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Abstract: Time warp is a well-known optimistic mechanism for parallel execution of simulation programs. Implementing time 

warp using a connection-oriented communication approach is proposed in the literature as a way to improve time warp 

performance because it allows for the use of more efficient event queue implementations. However, no empirical performance 

studies have been reported for connection-oriented time warp. In this paper, we present an enhanced version of the 

connection-oriented time warp algorithm along with its associated data structures. An empirical performance study of the 

connection-oriented time warp is conducted on a network of workstations using a standard synthetic benchmark simulation 

model. Experimental results show that this algorithm is capable of achieving better performance than that of traditional 

connectionless time warp for several performance measures. 
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1. Introduction 

Parallel simulations attempt to speed up the execution 

of a simulation program by running it on a number of 

parallel processors in a multiprocessor machine or on a 

network of workstations. The simulation model needs 

to be partitioned in such a way that utilizes the parallel 

processing capabilities of the model execution 

platform. Specifically, the simulated system is usually 

modeled as a set of interacting Logical Processes (LPs) 

which are mapped to the different processors. Each 

logical process is a model of some component of the 

physical system, called a physical process. Logical 

processes interact with each other using time-stamped 

event messages which simulate interactions between 

physical processes in the real system. Each logical 

process has its own simulation clock and its own state 

variables representing a portion of the state of the 

corresponding physical process.  

 Parallel simulations synchronize the execution of 

simulation models on parallel processors using either a 

conservative approach or an optimistic approach. 

Conservative algorithms strictly avoid the possibility 

of incorrect sequencing of events by including 

strategies for determining which events are safe to 

process at each point in simulation time. Optimistic 

algorithms, on the other hand, use a detection and 

recovery approach that is based on detecting incorrect 

event execution order, and a rollback mechanism to 

recover from them [1].  

 Time warp, a well-known optimistic approach, is 

based on the idea of allowing LPs to execute 

optimistically until a causality error is detected. At 

such an instance, a rollback mechanism is initiated to 

recover from the incorrect computation. A causality 

error is detected whenever an LP receives an event 

message that contains a timestamp smaller than its 

local clock. Such a message is called a straggler 

message. Receiving a straggler message causes an LP 

to rollback in simulated time and re-executes 

previously-processed events whose timestamps are 

greater than that of the received straggler. Such an LP 

must cancel the effects of previously-sent erroneous 

messages by sending anti-messages. An anti-message 

is a control message that carries the identity of one of 

the previously-sent output messages and causes that 

message to be cancelled once they meet each other. 

The basic time warp algorithm proposed by 

Jefferson et al. [2] assumes connectionless 

communication between the LPs of the simulation 

model. In this algorithm, an LP can send/receive 

messages to/from any other LP in the simulation 

without having to establish a connection with that LP. 

This leads to the creation of models with dynamic 

topologies where the communication links between 

LPs are not known prior to and may change during 

simulation execution. However, maintaining this 

feature requires expensive searches of each LP's input 

queue to insert newly-scheduled events during forward 

execution. In addition, each LP's input queue must also 

be searched again at rollback situations in order to 

cancel erroneous events. The basic time warp 

algorithm is shown in Figure 1. 

 Several studies have been made to improve the 

performance of time warp parallel simulations by 

improving the rollback and state-saving mechanisms, 

or by even simulation execution platforms [5]. 

However, Kalantery suggests [3] to improve time warp 
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performance by changing the communication approach 

used in time warp from connectionless to connection-

oriented. He proposes a connection-oriented 

implementation of time warp that uses modified and 

more efficient event queues, and assumes timestamp-

ordered delivery of messages on each connection. The 

use of permanent communication channels between 

LPs and the use of the proposed event queues are 

shown to greatly reduce the event-set search 

requirements. This, in turn, is expected to improve the 

performance of time warp. 
 

Each LP executes: 

 

While (simulation termination criteria are not met) do    

     IF (input-queue pointer points to NULL) 

          Wait for new events to arrive 

    Else 

        Store received event in input queue. 

        Store the state vector in the state queue. 

        Execute the event. 

        Store a negative copy of any outgoing.                                              

        Message in the output queue. 

       Advance the input-queue pointer.                           

   End else 
 

To execute an anti-message: 
 

Reset input-queue pointer. 

Send the negative messages stored for all                             

events between the old and new positions. 

erase the stored state vectors for those events. 

resume execution at new pointer location. 
 

Figure 1. The Time Warp algorithm. 

 

Time warp performance is highly affected by the 

efficiency of its event queue implementation. 

Researchers have empirically studied the effects of 

using fast priority queues to implement discrete-event 

simulation data sets on simulation performance. For 

example, a comparative study of a number of 

sequential and parallel priority queue implementations 

is reported in [6].  However, no empirical study has 

been reported to study the effect of changing the time 

warp communication pattern to be connection-oriented 

on time warp performance. In this paper, we report the 

results of an experimental study conducted to compare 

the performance of a connectionless and a modified 

version of connection-oriented time warp 

implementations using a synthetic simulation model 

consisting of a 4x4 torus topology running on a 

network of four workstations. 

The remainder of this paper is organized as follows. 

In section 2, we present the requirements of 

implementing connection-oriented time warp. Section 

3 describes the performance evaluation testbed and 

presents experimental results for both connection-

oriented and connectionless time warp. Section 4 

contains conclusions. 

 

 

2. Implementing Connection-Oriented   

Time Warp 

The time warp input queue data structure is important 

to performance. In connectionless time warp 

implementations, during forward execution, an LP's 

input queue must be searched to find the correct 

position to insert each newly received input event. 

Moreover, during rollback, the event set must be 

searched to find the event entry that must be deleted. 

Therefore, the connection-oriented approach to 

implementing time warp seeks to eliminate the need of 

searching input queues during the rollback and to 

reduce the search cost during forward execution.  

Connection-oriented implementation of time warp 

was proposed by Kalantery [3]. It is based on the 

assumption that any communication link connecting 

any two physical processes of a simulated system is 

represented in the simulation model by a fixed logical 

channel connecting the corresponding LPs. This leads 

to forming static model topologies where 

communication channels are established before 

simulation execution, and cannot be changed until the 

end of execution. In addition, message delivery over 

any logical channel is assumed to be First-In-First-Out 

(FIFO). Based on these assumptions, a separate FIFO 

channel queue is associated with each channel to store 

messages arriving over that channel at the receiver 

side. With such channel queues, the event at the front 

of the channel queue has the smallest timestamp. When 

a new unprocessed event arrives on one of the LP's 

input channels, it is appended directly at the end of the 

FIFO input queue associated with that channel. With 

this arrangement, an LP selects for execution the event 

with the smallest timestamp among the front-entry 

events in the input queues of all incoming channels. 

This greatly reduces the event search space during 

event forward execution at each LP. The use of FIFO 

channel queues is depicted in Figure 2 for the case of 

an LP sending a sequence of three events to another LP 

in an increasing timestamp order. 

 
Figure 2. Ordered arrival of a sequence of three events sent by LP1 

at LP2's channel queue.  
 

Suppose that an event e at the front of one of LP2's 

input channel queues is selected for processing. In this 

case, event e is not deleted from its channel queue in 

order to allow for possible reprocessing in case a 

rollback occurs later. However, a first position pointer 

which points to the first unprocessed event in a channel 

queue is advanced forward by one step. This process is 

illustrated in Figure 3. Based on the above described 
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ideas, a FIFO channel queue at any LP will consist of 

two sections [3]: 

• Future section which contains unprocessed events. 

• Past section which contains processed events. 
 

Under connection-oriented time warp, the rollback 

mechanism becomes faster because, when an anti-

message arrives over a channel, it finds its positive 

counterpart at the back of the channel queue. This 

eliminates the search cost for erroneous events during 

cancellation. An example for the direct cancellation of 

an erroneous event using an anti-message is shown in 

Figure 4. After deletion of the (processed) original 

message using the received anti-message, the first 

Position pointers of all input queues in the receiving 

LP are set to the input event whose timestamp is just 

before the timestamp of the anti-message. Moreover, 

the LP is restored to its earlier state which existed just 

before the time of the received anti-message. This way, 

input events are reprocessed in the same order in which 

they were previously processed before the occurrence 

of rollback. This arrangement avoids the creation of 

the combined input history suggested in [3] which 

provides the mechanism by which rolled back events 

can be reprocessed.  
 

 
 

Figure 3. Advancing the first position pointer at LP2 during 

forward event execution. 

 

 

Figure 4. The rollback mechanism in connection-oriented Time 

Warp. 

 

With the above described connection-oriented 

approach for implementing time warp, we can also 

reduce the number of anti-messages sent over a 

channel. This can be achieved by sending a single anti-

message to cancel its matching original message, as 

well as the group of erroneous messages which also 

need to be cancelled due to the occurrence of the 

rollback, and whose timestamps are greater than that of 

the anti-message. Figure 5 illustrates the case of a 

rollback occurrence at one LP, and the cancellation of 

a group of erroneous messages in another LP by only 

one anti-message. 
 

 
 

Figure 5. Example of group cancellation in connection-oriented 

Time Warp: (a) the two Lps before rollback, (b) LP1 sends multiple 

anti-messages with timestamp (9, 12, and 23) to LP2, (c) 

alternatively, lp1 sends a single anti-message with timestamp (9) to 

Lps, (d) the two Lps aft er a rollback either using a single anti-

message or multiple anti-messages. 

 

3. Performance Evaluation 

Java-based implementations for both connection-

oriented and connectionless time warp were developed 

on a network of four Pentium-4 workstations 

interconnected by a 100Mbit/sec Ethernet switch. 

Performance was tested using a synthetic workload 

benchmark consisting of a fixed number of LPs and a 

constant number of circulating event messages. Each 

of the four machines runs four LPs connected as a 2x2 

torus forming an overall 8x8 torus topology as shown 

in Figure 6. A shifted exponential service function with 

a mean of 50 ms is used in our experiments. Each 

logical process selects the output link on which it 

forwards the next outgoing message according to a 

uniform distribution. Periodic state saving is performed 

after the execution of each event with a fixed time cost 

of 2 ms. a static event scheduler on each LP is 

implemented using a smallest-timestamp-first 

scheduling policy. The Global Virtual Time (GVT) 

algorithm used is based on Mattern's GVT algorithm 

[4]. 
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               Figure 6. The 4x4 torus model topology. 

 

We have selected the following performance 

measures for our experiments: the number of rollbacks, 

the number of anti-messages and the total simulation 

time. We conducted experiments to compare 

performance of the connection-oriented and 

connectionless time warp implementations as the initial 

message population per LP is varied from 5 to 20 

messages per LP. Figure 7 shows the relationship 

between the number of rollbacks and the message 

population for the two implementations. It can be seen 

that, in the connection-oriented time warp 

implementation, the number of rollbacks is less than 

that in the case of the connectionless implementation. 

This can be attributed to the fast group cancellation of 

erroneous messages sent from one LP to another, 

which is a result of the more efficient implementation 

of event data sets in the case of the connection-oriented 

time warp implementation. This data set 

implementation greatly eliminates the possibility of 

occurrence of secondary rollbacks which is the main 

reason for the observed reduction in the number of 

rollbacks in the case of connection-oriented time warp. 

Moreover, we notice that the number of rollbacks in 

both implementations increases with the message 

population because, when we increase the initial 

number of messages in the input queue of each LP, the 

gap in virtual time between LPs decreases and, 

consequently, the overall number of rollbacks 

decreases. 
 

 
Figure 7. The number of rollbacks vs. message population for 

connection-oriented and connectionless time warp. 

 

Figure 8 shows the relationship between the number 

of anti-messages and the message population for both 

time warp implementations. We note that there is a 

drop in the number of anti-messages in both cases 

because of the drop in the number of rollbacks with 

increasing message population previously observed in 

Figure 7. We also note that the number of anti-

messages used by the connection-oriented 

implementation is considerably lower than that used by 

the connectionless implementation. This can also by 

explained by the group cancellation feature provided 

by the connection-oriented implementation. 
 

 
 

Figure 8. The number of anti-messages vs. message population for 

connection-oriented and connectionless Time Warp.  

 

Finally, Figure 9 shows the relationship between the 

total simulation time and the initial message population 

for the two time warp implementations. It can be seen 

that the total simulation time for connection-oriented 

of rollbacks occurring in the connection-oriented case 

is less than the number of rollbacks in the 

connectionless case. This difference contributes time 

warp is less than that of connectionless time warp. This 

difference is logical given that the number significantly 

to reducing the number of anti-messages to be sent, 

which in turn results in reducing the total time, needed 

to complete the simulation.   
 

 
 

Figure 9.  The total simulation time vs. message population for 

connection-oriented and connectionless time warp 4.  
 

4. Conclusion 

We have implemented an enhanced version of the 

connection-oriented time warp algorithm on a network 

of workstations using a standard benchmark simulation 

model. We have also conducted an experimental study 
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to compare the performance of connection-oriented 

time warp with that of traditional connectionless Time 

Warp. Experimental results show that connection-

oriented time warp algorithm is capable of achieving 

better performance than connectionless time warp for 

the used benchmark model for several performance 

measures. 
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