
230 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

An Empirical Performance Study of Connection

Oriented Time Warp Parallel Simulation

Ali Al-Humaimidi

and Hussam Ramadan

Information Systems Department, King Saud University, Saudi Arabia

Abstract: Time warp is a well-known optimistic mechanism for parallel execution of simulation programs. Implementing time

warp using a connection-oriented communication approach is proposed in the literature as a way to improve time warp

performance because it allows for the use of more efficient event queue implementations. However, no empirical performance

studies have been reported for connection-oriented time warp. In this paper, we present an enhanced version of the

connection-oriented time warp algorithm along with its associated data structures. An empirical performance study of the

connection-oriented time warp is conducted on a network of workstations using a standard synthetic benchmark simulation

model. Experimental results show that this algorithm is capable of achieving better performance than that of traditional

connectionless time warp for several performance measures.

Keywords: Parallel simulation, time warp, connection-oriented, connectionless.

Received March 18, 2007; accepted December 13, 2007

1. Introduction

Parallel simulations attempt to speed up the execution

of a simulation program by running it on a number of

parallel processors in a multiprocessor machine or on a

network of workstations. The simulation model needs

to be partitioned in such a way that utilizes the parallel

processing capabilities of the model execution

platform. Specifically, the simulated system is usually

modeled as a set of interacting Logical Processes (LPs)

which are mapped to the different processors. Each

logical process is a model of some component of the

physical system, called a physical process. Logical

processes interact with each other using time-stamped

event messages which simulate interactions between

physical processes in the real system. Each logical

process has its own simulation clock and its own state

variables representing a portion of the state of the

corresponding physical process.

 Parallel simulations synchronize the execution of

simulation models on parallel processors using either a

conservative approach or an optimistic approach.

Conservative algorithms strictly avoid the possibility

of incorrect sequencing of events by including

strategies for determining which events are safe to

process at each point in simulation time. Optimistic

algorithms, on the other hand, use a detection and

recovery approach that is based on detecting incorrect

event execution order, and a rollback mechanism to

recover from them [1].

 Time warp, a well-known optimistic approach, is

based on the idea of allowing LPs to execute

optimistically until a causality error is detected. At

such an instance, a rollback mechanism is initiated to

recover from the incorrect computation. A causality

error is detected whenever an LP receives an event

message that contains a timestamp smaller than its

local clock. Such a message is called a straggler

message. Receiving a straggler message causes an LP

to rollback in simulated time and re-executes

previously-processed events whose timestamps are

greater than that of the received straggler. Such an LP

must cancel the effects of previously-sent erroneous

messages by sending anti-messages. An anti-message

is a control message that carries the identity of one of

the previously-sent output messages and causes that

message to be cancelled once they meet each other.

The basic time warp algorithm proposed by

Jefferson et al. [2] assumes connectionless

communication between the LPs of the simulation

model. In this algorithm, an LP can send/receive

messages to/from any other LP in the simulation

without having to establish a connection with that LP.

This leads to the creation of models with dynamic

topologies where the communication links between

LPs are not known prior to and may change during

simulation execution. However, maintaining this

feature requires expensive searches of each LP's input

queue to insert newly-scheduled events during forward

execution. In addition, each LP's input queue must also

be searched again at rollback situations in order to

cancel erroneous events. The basic time warp

algorithm is shown in Figure 1.

 Several studies have been made to improve the

performance of time warp parallel simulations by

improving the rollback and state-saving mechanisms,

or by even simulation execution platforms [5].

However, Kalantery suggests [3] to improve time warp

 An Empirical Performance Study of Connection Oriented Time Warp Parallel Simulation 231

performance by changing the communication approach

used in time warp from connectionless to connection-

oriented. He proposes a connection-oriented

implementation of time warp that uses modified and

more efficient event queues, and assumes timestamp-

ordered delivery of messages on each connection. The

use of permanent communication channels between

LPs and the use of the proposed event queues are

shown to greatly reduce the event-set search

requirements. This, in turn, is expected to improve the

performance of time warp.

Each LP executes:

While (simulation termination criteria are not met) do

 IF (input-queue pointer points to NULL)

 Wait for new events to arrive

 Else

 Store received event in input queue.

 Store the state vector in the state queue.

 Execute the event.

 Store a negative copy of any outgoing.

 Message in the output queue.

 Advance the input-queue pointer.

 End else

To execute an anti-message:

Reset input-queue pointer.

Send the negative messages stored for all

events between the old and new positions.

erase the stored state vectors for those events.

resume execution at new pointer location.

Figure 1. The Time Warp algorithm.

Time warp performance is highly affected by the

efficiency of its event queue implementation.

Researchers have empirically studied the effects of

using fast priority queues to implement discrete-event

simulation data sets on simulation performance. For

example, a comparative study of a number of

sequential and parallel priority queue implementations

is reported in [6]. However, no empirical study has

been reported to study the effect of changing the time

warp communication pattern to be connection-oriented

on time warp performance. In this paper, we report the

results of an experimental study conducted to compare

the performance of a connectionless and a modified

version of connection-oriented time warp

implementations using a synthetic simulation model

consisting of a 4x4 torus topology running on a

network of four workstations.

The remainder of this paper is organized as follows.

In section 2, we present the requirements of

implementing connection-oriented time warp. Section

3 describes the performance evaluation testbed and

presents experimental results for both connection-

oriented and connectionless time warp. Section 4

contains conclusions.

2. Implementing Connection-Oriented

Time Warp

The time warp input queue data structure is important

to performance. In connectionless time warp

implementations, during forward execution, an LP's

input queue must be searched to find the correct

position to insert each newly received input event.

Moreover, during rollback, the event set must be

searched to find the event entry that must be deleted.

Therefore, the connection-oriented approach to

implementing time warp seeks to eliminate the need of

searching input queues during the rollback and to

reduce the search cost during forward execution.

Connection-oriented implementation of time warp

was proposed by Kalantery [3]. It is based on the

assumption that any communication link connecting

any two physical processes of a simulated system is

represented in the simulation model by a fixed logical

channel connecting the corresponding LPs. This leads

to forming static model topologies where

communication channels are established before

simulation execution, and cannot be changed until the

end of execution. In addition, message delivery over

any logical channel is assumed to be First-In-First-Out

(FIFO). Based on these assumptions, a separate FIFO

channel queue is associated with each channel to store

messages arriving over that channel at the receiver

side. With such channel queues, the event at the front

of the channel queue has the smallest timestamp. When

a new unprocessed event arrives on one of the LP's

input channels, it is appended directly at the end of the

FIFO input queue associated with that channel. With

this arrangement, an LP selects for execution the event

with the smallest timestamp among the front-entry

events in the input queues of all incoming channels.

This greatly reduces the event search space during

event forward execution at each LP. The use of FIFO

channel queues is depicted in Figure 2 for the case of

an LP sending a sequence of three events to another LP

in an increasing timestamp order.

Figure 2. Ordered arrival of a sequence of three events sent by LP1

at LP2's channel queue.

Suppose that an event e at the front of one of LP2's

input channel queues is selected for processing. In this

case, event e is not deleted from its channel queue in

order to allow for possible reprocessing in case a

rollback occurs later. However, a first position pointer

which points to the first unprocessed event in a channel

queue is advanced forward by one step. This process is

illustrated in Figure 3. Based on the above described

232 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

ideas, a FIFO channel queue at any LP will consist of

two sections [3]:

• Future section which contains unprocessed events.

• Past section which contains processed events.

Under connection-oriented time warp, the rollback

mechanism becomes faster because, when an anti-

message arrives over a channel, it finds its positive

counterpart at the back of the channel queue. This

eliminates the search cost for erroneous events during

cancellation. An example for the direct cancellation of

an erroneous event using an anti-message is shown in

Figure 4. After deletion of the (processed) original

message using the received anti-message, the first

Position pointers of all input queues in the receiving

LP are set to the input event whose timestamp is just

before the timestamp of the anti-message. Moreover,

the LP is restored to its earlier state which existed just

before the time of the received anti-message. This way,

input events are reprocessed in the same order in which

they were previously processed before the occurrence

of rollback. This arrangement avoids the creation of

the combined input history suggested in [3] which

provides the mechanism by which rolled back events

can be reprocessed.

Figure 3. Advancing the first position pointer at LP2 during

forward event execution.

Figure 4. The rollback mechanism in connection-oriented Time

Warp.

With the above described connection-oriented

approach for implementing time warp, we can also

reduce the number of anti-messages sent over a

channel. This can be achieved by sending a single anti-

message to cancel its matching original message, as

well as the group of erroneous messages which also

need to be cancelled due to the occurrence of the

rollback, and whose timestamps are greater than that of

the anti-message. Figure 5 illustrates the case of a

rollback occurrence at one LP, and the cancellation of

a group of erroneous messages in another LP by only

one anti-message.

Figure 5. Example of group cancellation in connection-oriented

Time Warp: (a) the two Lps before rollback, (b) LP1 sends multiple

anti-messages with timestamp (9, 12, and 23) to LP2, (c)

alternatively, lp1 sends a single anti-message with timestamp (9) to

Lps, (d) the two Lps aft er a rollback either using a single anti-

message or multiple anti-messages.

3. Performance Evaluation

Java-based implementations for both connection-

oriented and connectionless time warp were developed

on a network of four Pentium-4 workstations

interconnected by a 100Mbit/sec Ethernet switch.

Performance was tested using a synthetic workload

benchmark consisting of a fixed number of LPs and a

constant number of circulating event messages. Each

of the four machines runs four LPs connected as a 2x2

torus forming an overall 8x8 torus topology as shown

in Figure 6. A shifted exponential service function with

a mean of 50 ms is used in our experiments. Each

logical process selects the output link on which it

forwards the next outgoing message according to a

uniform distribution. Periodic state saving is performed

after the execution of each event with a fixed time cost

of 2 ms. a static event scheduler on each LP is

implemented using a smallest-timestamp-first

scheduling policy. The Global Virtual Time (GVT)

algorithm used is based on Mattern's GVT algorithm

[4].

 An Empirical Performance Study of Connection Oriented Time Warp Parallel Simulation 233

 Figure 6. The 4x4 torus model topology.

We have selected the following performance

measures for our experiments: the number of rollbacks,

the number of anti-messages and the total simulation

time. We conducted experiments to compare

performance of the connection-oriented and

connectionless time warp implementations as the initial

message population per LP is varied from 5 to 20

messages per LP. Figure 7 shows the relationship

between the number of rollbacks and the message

population for the two implementations. It can be seen

that, in the connection-oriented time warp

implementation, the number of rollbacks is less than

that in the case of the connectionless implementation.

This can be attributed to the fast group cancellation of

erroneous messages sent from one LP to another,

which is a result of the more efficient implementation

of event data sets in the case of the connection-oriented

time warp implementation. This data set

implementation greatly eliminates the possibility of

occurrence of secondary rollbacks which is the main

reason for the observed reduction in the number of

rollbacks in the case of connection-oriented time warp.

Moreover, we notice that the number of rollbacks in

both implementations increases with the message

population because, when we increase the initial

number of messages in the input queue of each LP, the

gap in virtual time between LPs decreases and,

consequently, the overall number of rollbacks

decreases.

Figure 7. The number of rollbacks vs. message population for

connection-oriented and connectionless time warp.

Figure 8 shows the relationship between the number

of anti-messages and the message population for both

time warp implementations. We note that there is a

drop in the number of anti-messages in both cases

because of the drop in the number of rollbacks with

increasing message population previously observed in

Figure 7. We also note that the number of anti-

messages used by the connection-oriented

implementation is considerably lower than that used by

the connectionless implementation. This can also by

explained by the group cancellation feature provided

by the connection-oriented implementation.

Figure 8. The number of anti-messages vs. message population for

connection-oriented and connectionless Time Warp.

Finally, Figure 9 shows the relationship between the

total simulation time and the initial message population

for the two time warp implementations. It can be seen

that the total simulation time for connection-oriented

of rollbacks occurring in the connection-oriented case

is less than the number of rollbacks in the

connectionless case. This difference contributes time

warp is less than that of connectionless time warp. This

difference is logical given that the number significantly

to reducing the number of anti-messages to be sent,

which in turn results in reducing the total time, needed

to complete the simulation.

Figure 9. The total simulation time vs. message population for

connection-oriented and connectionless time warp 4.

4. Conclusion

We have implemented an enhanced version of the

connection-oriented time warp algorithm on a network

of workstations using a standard benchmark simulation

model. We have also conducted an experimental study

234 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

to compare the performance of connection-oriented

time warp with that of traditional connectionless Time

Warp. Experimental results show that connection-

oriented time warp algorithm is capable of achieving

better performance than connectionless time warp for

the used benchmark model for several performance

measures.

Reference

[1] Fujmoto M., Parallel and Distributed Simulation

Systems, John Wiley, New York, 2000.

[2] Jefferson D., Beckman B., Wieland F., and

Blume L., “The Time Warp Operating System,”

in Proceedings of the 11
th
 Symposium on

Operating System Principles, pp. 77-93, United

States, 1987.

[3] Kalantery N., “Time Warp Connection

Oriented,” in Proceedings of the 18
th
 Workshop

on Parallel and Distributed Simulation, pp. 71-

77, United States, 2004.

[4] Mattern F., “Efficient Algorithms for Distributed

Snapshots and Global Virtual Time

Approximation,” Computer Journal of Parallel

and Distributed Computing, vol. 8, no. 4, pp.

423-434, 1993.

[5] Perumalla S., “Parallel and Distributed

Simulation: Traditional Techniques and Recent

Advances,” in Proceedings of the 2006 Winter

Simulation Conference, pp. 84-95, California,

2006.

 [6] Ronngren R. and Ayani R., “A Comparative

Study of Parallel and Sequtial Priority Queue

Algorithms,” Computer Journal ACM

Transactions on Modeling and Computer

Simulation, vol. 7, no. 2, pp. 157-209, 1997.

Ali Al-Humaimidi received his BSc

and MSc in information systems in

1998 and 2007, respectively from

College of Computer and

Information Sciences, King Saud

University, Saudi Arabia.

Hussam Ramadan received his

BSc in electrical engineering in

1988 from the George Washington

University, USA, his MS degree in

electrical engineering in 1991 from

King Saud University, Saudi Arabia,

and his PhD degree in computer

science and engineering in 1995 from the University of

Louisville, USA. Currently, he is the vice dean of the

College of Computer and Information Sciences, King

Saud University.

235 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

236 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

237 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

238 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

239 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

240 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

241 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

242 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

