
The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009 213

New Architecture of Fuzzy Database

Management Systems

Amel Grissa Touzi and Mohamed Ali Ben Hassine
Faculty of Sciences of Tunis, Tunisia University, Tunisia

Abstract: Fuzzy relational data bases have been extensively studied in a theoretical level. Unfortunately, the repercussions of

these works on the practical plan are negligible. Medina et al. have developed a server named fuzzy SQL, supporting flexible

queries and based on a theoretic model called GEFRED. This server has been programmed in PL/SQL language under Oracle

database management systems. To model the flexible queries and the concept of fuzzy attributes, an extension of the SQL

language named fuzzy SQL has been defined. The FSQL language extends the SQL language, to support the flexible queries,

with many fuzzy concepts. The FRDB is supposed has already been defined by the user. In this paper, we extend the work of

medina et al. to present a new architecture of fuzzy DBMS based on the GEFRED model. This architecture is based on the

concept of weak coupling with the DBMS Oracle. It permits, in particular, the description, the manipulation and the

interrogation of FRDB in FSQL language.

 Keywords: Fuzzy DB, FSQL, FIRST, FSQL serve, GEFRED.

Received March 18, 2007; accepted May 30, 2007

1. Introduction

The research area of fuzziness in Data Base
Management Systems (DBMS) has resulted in a
number of models aimed at the representation of
imperfect information in DataBases (DB), or at
enabling non-precise queries (often called flexible
queries) on conventional database schemas [1, 2].

However, few works have been done from a
practical point of view. The majority of these works
used the fuzzy sets formalism to model the linguistic
terms as “moderate”, “means” and to value the
predicates including such terms. The essential idea in
these works consists in extending the SQL language
and adding a supplementary layer to the relational
DBMS to evaluate the fuzzy predicates [3].

In this paper, we are interested to the works of
Medina et al. who introduced the GEFRED model
[14] in 1994 and its associated language named FSQL
[5, 6, 7, 13]. This language presents new concepts such
as fuzzy comparators, fuzzy attributes, fuzzy constants,
etc. The use of this language is through a software
named Fuzzy Query (FQ) [10]. Even though it solved
several problems related to the flexible queries
modeling, FQ presents several limits: (1) it allows only
the flexible querying of FRDB, (2) the FRDB is
supposed already implemented under Oracle, (3) the
implementation of the DB is made manually by the
user, (4) FQ is not suitable in practice for FRDB made
up of more than ten tables.

In this paper, we propose a new architecture of the
Fuzzy Relational DBMS (FRDBMS) based on the
GEFRED model. This architecture is based on the

weak coupling principle with the RDBMS Oracle. This
FRDBMS offers all functionalities of a classic DBMS,
in particular the description, the manipulation and the
querying of FRDB.

Besides this introduction, this paper includes five
sections. Section 2 presents the basic concepts of
FRDB. Section 3 presents the architectures already
used for the flexible querying modeling. Section 4
presents the architecture type of FRDBMS. Section 5
presents our new architecture of the FRDBMS as well
as its implementation. Section 6 makes an evaluation
of this work and gives some future perspectives of it.

2. Basic Concepts

In this section, we present the basis concepts of FRDB.

2.1. Definitions

A FRDB is an extension of the relational database.
This extension introduces fuzzy predicates under
shapes of linguistic expressions that, at the time of a
flexible querying, permits to have a range of answers
(each one with a membership degree) in order to offer
to the user all intermediate variations between the
completely satisfactory answers and those completely
dissatisfactory [2].

A FRDBMS is an extension of the relational DBMS
in order to treat, store and interrogate imprecise data.
The FRDB models are considered in a very simple
shape and consist in adding a degree, usually in the
interval [0, 1], to every tuple. It allows maintaining the
homogeneity of the data in DB. The main models are

214 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

those of Prade-Testemale [16], Umano-Fukami [17],
Buckles-Petry [4], Zemankova-Kaendel [19] and
GEFRED of Medina et al. [14]. This last model
constitutes an eclectic synthesis of the various models
published so far with the aim of dealing with the
problem of representation and treatment of fuzzy
information by using relational DB.

2.2. The GEFRED Model

The GEneralised model Fuzzy heart Relational
Database (GEFRED) has been proposed in 1994 by
Medina et al. [14]. One of the major advantages of this
model is that it consists of a general abstraction that
allows for the use of various approaches, regardless of
how different they might look. In fact, it is based on
the generalized fuzzy domain and the generalized
fuzzy relation, which include respectively classic
domains and classic relations. The data types supported
by this model are showed in the Table 1.

Table 1. Data types in the GEFRED model.

2.2.1. Fuzzy Attributes in GEFRED Model

In order to model fuzzy attributes we distinguish
between two classes of fuzzy attributes: Fuzzy
attributes whose fuzzy values are fuzzy sets and fuzzy
attributes whose values are fuzzy degrees [9, 11].

A. Fuzzy Sets as Fuzzy Values
These fuzzy attributes may be classified in four data
types. This classification is performed taking into
account the type of referential or underlying domain.
In all of them the values unknown, undefined, and null
are included:

• Fuzzy Attributes Type 1 (FTYPE1): these are
attributes with “precise data”, classic or crisp
(traditional, with no imprecision). However, they
can have linguistic labels defined over them, which
allow us to make the query conditions for these
attributes more flexible.

• Fuzzy Attributes Type 2 (FTYPE2): these attributes
admit both crisp and fuzzy data, in the form of

possibility distributions over an underlying ordered
domain (fuzzy sets). It is an extension of the Type1
that does, now, allow the storage of imprecise
information, such as: “he is approximately 2 meters
tall”. For the sake of simplicity the most complex of
these fuzzy sets are supposed to be a trapezoidal
function Figure 1. Table 2 shows the kinds of values
defined in these attributes.

• Fuzzy Attributes Type 3 (FTYPE3): they are
attributes over “data of discreet non-ordered
dominion with analogy”. In these attributes some
labels are defined (“blond”, “red”, “brown”, etc.)
that are scalars with a similarity (or proximity)
relationship defined over them, so that this
relationship indicates to what extent each pair of
labels be similar to each other.

• Fuzzy Attributes Type 4 (FTYPE4): these attributes
are defined in the same way as Type 3 attributes,
without it being necessary for a similarity
relationship to exist between the labels.

B. Fuzzy Degrees as Fuzzy Values

The domain of these degrees can be found in the
interval [0, 1], although other values are also
permitted, such as a possibility distribution (usually
over this unit interval) [11]. The meaning of these
degrees is varied and depends on their use. The most
important possible meanings of the degrees used by
some authors are: fulfillment degree, Uncertainty
degree, Possibility degree and Importance degree. The
ways of using these fuzzy degrees are classified in two
families: associated degrees (type 5, type 6, type 7) and
non-associated degrees (type 8) [9].

2.2.2. Representation of Fuzzy Attributes

This representation is different according to the fuzzy
attributet [8, 11]. Fuzzy attributes type 1 are
represented as usual attributes, because they do not
allow fuzzy values. Fuzzy attributes type 2 need five
classic attributes Table 2.

• FT: stores the kind of value which the attribute in
question can take (0 for UNKNOWN, 1 for
UNDEFINED, etc). The letter T is concatenated the
name of the attribute.

• F1, F2, F3 et F4 : stores the description of the
parameters which define the data and which depend
on the type of value (FT), the name of these
attributes is formed by the concatenation of numbers
1, 2, 3 and 4 in the name of the attribute to which
they belong.

Figure 1. Trapezoidal linear and normalized distribution function.

1. A single scalar (e.g., Behavior=good, represented by the possibility
of distribution 1/good).

2. A single number (e.g., Age=28, represented by the possibility of
distribution 1/28).

3. A set of mutually exclusive possible scalar assignations (e.g.,
Behavior={Bad, Good}, represented by {1=Bad, 1=Good}).

4. A set of mutually exclusive possible numeric assignations (e.g.,
Age={20, 21}, represented by {1/20, 1/21}).

5. A possibility distribution in a scalar domain (e.g.,
Behavior={0.6/Bad, 1.0/Regular}).

6. A possibility distribution in a numeric domain (e.g. Age={0.4/23,
1.0/24, 0.8/25}, fuzzy numbers or linguistic labels).

7. A real number belonging to [0, 1], referring to the degree of
matching (e.g., Quality=0.9).

8. An Unknown value with possibility distribution Unknown={1/u: u

∈U} on domain U, considered.
9. An Undefined value with possibility distribution Undefined={0/u: u

∈U} on domain U, considered.
10. A NULL value given by NULL={1/Unknown, 1/Undefined}.

 a b c d
U

New Architecture of Fuzzy Database Management Systems 215

 Table 2. Kind of values of fuzzy attributes type 2.

The fuzzy attributes type 3 is represented by a
variable number of traditional attributes according to
the form described in Table 3.

• FT: is similar to FT used in FTYPE2 attribute.

• (FP1, F1),…, (FPn,Fn): in these attributes, we store
data of the distribution of possibility. For example,
in a value of the SIMPLE type, only first couple is
used and value of possibility will be 1 (to be
standardized).

 Table 3. Kind of values of fuzzy attributes type 3.

Fuzzy attributes type 4 is represented just like type

3. The different between them is shown in the next
section. Fuzzy degrees (types 5, 6, 7 and 8) are
represented using a classic numeric attribute, because
their domain is the interval [0, 1].

2.3. The FSQL Language

The FSQL language is an authentic extension of SQL
language to model fuzzy queries. It means that all the
valid statements in SQL are also valid in FSQL [5, 11,
13]. The SELECT command is extended to express
flexible queries and, due to its complex format [9], we
only show an abstract with the main extensions added
to this command:

• Linguistic Labels: if an attribute is able of fuzzy
treatment then linguistic labels can be defined on it.
These labels will be preceded with the symbol $ to
distinguish them easily. Every label has an
associated trapezoidal possibility distribution as
shown in Figure 1 (for fuzzy attributes type 1 and 2)
or a scalar (for fuzzy attributes type 3 and 4).

• Fuzzy Comparators: besides the typical comparators
(=,>, etc.), FSQL includes fuzzy comparators. The
definition of all these comparators is presented in
[11].

• Function CDEG: the function CDEG (compatibility
degree) may be used with an attribute in the
argument to compute. It computes the fulfillment
degree of the condition of the query for the attribute
mentioned in its argument.

• Fulfillment Thresholds: for each simple condition, a

fulfillment threshold τ may be established (default is

1) with the format: <condition> THOLD τ
indicating that the condition must be satisfied with

minimum degree τ ∈[0,1] to be considered.

• Fuzzy constants: besides the typical constants
(numbers, NULL…), FSQL included many
constants such as fuzzy trapezoidal $[a,b,c,d],
approximate values #n, $label, [n,m], UNKNOWN,
UNDEFINED, etc.

• Fuzzy Quantifiers: there are of two types: absolute
and relative. They allow us to use expressions like
“most”, “almost all”, “many”, “very few”, etc.

Example:

“Give me all persons with fair hair (in minimum
degree 0.5) that are possibly taller than label $Tall
(with a high degree)”. This query is modeled in FSQL
language as follows:

 SELECT * FROM Person

 WHERE Hair FEQ $Fair THOLD 0.5

 AND Height FGT $Tall THOLD $High;

3. Proposed Architectures for the Flexible

Querying Modeling

In this section, we present the different architectures
proposed to model the flexible queries.

3.1. The Architecture Proposed by Bosc for the

Flexible Querying Modeling

The approach proposed by Bosc Figure 2 consists in
using the capacities of the commercial DBMS (in
particular their mechanisms of optimization) while
adding a supplementary layer assuring the interface
between flexible queries and boolean queries [2, 3]. As
Figure 2 shows the fuzzy query process is done by a
transformation procedure located on top of the existing
DBMS. The translation mechanism generates a
procedural evaluation program and determines the
expressions which are used to compute the
membership degrees. The program processes the SQL
queries which are derived from the SQLf query [1],
computes the degrees and separate if necessary the n-

uplets whose degree is lower to the fixed λ threshold.

Attributes of the DB for Every Attribute Type 3
Kind of Values

FT FP1 F1 FPn Fn

UNKNOWN 0 NULL NULL … NULL NULL

UNDEFINED 1 NULL NULL … NULL NULL

NULL 2 NULL NULL … NULL NULL

SIMPLE 3 p d … NULL NULL

POSS. DISTR. 4 p1 d1 … pn dn

216 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

.

Figure 2. The architecture proposed by Bosc.

3.2. The Architecture Proposed by Medina

In order to implement a system which represent and
manipulate “imprecise” information, Medina et al.
have developed FIRST architecture (a fuzzy Interface
for relational systems) [15] which have been enhanced
with FIRST-2 [9]. It is built on RDBMS Client-Server
architecture provided by Oracle. It extends the existing
structure and adds new components to handle fuzzy
information. The main important component added to
this architecture is the FSQL Server which assures the
translation of flexible queries written in FSQL in a
comprehensible language by the DBMS (SQL). The
schema of the architecture is showed in Figure 3.

In this architecture, Medina uses also the DBMS
while adding a server assuring the translation of
flexible queries in a comprehensible language by this
DBMS (SQL). This server, named FSQL server [5], is
based on a theoretical model named GEFRED. It has
been developed in PL/SQL.

Figure 3. General architecture of FSQL server.

To model the flexible and the concept of fuzzy
attributes, an extension of the SQL language named
FSQL has been defined. Since the server is
implemented for the Oracle DBMS, which only
supports SQL and PL/SQL languages, it is natural that
all extensions made in FSQL language must be
supported directly by Oracle. For this reason, Medina

et al. defined a meta base named Fuzzy Meta
knowledge Base (FMB) [15] formed by a set of tables
which extend the RDBMS dictionary or catalog in
order to store all necessary information to describe
and to manipulate fuzzy attributes. Figure 4 shows the
relations in the FMB, its attributes, its primary keys
(underlined) and its foreign keys (with the arrows).

Figure 4. Relations in the FMB.

3.3. Limits of the Existing Works

As we presented in the previous section, the solutions
currently proposed are restricted to the modeling of the
flexible queries in the RDB. The FRDB is already
supposed manually implemented by the user. It returns
these solutions limited to some simple examples of
FRDB and to academic uses. We propose in the
continuation a new approach that allows the user to
descript and manipulate the FRDB directly with FSQL
language.

4. Architecture Type of an FRDBMS

An FRDBMS is considered first of all a DBMS. It
must assure the following functions: (1) the
description of the data, assured through the
intermediary of a Data Description Language (DDL),
(2) The manipulation of the data, assured through the
intermediary of a Data Manipulation Language
(DML), (3) The integrity maintenance of the FRDB,

User SQLf Query (Including Threshold λ)

Translation Mechanism

Procedural Evaluation Program Including:

− Sql Query

− Computation of the Degrees

− Calibration

DBMS Data

Final Result = Ordered

Elements of the λ-Level Cut

RDBMS

FSQL Server

DB

Database

Interface or
Client Visual

FSQLF
Fuzzy FORM

FSQL
Client

FMB (Fuzzy) DIC (Classical)

System Catalog

New Architecture of Fuzzy Database Management Systems 217

FSQL Server
(or Translation

Mechanism for SQLf)

RDBMS

SQL + FSQL (or SQLf)

FSQL Server
(or translation

mechanism for SQLf)

RDBMS

SQL + FSQL (or SQLf)

assured by the definition of integrity rules, (4) The
confidentiality, assured by the verification of the
access rights, (5) The management of the competition
of access, (6) The security of working in case of
breakdown, and (7) the use help.

On another side, an FRDMS must (1) be capable to
represent the fuzzy information in all its shapes, (2)
offer an adequate setting to store and to represent the
significance of this information, and (3) provide a
minimum set of operators to recover and to treat the
fuzzy data. An FRDMS must be made up of the core of
DBMS permitting to store, manipulate fuzzy attributes
and execute the classic operations of the DBMS. This
architecture is illustrated in the Figure 5.

Figure 5. FRDBMS architecture.

Two possible solutions to implement an FRDMS:
(1) develop a specific FRDMS to evaluate the queries
written in FSQL, by analogy with the strategy put in
work in the usual DBMS, but the development cost
would risk to be prohibitive, (2) use the capacities of
the commercial DBMS (in particular their mechanisms
of optimization) while attaching a software layer that
permits to support the fuzzy concept.

The last solution, characterized by its easiness
realization, consists in cooperating the FSQL server
and the DBMS. The FSQL Server translates the fuzzy
queries written in FSQL language while looking in the
information stored in the FMB. Once this phase is
finished, the DBMS manages the crisp data translated
by the FSQL Server with a transparent way. We speak
then about weak “Coupling” Figure 6 or strong
Coupling Figure 7.

Figure 6. Weak coupling.

Figure 7. Strong coupling.

5. New Architecture of the FRDBMS

We propose the weak coupling approach with Oracle
DBMS. The FRDBMS proposed respects the GEFERD
model. The language of description and manipulation
of the data is therefore FSQL. Seen that the FSQL
language is an extension of the SQL language, a
FRDBMS can model a RDB (described in SQL
language) or a FRDB (described in FSQL language).
The principle of this coupling is the definition of a
software layer that allows the transformation of the
command written by the user in FSQL language in
their equivalent written in SQL. This principle is
illustrated in the Figure 8.

Figure 8. Illustration of the FRDBMS architecture.

5.1. The FRDMS Architecture

The installation of this architecture is described in
Figure 9.

Figure 9. Architecture of extended FIRST.

Server for Fuzzy Data

DBMS: Oracle

 Querying Update FRDB Description

Database

FMB

Server for Fuzzy Data

Definition, Querying and Update

 Querying Update FRDB escription

Tables

FSQL_TO_SQL Layer

FSQL Script

(DDL +DML)

RDBMS

FMB (Fuzzy)

DIC (Classic)

DB

 FSQL Server

Interface or
Visual Client

FSQL
Fuzzy

FSQL
Client

Creation and
Manipulation of

FRDB

FRDB

Querying

218 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

5.2. Presentation of the FSQL to SQL Layer

This layer presents a tool, called FSQL_TO_SQL that
permits the implementation of a FRDB described in
FSQL under DBMS Oracle 8i. This tool gives the
automatically transformations of the FSQL script in a
script equivalent SQL while specifying the
modifications that made to the level of the FMB.

5.2.1. Principle of Functioning

The principle of functioning is as follows:

As result of these two treatments, we get two files. a
file containing the DDL part of the DB and a second
one containing the modification be done in the FMB.
We can also regroup the two treatments in a same file
since they will be executed in the DBMS. After a
detailed study of the GEFRED model and the FQ
software, we defined a set of rules, described in [12],
and which we must apply to achieve the transformation
according to the fuzzy attributes types. In fact, the
treatment in the DB and in the FMB depends to the
FSQL command and to the fuzzy attributes type.

5.2.2. Example of Translation of Some Commands

In this example, we present the translation of the
principle commands:

• Translation of the command CREATE TABLE, the
modeling of this command will be effectuated while
respecting the following steps:

1. Call the classic command CREATE TABLE with a
modification of the fields containing the fuzzy
attributes.

2. Insert in the FMB the tuples containing the
information about the fuzzy attributes defined on
this table.

3. Execute the different commands relative to the type
of the fuzzy attribute (CREATE LABEL for

FTYPE1 and FTYPE2, CREATE NEARNESS for
FTYPE3, etc.)

• Translation of the command CREATE LABEL.

1. Insert in the FOL table the identifier of the linguistic
label, its name and its type.

2. Insert in the FLD table the parameters of linguistics
label (a, b, c, d), etc.

• Translation of the command CREATE NEARNESS

1. Insert in the FOL table the identifier of the linguistic
label, its name and its type.

2. Insert in the FND table the list it of the linguistic
labels with their similarity degrees.

We present now a simplified Algorithm of translation
of script from FSQL to SQL:

 Input: Source FSQL Script (SFS)

Output: Target SQL Script (TSS)

Begin

To create the FMB tables.

Foreach attribute A of SFS do

 If A remains classic then

 no modification in its definition;

Else /* This treatment is divided in two under-

 treatments: in the DB and in the FMB */

 Modify the tables structure of the DB

 according to the fuzzy attribute representation.

 Switch (type of A)

 Case FTYPE1:

 A remains unchanged.

 Case FTYPE2:

 Create 5 attributes with the same name of A;

 Concatenate the first one with the letter ’T’ (AT);

 Concatenate the others ones respectively with 1,

 2, 3 and 4 (A1, ... , A4);

 Case FTYPE3 and FTYPE4:

 Create 2n+1 attributes with the same name of A ;

 /* n=maximum number of data for the values of A,

(by default n=1) */

 Concatenate the first one with the letter ’T’ (AT);

 Foreach pair of the remaining attributes (2n) do

 Cconcatenate the first attribute with Pi;

 Concatenate the other with i; /*(1 ≤ i ≤ n)*/

 /* (AP1, A1, ... , APn, An) */

 Update the FMB tables with the attribute

information, including its fuzzy objectslike

linguistic labels, similarity relations (only for

FTYPE3), fuzzy quantifiers, etc.

End

5.2.3. FSQL_TO_SQL layer Interface

FSQL_TO_SQL offers a convivial interface that, on
the one hand, presents an editor of description FSQL
script, and on the other hand, give automatically its
equivalent in SQL with the update of the
corresponding FMB. It is developed in C++ language.
Figures 10 and 11 shows an example of translation of

Begin

 Cut a DDL instruction in several lines containing each

one an attribute.

 Study every DDL line:

If it contains a classic attribute then

 copy this line in a first file (result1.sql)

 Else

 Make a very specific treatment to every fuzzy

attribute. This treatment divides in two under-

treatments:

a) Treatment in DB: translate the command that

 concerns the DB and copy it in the file

(result1.sql)

b) Treatment in FMB: provide a script writes in

the file (result2.sql), containing the formation

in the FMB concerning the fuzzy attributes and

the objects defined on them.

End

New Architecture of Fuzzy Database Management Systems 219

FSQL script to SQL script. FSQL_TO_SQL can
moreover detect and signal the syntactic errors in a
FSQL script. If the error is to the level of the new
objects of FSQL, our tool displays this error, the most
possible cause of its apparition and the line where it is
Figure 12. Otherwise the error occurred to the level of
the SQL commands; a report concerning this error will
be generated by the Oracle DBMS.

Figure 10. FSQL script.

Figure 11. Translation FSQL script to SQL script.

Figure 12. detection of errors.

6. Conclusion

Several real applications need to manage fuzzy
information and to make benefit their users from
flexible queries. Several theoretical solutions have
been proposed. We are interested to the works of
Medina et al. whose proposed FSQL server to treat
flexible query with FSQL language. This prototype is
constructed by the addition of a layer around a classic
RDBMS while supposing that the user already
implements the FRDB manually.

We presented in this paper a new architecture of
FRDBMS based on the GEFRED model. This
architecture is based on the weak coupling concept
with the Oracle DBMS. This FRDBMS offers all
functionalities of a classic DBMS. It permits, in
particular, the description, the manipulation and the
querying of FRDB in FSQL language. As futures
perspectives of this work, we mention the automatic
mapping of existing relational DB to FRDB. This point
is theoretically done but not implemented yet, so we
think that it will contribute to make easier the use of
the FRDB in real applications.

References

[1] Bosc P. and Pivert O., “SQLf: A Relational
Database Language for Fuzzy Querying,”
Computer Journal of IEEE Transactions on
Fuzzy Systems, vol. 3, no. 1, pp. 80-89, 1995.

[2] Bosc P., Liétard L., and Pivert O., “Bases de
Données et Flexibilité: Les Requêtes
Graduelles,” Computer Journal of Techniques et

Sciences Informatiques, vol. 7, no. 3, pp. 355-
378, 1998.

[3] Bosc P. and Pivert O., “SQLf Query
Functionality on Top of a Regular Relational
Database Management,” in Proceedings of

Knowledge Management in Fuzzy Databases,
Heidelberg, pp. 171-190, 2000.

[4] Buckles P. and Petry E., “A Fuzzy
Representation of Data for Relational
Databases,” in Proceedings of Fuzzy Sets and

Systems, USA, pp. 213-226, 1982.
[5] Galindo J., Medina M., Pons O., and Cubero J.,

“A Server for Fuzzy SQL Queries,” in
Proceedings of Lecture Notes in Artificial
Intelligence (LNAI), USA, pp. 165-175, 1998.

[6] Galindo J., “Tratamiento de la Imprecisión en
Bases de Datos Relacionales: Extensión Del
Modelo y Adaptación de los SGBD Actuales,”
Doctoral Thesis, Universidad de Granada, 1999.

[7] Galindo J., Aranda M., Caro L., Guevara A., and
Aguayo A., “Applying Fuzzy Databases and
FSQL to the Management of Rural
Accommodation,” Tourist Management Journal,
vol. 23, no. 6, pp. 623-629, 2002.

220 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009

[8] Galindo J., Urrutia A., and Piattini M.,
Representation of Fuzzy Knowledge in Relational
Databases, IEEE Computer Society, 2004.

[9] Galindo J. “New Characteristics in FSQL: A
Fuzzy SQL for Fuzzy Databases,” Computer

Journal of WSEAS Transactions on Information
Science and Applications, vol. 2, no. 2, pp. 161-
169, 2005.

[10] Galindo J., “Le Serveur FSQL and FQ,” http:
//www.lcc.uma.es/personal/ppgg/FSQL.html,
2008.

[11] Galindo J., Urrutia A., and Piattini M., Fuzzy
Databases: Modeling, Design and

Implementation, Idea Group Publishing, Hershey,
2006.

[12] Grissa A., Ben Hassine A., and Ounelli H.,
“Extended_FSQL_Server: A Server for the
Description and the Manipulation of FRDB,” in
Proceedings of the 4th International Multi
Conference on Computer Science and

Information Technology (CSIT), Jordan, pp. 454-
464, 2006.

[13] Medina M., Pons O., and Vila A., “An Elemental
Processor of Fuzzy SQL,” Computer Journal of
Math Ware and Soft Computing, vol. 1, no. 3, pp.
285-295, 1994.

[14] Medina M., Pons O., and Vila A., “GEFRED: A
Generalized Model of Fuzzy Relational Data
Bases”, Computer Journal of Information
Sciences, vol. 76, no. 1, pp. 87-109, 1994.

[15] Medina M., Pons O., and Vila A., “FIRST: A
Fuzzy Interface for Relational Systems,” in

Proceedings of VI International Fuzzy Systems
Association World Congress (IFSA), Sao Paulo,
pp. 29-31, 1995.

[16] Prade H. and Testemale C., “Fuzzy Relational
Databases: Representational Issues and
Reduction Using Similarity Measures,”
Computer Journal of Information Sciences, vol.
38, no. 2, pp. 118-126, 1987.

[17] Umano M., Fukami S., Mizumoto M., and
Tanaka K., “Retrieval Processing from Fuzzy
Databases,” Technical Reports, University of
Maryland, 1980.

[18] Urrutia A., Galindo J., and Piattini M.,
“Modeling Data Using Fuzzy Attributes,” in
Proceedings of the 22nd International Conference

of the Chilean Computer Science Society
(SCCC’02), UK, pp. 117-123, 2002.

[19] Zemankova M. and Kandel A., “Implementing
Imprecision in Information Systems,” Computer
Journal of Information Sciences, vol. 37, no. 1,
pp. 107-141, 1985.

Amel Grissa Touzi received the
diploma of engineering in computer
science and PhD in computer science
from the Faculty of Sciences of
Tunis, Tunisian in 1989 and 1994,
respectively.

Mohamed Ali Ben Hassine is a PhD
student at the Faculty of Sciences of
Tunis, Tunisia, Department of
Computer Sciences. He received the
BSc degree in computer science from
the Faculty of Science of Tunis in
2003, and the Master degree in

automatic and signal processing from the National
School of Engineer of Tunis in 2006.

The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009 213

