can be used for

damage recovery.

• Redundant resources available with the system. If
there are insufficient redundant resources with the

critical service, it will check the unused redundant

resources of the system. If it is available, then

allocate the available resources.

• Released resources available with non-critical
services. If there are insufficient unused resources

of the system, it will check the unused or released

resources of the non-critical service. If it is

available, then allocate the available resource.

• Resources are pre-empted from non-critical

services. If there are insufficient released resources

of the non-critical services, the process will check

the resources that are being used by the non-critical

service to pre-empt them.

4.2. Resource Balancing

The most important factor in resource reconfiguration

is resource balancing in order to maintain the stability

of the system. Take note that the service is functional

when there is at least one active resource to support it

[3]. The system has three tables of resources. When the

system is activated and the resource allocated, the table

will note every allocation into those tables. For

example, if there is a critical service, that needs four

Survivable System by Critical Service Recovery Model: Single Service Analysis 415

resources to run the service, then those four resources

will be allocated and noted in the critical service’s

resources table (resource currently used row) and in the

master resources allocation table (required resource

row). The same goes to non-critical service. Thus, if

the engine allocated four resources for critical service

and four resources for non-critical service, there will

be eight required resources in the master table. For

redundant resources of critical service, initially it must

be at least equal to one resource.

The tables are updated dynamically at run-time and

when fault happens. For example, if there are some

resources of the non-critical services that have been

released, the used resources count must reflect the

change. If some resources of the critical service are

destroyed, the used resources count must be deducted

as well. The required resource of the master table does

not change. In our model it is assumed that there will

be no further faults to the affected critical service node

while it is being reconfigured.

4.3. Recovery Scenario

Now, we explain the recovery steps per each scenario.

Scenario 1: redundant resources available with critical

service. If critical service resources destroyed, then

firstly it will check its redundant resources to complete

the required ones. If available (enough) then allocate.

begin

input damaged_resource;

input CS_redundant;

if (CS_redundant-damaged_resource) >= 0 then

allocate(CS_redundant);

else

 loop until CS_redundant = 0

allocate(CS_redundant);

end loop;

 output(damaged_resource);

end if;

end

Scenario 2: redundant resources available with the

system. If required resource not available with critical

service node then look in master table. Check whether

there are unused redundant resources available. If

available then allocate.

begin

input damaged_resource;

input system_unused_redundant;

if (system_unused_redundant-damaged_resource) >= 0 then

 allocate(system_unused_redundant);

else

 loop until system_unused_redundant = 0

 allocate(system_unused_redundant);

 end loop;

 output(damaged_resource);

end if;

end

Scenario 3: released resources available with non-

critical services. In case scenarios 1 and 2 fail to

allocate the resources then look into the non-critical

service table for unused or released resources. If

available then allocate.
begin

input damaged_resource;

input NCS_released_redundant;

if (NCS_released_redundant -damaged_resource) >= 0 then

 allocate(NCS_released_redundant);

else

 loop until NCS_released_redundant = 0

 allocate(NCS_released_redundant);

 end loop;

 output(damaged_resource);

end if;

end

Scenario 4: resources are pre-empted from non-critical

services. If scenarios 1, 2 and 3 fails then pre-empt the

running resources from the non-critical services based

on minimum cost and time factors and if possible

including minimum interruptions to non-critical

services.

begin

input damaged_resource;

input NCS_used_resource;

if (NCS_used_resource-damaged_resource) >= 0 then

 allocate(NCS_used_resource);

else

 loop until NCS_used_resource = 0

 allocate(NCS_used_resource);

 end loop;

 output(damaged_resource);

end if;

end

Since the 4
th
 scenario is the most important, Figure

4 shows a sample scenario graph for scenario no 4.

Figure 4. Graph of scenario 4.

CS is the critical service, NCS is the non critical

service, Ri is the critical service resource, ri is the non

critical service resource, Si is the master resource

controller, Ri(α) is the amount of each CS resource,
ri(β) is the amount of each NCS resource, Si(γ) s the
amount of each master resource, ξ is the number of
pre-empted NCS node, c is the cost of pre-empting the

416 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

resource of NCS, t is the response time of NCS, and

the edge is represented by a tuple <c,t>.

Here we divided the fourth scenario into three cases

of solution.

Case 1 ξ = 1: in this case, as CS resource has been
destroyed, there is only one NCS with the same

resource that can be pre-empted. Rk(α) has been
destroyed, where α ≥ 1. We can get the α from pre-
empted rk of NCS1, such that rk(β) ≥ Rk(α), then we pre-
empt α from rk(β).

Case 2 ξ = 1: in this case, as CS resource has been
destroyed, there are more than one NCS with the same

resource that can be pre-empted, and the process will

choose the best one. Rk(α) has been destroyed, where α
≥ 1. We can get the α from pre-empted rk of

{NCS1,…,NCSZ}, such that rk(β) ≥ Rk(α), with
condition min(ci,…,cz) or min(t1,…,tz), then we pre-

empt α from rk(β). If there are two possibilities, one is
minimum cost but not for response time, another one is

minimum time but not for cost, then we should choose

the minimum response time, as we want to survive the

system.

Case 3 ξ > 1: in this case, as CS resource has been
destroyed, there is more than one NCS combination

with the same resource that can be pre-empted, and the

process will choose the best one.

Figure 5. Sample case of scenario 4.

Here assumed there are two solutions, as Figure 5,

we have to choose one. Rk(α) has been destroyed,
where α ≥ 1. Let δ be the scheme. We can get the α
from pre-empted rk of: δ1 = {NCS1 ,NCSW-2}, such that

)()(
1

αβ k

w

k

k Rr ≥∑
=

where its cost C1 = c1 + cw-2 and

time T1 = max(t1 ,tw-2); and δ2 = {NCSW-2 , NCSW-1 ,

NCSW}, such that)()(
1

αβ k

w

k

k Rr ≥∑
=

 where its cost C2

= cw-2 + cw-1 + cw and time T2 = max(tw-2 , tw-1 , tw); with

condition min(C1,C2) or min(T1,T2) or min(ξ1,ξ2), then
we pre-empt α from rk(β). For this case, we have to
consider about the number of ξ as well. If there are two
possibilities, one is minimum cost but not for response

time, another one is minimum time but not for cost,

then we should look at the number of NCS, the

minimum one will be chosen.

Hence the conclusion of analysis and allocation

process if there is more than one possibility for the

fourth scenario, can be applied to scenario 3, will be:

• Check the number of released or pre-empted
resource.

• Check the response time of NCS.

• Check the cost of taking NCS resource.

5. Single Fault Case

This section explains the practical application of the

model by hypothetical data for single fault. It is

supposed a failure detected on resource (R2) of critical

service, CSD12. 20 number of delivery units are being

faulted, CSD12 = 20. The amount, response time, and

cost of each service are listed as Tables 4, 5, 6 and 7.

Table 4. Master idle/unused resource.

Table 5. Redundant resources of critical service data.

Resources Amount Time Cost

CSR12 8 5 8

CSR22 9 3 7

CSR32 5 7 3

Table 6. Redundant resources of non critical service data.

Resources Amount Time Cost

NCSR12 8 5 7

NCSR22 11 5 4

NCSR32 18 4 3

Table 7. Currently used resources of non critical service data.

Resources Amount Time Cost

NCSCU12 6 2 3

NCSCU22 3 6 4

NCSCU32 2 4 3

Based on the scenario algorithms in previous

section, the possible solutions that satisfy the requisite

condition are:

())8(),4(),8(122121 NCSRMUNRCSR=δ ,)5,8,5max()(1 =δT ,

)7*8()7*4()8*8()(1 ++=δC , 3)(1 =δN .

())8(),4(),8(222122 NCSRMUNRCSR=δ ,)5,8,5max()(2 =δT ,

)4*8()7*4()8*8()(2 ++=δC , 3)(2 =δN .

())8(),4(),8(322123 NCSRMUNRCSR=δ ,)4,8,5max()(3 =δT ,

)3*8()7*4()8*8()(3 ++=δC , 3)(3 =δN .

By comparing between the three possible solutions,

the 3δ is selected as the reconfiguration scheme based

on cost factor.

Resources Amount Time Cost

MUNR2 4 8 7

Survivable System by Critical Service Recovery Model: Single Service Analysis 417

6. Summary and Future Work

The research on survivability has become an

interesting topic in the field of security, and one of its

emphases is how to improve the abilities of emergency

response and damage recovery.

In this paper, we presented our preliminary attempts

at defining a model to recover a critical service of a

system and our plan is to set up a mathematical model

for simple basis decision support system for

survivability. We proposed an algorithm to analyze and

allocate resources for reconfiguring the resources by

assigning redundant resources to the critical services

and pre-empting resources from non-critical services.

The limiting conditions were the response time,

minimally pre-empting resources from non-critical

services and cost of the implementation. All these

limitations have been considered in this paper.

We would like to extend this model for another

arbitrary number of faulty critical and non-critical

services running concurrently and to consider other

limiting conditions as well.

References

[1] Aung A., “Survival of the Internet Application: A

Cluster Recovery Model,” in Proceedings of the

6
th
 IEEE International Symposium on Cluster

Computing and the Grid Workshop, UK, pp. 16-

19, 2006.

[2] Ellison R., “Survivable Network Systems: An

Emerging Discipline,” Technical Report,

CMU/SEI-97-153, 1997.

[3] Elnozahy N. and Plank S., “Checkpointing for

Peta-Scale System: A Look into Future of

Practical Rollback-Recovery,” Computer

Journal of IEEE Transactions on Dependable

and Secure Computing, vol. 1, no. 2, pp. 97-108,

2004.

[4] Goseva K., “Characterizing Intrusion Tolerance

Systems Using State Transition Model,” in

Proceedings of DARPA Information

Survivability Conference and Exhibition,

California, pp. 104-113, 2001.

[5] Ho S. and Cheung W., “Generelized Survivable

Network,” Computer Journal of IEEE/ACM

Transactions on Networking, vol. 15, no. 4, pp.

737-749, 2007.

[6] Somesh J. and Wing M., “Survivability Analysis

of Networked Systems,” in Proceedings of ICSE

2001, Toronto, pp. 97-111, 2001.

[7] Knight J., “Error Recovery in Critical

Infrastructure Systems,” in Proceedings of

Computer Security Dependability and Assurance

(CSDA’98) Workshop, California, pp. 7-40,

1998.

[8] Lin X., “A Framework for Quantifying

Information System Survivability,” in

Proceedings of International Conference on

Information Technology and Applications

(ICITA), Australia, pp. 234-237, 2005.

[9] Moitra D. and Konda L., “A Simulation Model

for Managing Survivability of Networked

Information System,” Technical Report,

CMU/SEI-2000-TR-020, 2000.

[10] Park J. and Chandramohan P., “Static vs.

Dynamic Recovery Models for Survivable

Distributed Systems,” in Proceedings of 37
th

Hawaii International Conference on System

Sciences, USA, pp. 5-8, 2004.

[11] Park B., A Self-healing Mechanism for an

Intrusion Tolerance System, Copenhagen,

Springer, 2005.

[12] Sullivan K., Knight J., Du X., and Geist S.,

“Information Survivability Control System,” in

Proceedings of 21
st
 Intermational Conference on

Software Engineering, Germany, pp. 107-119,

1999.

[13] Wang J., Wang H., and Zhao G., “ERAS an

Emergence Response Algorithm for

Survivability of Critical Services,” in

Proceedings of IMSCCS 2006, USA, pp. 312-

317, 2006.

[14] Westmark R., “A Definition for Information

System Survivability,” in Proceeding of the 37
th

Hawaii Internal Conference on Systems Sciences

(HICSS'04), USA, pp. 5-8, 2004.

[15] Zhao G., Wang H., and Wang J., “A Novel

Quantitative Analysis Method for Network

Survivability,” in Proceedings of IMSCCS, USA,

pp. 22-27, 2006.

Irving Paputungan is a trainee

lecturer at the Islamic University of

Indonesia, Indonesia. He holds

Bachelor degree in informatics

engineering from the Islamic

University of Indonesia, 2003 and

his Master in computer and

information science from Universiti Teknologi

Petronas Malaysia. His research area is computational

and database.

Azween Abdullah obtained his

Bachelors degree in computer

science in 1985, Master in software

engineering in 1999, and his PhD in

computer science in 2003.

