
The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009 329

VI-SDB: A Convivial Approach for

Description and Manipulation of

 Deductive and Stratified Databases

Amel Touzi

Faculty of Sciences of Tunis, Tunisia University, Tunisia

Abstract: Although deductive databases is based on a well established formalism, they didn't know the expected success.

Their use was limited to the academic purpose. Indeed, the deductive database management systems are judged abstract, rare

in commercial offers, and often expensive. In among the abstract concepts of the deductive databases, we mention the case of

the negation and its treatment by the stratification. In this paper, we propose a convivial approach that aims to make

transparent theses concepts relatively abstracted and to permit a friendly usse of deductive databases and stratified database.

This approach permits to simplify concepts, which always remain delicate for this type of databases users or designers, like

(1) the definition of a deductive and/or stratified database (2) the study of the stratifiability, (3) the determination of the

maximal stratification, (4) the incremental definition of strata and (5) the checking of integrity constraints. These operations

become more delicate if the database is voluminous. The proposed system supports rules update and is not limited to facts

updating as in known deductive systems. This approach is implemented and validated with VI_SDB tool based on an extension

of predicates nets.

Keywords: Deductive database, stratified database, EPN formalism, GUI.

Received March 18, 2007; accepted May 30, 2007

1. Introduction

The integration of logic into Relational DataBases

(RDB) has begun since the 1970’s [6, 17, 20]. The

main objective of this integration is to enrich

DataBases Management Systems (DBMS) with

deduction capacity, which is very useful for many

applications such as medicine, cartography and expert

systems. These systems are known as Deductive

DataBases (DDB) [6]. Several prototypes of Deductive

Databases Management Systems (DDBMS) have been

proposed in literature [18, 19] as EKS, LOLA,

CORAL, LDL and LDL++. Some of them have been

marketed like EKS.

Even though DDB are based on a well established

formalism [5, 17], which is the first-order logic [2, 15],

they didn't meet the expected success. The DDBMS

was mainly used for academic purposes [16, 19].

Indeed, the DDBMS are judged abstract, absent from

commercial offers, and expensive. The reasons of these

problems are:

• The lack, or even the absence, of uniform language

standardization for the definition and manipulation

of the database.

• The absence of graphic interfaces simplifying the

concepts of DDB and SDB, as those which exist

for RDB. As example, we note the access DBMS

which presents a simple and convivial interface

allowing to a non-specialist user to define and to

handle RDB.

To palliate this problem, several languages of

production rules type have been proposed [6, 9, 13, 14,

16, 17, 19, 20] as RDL, DLP, RDL/C and DATALOG.

All these languages, including the standard

DATALOG, suffer from several important limitations

notably the limitation to the UPDating (UPD) of facts

and the absence of a homogeneous and uniform

framework to handle useful concepts to any

application.

In this paper, we propose a convivial approach

which proposes to make the DDBMS non abstract and

more clear for the users. Indeed, the concepts of DDB,

SDB, stratifiability of a SDB, maximal stratification of

a SDB, incremental definition the SDB strata and

checking of Integrity Constraints (IC) in the SDB

remain always delicate for the user or the designer of

the DDB and SDB. These operations become more

delicate if the database is very large. To validate our

approach, we implemented a tool, VI_SDB, based on

the concept of the Stratified Extended Predicates Nets

(SEPN). SEPN is an Extension of Predicates Nets. We

already used these Nets for modelling and management

of these databases [3, 7, 8, 11, 12, 20]. Applied to

DDB and/or SDB these nets offer a convenient and

expressive environment for modelling deduction

techniques. VI_SDB allows the user to define and

handle its database in two different manners, either

 330 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

textually using an editor, or graphically by handling

SEPN.

The rest of the paper is organized as follows. In

section 2, we give the basic concepts of DDB and

SDB. In section 3, we study the effect of update

operations on the SDB. Section 4 describes our

approach based on SEPN. The correspondence

between SDB and SEPN is presented in section 5.

Section 6 presents VI_SDB tool. Finally in section 7,

we conclude and present future work.

2. Deductive Databases and Stratified

Databases

DDB result from the intersection of Artificial

Intelligence techniques and the databases. Nowadays,

the most used model for databases manipulation is the

Relational model. However, the new objectives target

the knowledge rather then the data manipulation. It is

about systems that stock the information in a manner

suitable to automatic inference, and that recover them

by applying inference mechanism to the registered

information. The DDB is defined as a set of explicit

facts, making Extensional DataBase (EDB) and a set of

deduction rules allowing deduction of new facts,

making the Intentional DataBase (IDB) [6].

A DDB is modelled by a definite program (a set of

Horn clauses) [2, 15, 17, 21]. However, the definite

programs inevitably pose the problem of limitation of

their expressivity. Indeed, in most real world

situations, we need to express negative information,

and so the notion of normal programs was introduced.

However, we are facing the problem of determination

of a canonical semantics for these programs in a

unique way [1, 6]. The stratified programs represent an

efficient solution to this problem. The basic principle is

the subdivision of the logic program in strata, such as a

literal negative that cannot be used in the body of a

rule unless it has already been defined in the rules that

precede it [1, 6, 15, 10].

In the following, we present basic definitions related

to stratified programs [1, 6, 15, 10]. Let P be a logic

program. A predicate symbol q definition is the set of

all the clauses of the program P having q at the head of

the clause. The dependency graph of a program P (Dp)

is composed by a set of nodes connected by arcs. Each

node represents a predicate of P. The arc matching r

and q, noted (r, q), belongs to Dp if there is a clause in

P using r in its head and q in its body. We say r refers

to q. If a predicate q appears positively (respectively,

negatively) in the body then (r, q) is called positive

(respectively, negative) arc.

A program is stratifiable if and only if its

dependency graph does not contain any circuit

containing a negative arc.

A program P is stratify if there is a partition

P= S1 ∪ …∪ Sn , called stratification of P such as for

each i = 1, 2,…, n, we have the following properties:

• if a predicate symbol is positive in Si then its

definition is contained in ∪ j ≤ i Sj.
• if a predicate symbol is negative in Si then its

definition is in ∪ j < i Sj.

Each Si is called a stratum. A stratification P = S1 ∪ … ∪

Sn is maximal stratification if each stratum cannot be

decomposed into different strata. A Stratified DataBase

(SDB) is modelled by a stratified program [1].

3. The SDB Update Problem

With an aim of showing the difficulties of the update

operations in SDB, we propose to study these operations

and to study their influences on the computation of the

model of the base and its stratifibility.

The rule update is not as simple as the one of a fact.

The fact update generates in the worst of the cases

addition and/or deletes other facts. In reality, the rule

update can generate update of all facts deducted by this

rule which, in their turns, will generate the addition

and/or delete of several other facts. We retail this in this

section.

3.1. SDB Update Properties

Seen that a SDB is modelled by a stratified program,

we showed in [7, 8] the following properties which one

can apply directly to the SDB:

• An explicit operation of deletion of a deduced fact

doesn't have a sense, since it will be always deduced

starting from the rules. If one wants to remove a fact

deduced from the SDB, it is necessary to remove the

facts or the rules which were used to deduce it.

• An explicit operation of insertion of a deduced fact

does not modify the minimal model of the program

since this fact already exists in the model.

• An operation of update in the SDB (known as

explicit update) starts one or several updates of the

facts deduced (known as induced updates) because

of the presence of the rules. The updating

intervening on the deduced facts and their instances

are not known. Consequently, to carry out an

operation of updating in the SDB amounts carry out

this the induced operation and all updating which

should be determined.

The difficulty of an operation of updating lies in the

search for an effective method which makes it possible

to determine the induced updating exactly as the

example shows it.

Example: consider the SDB modelled as follows:

 p1(a); p1(b); p3(c); p2(x) ← p1(x);

 p3(x) ← ¬ p1(x); p4(x) ← ¬ p2(x)

The standard model of this program is

MP={p1(a), p1(b), p2(a), p2(b), p3(c), p4(c)}.

Consider the deletion of the fact p1(a) and let us try

to calculate the new models MP'. The deletion of p1(a)

VI-SDB: A Convivial Approach for Description and Manipulation of Deductive and Stratified Databases 331

involves the deletion of the deduced fact p2(a) and the

addition of the deduced fact p3(a). The deletion of the

deduced fact p2(a) involves the addition of the deduced

fact p4(a). Hence, the new model is MP' = {p1(b), p2(b),

p3(a), p3(c), p4(a), p4(c)}.

3.2. Effects of UPD Operations on

Stratifiability

Following an UPD operation, we should first of all be

sure that the resulting database remains stratified. Then

it is necessary to define the relation between the

maximum stratification of the program P initial

modelling the database and that of the object program

P' modelling the resulting database, knowing the

operation of UPD considered. Tables 1 and 2 show the

influence of the UPD on the stratifiability in the case of

facts and rules insert or delete.

Table 1. Insertion operation effects on stratifiability.

Update Operation Consequences Stratifiability

Fact q(a,b): the redicate
q is not defined in the

program P.

Stratum creation. Yes

Fact q(a,b): the redicate

q is already defined in
the program P.

Stratum modification. Yes

Clause: the predicate of

the head appears for

the first time.

Stratum creation. Yes

Clause: the predicate of

the head is already

defined.

If the program is still

stratifiable :

- Stratum modification.
- Or fusion of several

 strata.

Depends on

cases

Table 2. Deletion operation effects on stratifiability.

Update Operation Consequences Stratifiability

Fact : the fact is omposing
a stratum.

Stratum removal. Yes

Fact : the fact belongs to a

stratum composed of

several clauses.

Stratum

modification.

Yes

Clause: the clause
composes the stratum.

Stratum removal. Yes

Clause: the clause belongs

to a stratum composed of
several clauses.

- Stratum

modification.
- Or the stratum is

splited into several

strata.

Yes

According to the above study, we notice that an

operation of UPD of a fact can involve the creation of

a new stratum, the modification or the remove of a

stratum. The rule update can generate the same

consequences that the fact update, with in addition the

fusion of several strata in only one stratum or the

bursting of a stratum in several under-strata. It gives

back more complex incremental computation of the MP

model.

To calculate the model MP', witch is the result of an

update operation; several works have used sets of

predicates, called supports [1, 3, 7, 8]. These supports

are used to determine the part to remove from the

model MP after an update operation. The choice of the

supports must minimize the number of migrations facts

and the maintenance cost of these supports. The ideal

is to have a support which determines exactly the facts

which must be removed from the model to avoid the

total migrations of facts [1, 3, 7, 8].

4. SEPN Formalism

In this section, we present an extension Predicates nets

to support the DDB and SDB.

4.1. SEPN Nets

In this section, we describe the SEPN formalism. For

further details concerning this approach, readers can

refer to [3, 7, 8, 11]. An SEPN is defined by:

• A quintuple N = (P, T, C, V, K), where P, T, C, V

and K are respectively the set of places, the set of

transitions, the set of colours, the set of variables

and the set of constants.

• Two relations α and β, where β is a finite subset of

T×P which elements are called unsigned arcs and

α is a finite subset of {+,-}×P×T which elements are

called signed arcs (α+ positive arcs set and α-
 negative arcs set).

• Two applications Iα et Iβ defined by:

 Iα : α → Z[V ∪ K]

 Iβ : β → Z[V ∪ K]

where Z[V ∪ K] is the set of finite formal

combinations of V ∪ K elements. A set Garde, where

Garde(t), t being a transition, imposes firing conditions

between tokens contained in input places. A bijective

application Cl from T to C, which associates a colour

to each transition.

4.2. Dynamic Aspect of the SEPN

In a SEPN net, tokens are colored [8, 11]. A colored

token is an element of the set K
n
 × P (C), where P (C)

is a set of parts of C. A colored token j has then this

form:

 j = ((x1, x2, …, xn), Col) (1)

where (x1,…, xn) is the argument of j (arg(j)) and Col

its path (path(j)). The path is a set of colors saving the

history deduction.

We define the following operations on the elements

of the set K
n
 × P (C):

• Equality: j = j’ ⇔ arg (j) = arg (j’) and

 path(j) = path (j’)

• Order relation ≤ : j ≤ j’ ⇔ arg (j)=arg (j’) and

 path (j) ⊆ path (j’)

• Subtraction: if arg(j) = arg(j’) then

 j – j’ = (arg(j), path(j) \ path(j’)).

 332 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

A token of the form j=(arg(j),{∅}) is called neutral

token. Consequently, we have these two results (1) the

subtraction to a token from itself gives a neutral token

and (2) the addition operation is idempotent

(j + j = j).

Let R be an SEPN net and Mo a function from P to

K
n×P(C). The function Mo is called initial marking of

R. This function associates, initially, to each place of R

a finite set of colored tokens. The SEPN marking M is

defined by the association to each place a finite set of

tokens.

The transition firing process in SEPN is different

from ordinary Petri nets. In fact, the production of new

tokens happens without removing the tokens used

while firing the transition. We make a distinction

between valid transitions from fireable transitions.

If the new token already exists in the destination

place, it will not be regenerated. This transition is then

fireable but not valid. If the token does not exist in the

output place, the transition is valid and is fired. By this

way, an SEPN can not contain double tokens. Each

place p is k
m(p)

 bounded, where m(p) is the marking of

p and k is the cardinality of the set K.

5. Correspondence Between SDB and SEPN

Nets

The SEPN formalism allows us to build efficient

algorithms for checking stratifiability, determination of

the maximal stratification, the computation of the

standard model, and management of update operations

on facts and clauses (explicit and induced updates).

Indeed, we established a correspondence between the

SEPN formalism and SDB. This correspondence is

presented in Table 3. Due to space limitations, we do

not demonstrate this correspondence.

Table 3. Correspondence between SDB and SEPN.

SDB SEPN

A predicate p A place p

A fact q(a,b) A token in the place q

A clause r A transition t

Link between the
predicates’variables and the

clause body

Garde of the transition

Standard model of the program Net marking

Program stratification Net stratification

Program strata Net strata

Addition or removal of a fact Addition or removal of a token

Addition or removal of a clause Addition or removal of a

transition and its related arcs

An integrity constraint A transition tc

5.1. Stratifiability Study and Maximal

Stratification Determination Using SEPN

Stratifiability checking is released after the definition

of the logical program and after each update operation.

This consists on detecting the presence of a negative

circuit in the SEPN. Once the stratifiability of a

program is checked, it is necessary to find out the

maximal stratification in order to compute the standard

model. For this purpose, we give the following

definitions:

Definition 1: let R be a SEPN and V = {p1, T1…,

pn, tn} (such as {p1…, pn} ∈ P and {T1.., tn} ∈ T) a

strongly connected component of R. We define a

stratum of R as a strongly connected component V of R

with one of following conditions:

• Card(V) >1

• Card(V)=1 and V = {p}, p ∈ P, with M(p) ≥ 0 or ∃

Ti∈T / (Ti, p)∈β.

where M(p) is the marking of the place p. After

determining the SEPN strata, we put an order on them.

We introduced, for this purpose, the concept of

reduced graph.

Definition 2: let G be the set of the SEPN strata.

The reduced graph of the SEPN is the graph

Gr = (X, U), where:

Each node of X represents a stratum.

And U = {(Si, Sj), i ≠ j | ∃ p ∈ Si and

T ∈ Sj | (p,t) ∈ P}, where U is a finite set of arcs

connecting strata.

An arc of the reduced graph is positive (respectively

negative) if there is a positive arc (respectively

negative) in the SEPN relating a place of Si and a

transition from Sj. The reduced graph of an SEPN does

not contain circuits. It represents dependences between

strata.

Definition 3: let R be a stratified SEPN and V1,…, Vn

a maximal stratification of R. In the stratified firing

process, the firing of a transition in Vi, i ∈ [1..n],
starting from a given marking of SEPN, can be made

only if the firing of all the transitions belonging to Vj,

j≤ i-1, is done.

Example: let us consider the following DDB

modelled as follows:

F(f, c) ← ; G(n, p) ← ;

A(x, z) ← C(y, z); C(x, z) ← A(y, z), F(x, y);

D(z, y) ← G(z, y), not (C(x, z)) ;

G(x, z) ← D(x, y), G(y, z);

Figure 1 shows the SEPN corresponding to DDB.

The DDB is stratifiable since its SEPN does not

contain recursion through negation.

Figure 1. SEPN net of the P.

VI-SDB: A Convivial Approach for Description and Manipulation of Deductive and Stratified Databases 333

 Figure 2. Gr Reduced graph of DDB.

The reduced graph of P is shown in Figure 2. It

shows the maximal stratification of P, which is

composed of these strata:

S1 A(x, z) ← C(y, z);

C(x, z) ← A(y, z), F(x, y);

G(n, p) ← ;

S2 D(z, y) ← G(z, y), not(C(x, z)) ;

G(x, z) ← D(x, y), G(y, z);

S3 F(f, c) ← ;

5.2. Update Operation Optimization in SEPN

5.2.1. Update Operation Optimization of Facts

The addition of a token in a place p may lead to: (1)

the addition of other tokens in the places related

positively to p and (2) the removal of tokens from the

places negatively related to p. In opposition, the

removal of a token of a place p' may lead to: (1) the

addition of tokens in the places negatively related to p'

and (2) to the removal of tokens from the places

positively related to p'.

The use of colored tokens has the advantage of

saving the deduction history. This allows us to

recognize the transitions used in the firing process.

Thus, it is easy to reduce facts migration. In fact, the

tokens that do not contain the transition’s color related

to the place, in their paths, will not be touched.

5.2.2. Update Operation Optimization of Clauses

The update of a clause is equivalent to the update of a

transition in the PRES net. Knowing the corresponding

sub-net of the clause and the reduced graph, we find

out, directly, if the program remains stratifiable and its

new maximal stratification. After this step, the problem

is reduced to facts update, which is already solved.

6. VI_DBS Tools

VI_DBS implementation was carried out by using the

concept of SEPN. Since that a SDB is modelled by a

stratified program, we enriched the STRPRO tool [12],

to support the concept of DDB, SDB, IC, and UPD and

query evaluation. The architecture of the VI_DBS is

made up mainly of the three following modules:

• The analysis module allows the lexical and syntactic

analysis of the SDB or DDB. It permits the

representation of the SDB by a stratified SEPN, the

test of the stratifiability and the computation of the

inherent stratification to the UPD. This module

permits also the optimization of the extended

predicate networks.

• The stabilization module allows applying the pair

(SDB, UPD) in a network to extended predicate

stratified with an initial marking, to calculate the

steady marking of the network (model of the SDB).

In addition, it updates the Stratified SEPN and its

marking.

• The transaction module is in charge of the following

actions: to filter and to increase the network to

predicates marked in the goal to define a view

bound to the UPD and the database (via his network

of representation) and to value some queries.

6.1. VI_DBS Implementation

In order to help understanding the stratification concept,

we built VI_SDB tool. This tool is plate-form

independent since it is developed with Java. First, we

selected an open source tool Petri tool [4], used in editing

and simulating ordinary Petri nets. Then, we made up

required modifications to adapt it to SEPN concept. After

that, we added necessary modules for the manipulation of

stratified database. Finally, we added layers of graphical

user interfaces.

VI_SDB is composed of two interfaces as shown in

Figures 3 and 4. The first one allows the edition of the

DDB in textual mode as shown in Figure 3 and the

second one allows the edition of the DDB in graphical

mode as shown in Figure 4. The textual interface is

composed of a menu bar and four panels. The program

edition is done in the edition panel. The Gr panel holds

the reduced graph. The strat panel contains the

composition of each stratum. The Status Panel displays

messages to users (stratification result, compilation

results…).

Figure 3. VI_SDB Interfaces textual user interface.

 Figure 4. VI_SDB Interfaces graphical user interface.

S1

S2 S3 +
_

Menu Bar

Edition Start Panel
Gr Panel

Status Panel

 334 The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009

VI_SDB is composed of nine main modules:

• Editor module: VI_SDB offers two different ways

for the edition of a program describe a database:

textual and graphical. In addition, users can save

and reload their programs into and from files.

• Compiler module: the edition of database in textual

mode should be followed by compilation. This

operation consists on the syntax analysis of the

given database and its mapping - in case of validity

- into its corresponding SEPN.

• Stratifiability checker module: VI_SDB contains a

module that checks the stratifiability property of a

given database. This operation consists on the

verification of absence of recursion through

negation in the SEPN.

• Maximal stratification extractor module: once the

database is stratifiable, user can call the “Stratify”

command in order to extract the reduced graph Gr.

• Standard model computation module: After the

stratification of the database, we can compute its

standard model.

• Query evaluation module: since the standard model

corresponds to net marking, query evaluation in

VI_SDB is simply the token existence test.

• Update operations module: after each update

operation, the tool checks the database

stratifiability. In case of validity, the new maximal

stratification is determined. After that, the standard

model is updated.

• Integrity constrains manager: this module allows the

edition of integrity constrains. While the DDB

contains integrity constrains, after each fact update

operation, the corresponding constrains are checked.

In case of non validity any IC, the initial update

operation is cancelled.

• The debugger module: VI_SDB provides users with

the ability to debug their programs describe

database by the means of the debugger. The

debugger is the graphical interface that presents the

internal modelling of a given program (its

corresponding extended predicate net). Using this

interface, we can perform all already cited

operations.

Example: let a DDB describes family's tree:

 Father (Ali, Saleh) ← ;

 Father (Mohamed, Ali) ← ;

 Mother (Alia, Saleh) ← ;

 Female (Alia) ← ;

 Age (Ali, 35) ;

 Parent (x, y) ← Father (x, y);

 Parent (x, y) ← Mother (x, y);

 Ancestor (x, y) ← Parent(x, y);

 Ancestor (x, y) ←Parent(x, y), Ancestor (x, y);

We suppose that we have the following integrity

constraints:

• An individual cannot have two fathers,

• An individual cannot have two mothers,

• The Age of any person is small than 150

These constraints are modelled as follows:

• x = z ← Father(x,y) , Father(z, y)

• x = z ← Mother(x, y) , Mother(z, y)

• (y<150) ← Age(x,y)

The corresponding model with VI_SDB is shown in

Figures 4 and 5.

Figure 5. Family's tree example implemented with VI_SDB

implementation with the textual interface.

Figure 6. Family's tree example implemented with VI_SDB

implementation with the graphical interface.

7. Conclusion

Even though DDB are based on a well established

formalism, which is the first order logic, DDB didn't

meet the expected success. The DDBMS was mainly

used for academic purposes. Indeed, the DDBMS are

judged abstract, absent from commercial offers, and

expensive. This is due to many reasons that are relative

to:

•••• The definition of a deductive and/or stratified

database.

•••• The study of the stratifiability.

•••• The determination of the maximal stratification.

•••• The incremental definition of strata.

•••• The checking of integrity constraints.

These problems are more important when the database

is voluminous. In this paper, we proposed a new and

VI-SDB: A Convivial Approach for Description and Manipulation of Deductive and Stratified Databases 335

convivial approach that aims to make the DDB

manipulation non abstract and easy. This approach

permits to simplify the concepts already mentioned.

The proposed system supports rules update and is not

limited to facts updating as in known deductive

systems. We think that our tool VI_SDB is suitable as

a learning tool of DDB and SDB abstract and delicate

concepts.

As future work, we plan to extend: first the

extended SEPN with object oriented concepts, then our

tool VI_SDB to handle object oriented DDB and SDB.

References

[1] Apt R. and Pugin J., “Management of Stratified

Databases,” Technical Report CS-TR-87-41,

University of Texas at Austin, USA, 1987.

[2] Apt R., Handbook of Theoretical Computer

Science, Elsevier, 1991.

[3] Barkaoui K., Boudrigua N., and Touzi A., “A

Transition Net Formalism for Deductive

Databases Efficiently Handling Quering and

Integrity Constrains,” in Proceedings of

Database and Expert Systems Applications

(DEXA), Spain, p. 221-225, 1992.

[4] Brink S., A Petri Net Design Simulation and

Verification Tool, http://www.csh.rit.edu/~rick,

1996.

[5] Bry F., “Logic Programming as Constructivism:

A Formalization and its Application to

Databases,” in Proceedings of Principles of

Database Systems (PODS), USA, pp. 34-50,

1989.

[6] Gardarin G., Bases de Données Objet et

Relationnel, Eyrolles, 2000.

[7] Grissa A., “Contribution à l’Etude, à la

Conception et au Prototypage des Bases de

Données Déductives,” PhD Thesis, Tunisia,

1994.

[8] Grissa A., Jerad C., and Ounelli H., “New

Approach for Manipulation of Stratified

Programs,” World Enformatika Conference,

USA, pp. 256-259, 2005.

[9] Grissa A. and Ounelli H., “XDatalog: A

Language for Deductive and Stratified

Databases,” International Journal of Computer

Science and Network Security, vol. 5, no. 10, pp.

84-93, 2005.

[10] Jager G. and Stark R., “The Defining Power of

Stratified and Hierarchical Logic Programs,”

Computer Journal of Logic Programming, vol. 1,

no. 3, pp. 55-77, 1993.

[11] Jerad C., “Outil d’Analyse des Bases de Données

Déductives Formulées à l’Aide des Réseaux à

Prédicats Etendus Stratifiés,” Master Memory,

Tunisia, 2003.

[12] Jerad C., Grissa A., and Ounelli H., “STRPRO

Tool for Manipulating Stratified Programs Based

on SEPN,” in Proceedings of World Enformatika

Conference, Turkey, pp. 252-255, 2005.

[13] Kiernan G. and De Maindreville C., “The RDL/C

Language Reference Manuel V1,” Technical

Report N°123, 1990.

[14] Kolaitis G. and Vardi Y., “On the Expressive

Power of Datalog: Tools and a Case Study,”

Journal of Computer and System Sciences, vol.

51, no. 1, pp. 110-134, 1995.

[15] Lloyd W., Foundations of Logic Programming,

Springer-Verlag, 1987.

[16] Mengchi L., “Deductive Database

Languages: Problems and Solutions,” Computer

Journal of Computing Surveys, vol. 31, no. 1, pp.

27-62, 1999.

[17] Minker J. and Apt R., Foundations of Deductive

Databases and Logic Programming, Morgan

Kaufmann Publishers, 1988.

[18] Ramakrishnan R., Srivastava D., Sudarshan S.,

and Seshadri P., “Implementation of the CORAL

Deductive Database System,” in Proceedings of

ACM SIGMOD on the Management of Data,

United States, pp. 167-176, 1993.

[19] Ramamohanarao K. and Harland J., “An

Introduction to Deductive Database Languages

and Systems,” The International Journal on Very

Large Data Bases (VLDB), vol. 3, no. 2, pp. 107-

122, 1994.

[20] Touzi A. and Barkaoui K., “Un Formalisme de

Modélisation et d’Optimisation des Bases de

Données Déductives Basé sur la Théorie des

Réseaux de Petri de Haut Niveau,” 2
nd

Maghrebine Conference on Software

Engeneering and Artificial Intelligence, Tunis,

pp. 99-115, 1992.

[21] Ullman D., Principles of Database and

Knowledge Base Systems, Computer Science

Press, 1988.

[22] Ullman D., “Implementation of Logical Query

Languages for Databases,” Computer Journal of

Transactions on Database Systems(TODS), vol.

10, no. 3, pp. 289-321, 1986.

Amel Touzi received the Diploma of

engineering in computer science and

PhD in computer science from the

Faculty of Sciences of Tunis, Tunisia

in 1989 and 1994, respectively.

Currently, she is an assistant

professor at the Department of

Technologies of Information and Communications in

the National School of Engineering of Tunis.

The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009 11

The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009 11

The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009 11

The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009 11

