
 The International Arab Journal of Information Technology, Vol. 6, No. 3, July 2009                                                                297 

 

 

Energy Efficient Data Compression                          

in Wireless Sensor Networks 

Ranganathan Vidhyapriya
1
 and Ponnusamy Vanathi

2
 

1
Department of Information Technology, PSG College of Technology, India 

 
2
Department of Electronics and Communication Engineering, PSG College of Technology, India 

 
Abstract: In order for wireless sensor networks to exploit signal, signal data must be collected at a multitude of sensors and 

must be shared among the sensors. The vast sharing of data among the sensors contradicts the requirements (energy 

efficiency, low latency and high accuracy) of wireless networked sensor. This paper describes our design and implementation 

of the two lossless data compression algorithms integrated with the shortest path routing technique to reduce the raw data size 

and to accomplish optimal trade-off between rate, energy, and accuracy in a sensor network. To validate and evaluate our 

work, we apply it to different types of datasets from different real-world deployments and show that our approaches can 

reduce energy consumption over other data compression schemes based on simulations. 
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1. Introduction  

Advances in sensor and communication technology 

have focused interest on using wireless sensor 

networks, which are formed by a set of small 

unterthered sensor devices that are deployed in an ad 

hoc fashion to cooperate on sensing a physical 

phenomenon, making the inferences, and transmitting 

the data [12]. Energy is a primary constraint in the 

design of sensor networks. This fundamental energy 

constraint further limits everything from data sensing 

rates and link bandwidth, to node size and weight. 

Large volumes of sensor data generated will make the 

data transmission within the network to a single 

information sink with minimal latency and energy is a 

very challenging task. Aggregation techniques such as 

TinyDB [5] and TAG [6] process and consume the 

collected data within the sensor network, forwarding 

only a small subset of the data to the sink. Query-based 

techniques such as directed diffusion aim to filter the 

data within the network to only what the application 

requires. Low-level networking techniques have been 

proposed to help route data within the sensor network 

with the hope of minimizing duplicated packets and 

minimizing the number of hops needed to deliver the 

data. Finally, data compression techniques are 

emerging for such sensor networks [1, 9] by 

compressing, the data size is reduced and less 

bandwidth is required for transmitting data. In the 

following section we survey other work relevant to our 

scheme.  In section 3 we describe our algorithm. 

Section 4 presents an analysis of our experimental 

results. We conclude in section 5. 

2. Related Work  

Pradhan et al. [7] proposed a framework for distributed 

compression using joint source and channel coding. 

This approach minimizes the amount of inter-node 

communication for compression using both a quantized 

source and correlated side information within each 

individual node. Rabat et al. [10] propose a distributed 

matched source-channel communication architecture 

and reconstruction method from noisy random 

projections. A similar approach can be found in [13] 

which use a gossip communication scheme. Although 

it is claimed to be universal, there is a trade-off 

between power-distortion-latency. In addition, they do 

not consider the correlation of the data itself. Wagner 

[14, 11] proposed architecture for distributed wavelet 

analysis that removes the assumption about the 

regularity of the grid. Furthermore, it is not clear how 

to choose an optimal path for compression and the 

spatial correlation is not fully explored. Few other 

works in distributed audio and video compression in 

wireless sensor networks can be found at [2, 3]. Other 

approaches [13] try to solve multiple goals such as 

routing, aggregation, indexing and storage, and energy 

balancing with compression. However, previous work 

does not consider the data compression problem with 

any routing protocol in wireless sensor networks. The 

key difference between our work and these prior 

studies is that we focus data compression and on the 

deployment, e.g., network lifetime of sensor networks 

that identifies a shortest path in the network to transmit 

compressed data from the sensor nodes to the sink.  
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3. Proposed Method 

The sensor nodes are distributed randomly in the 

sensing field. All nodes in the network are assigned 

with a unique ID. We assume each sensor node is 

stationary after deployment and is capable of getting its 

location information by the use of Global Positioning 

System (GPS). Each node has limited battery energy, 

whereas the available energy at the sink may be 

relatively unlimited. Data compression techniques can 

be classified into two methods as lossless compression 

method which does not tolerate any loss in data while 

compressing mostly suitable for applications such as 

health monitoring, executable programs and source 

code etc., and lossy compression methods which 

overcomes small amount of data loss during 

compression suitable for non critical applications.  

In camera sensor networks,  some image file 

formats, notably PNG, use only lossless compression, 

while others like TIFF and MNG may use either 

lossless or lossy methods. GIF uses a lossless 

compression method, but most GIF implementations 

are incapable of representing full color, so they 

quantize the image (often with dithering) to 256 or 

fewer colors before encoding as GIF. Color 

quantization is a lossy process, but reconstructing the 

color image and then re-quantizing it produces no 

additional loss. In the case of camera sensor networks, 

images compressed losslessly occupy less space than 

the originals, but space-saving gains are modest, with 

compression ratios in the 2.5:1 range. Decompression 

restores the original image without loss of fidelity. 

Images stored in the GIF and PNG formats are 

compressed automatically, whereas for TIFF and BMP 

files, the user decides whether or not to compress the 

file. Lossy compression achieves higher compression 

ratios than lossless, but at the expense of image 

quality, with the degree of lossiness under user control. 

Lossy compression depends on the compression 

scheme and how it is implemented. The compression 

techniques which are used in this paper are based on 

lossless compression methods thus facilitating 

complete retrieval of data. We have proposed two 

compression techniques namely Entropy Encoded 

Codebook Compression (EECC) and Pipelined 

Codebook Compression (PCC) which are basically 

built over the codebook compression techniques.  

 

3.1. Shortest Path Routing 

Before sending the data to the sink, a node must start 

the neighbor discovery process, which is the address of 

all nodes that are able to transmit data to from the 

source. A special flooding mechanism is adopted in the 

neighbor discovery. The solution is to combine the 

broadcasting speed with the available energy on 

intermediate nodes. When an intermediate node 

receives broadcast message, it first checks its available 

energy. If the available energy is less than operation 

energy (e.g., twice the packet transmission energy), 

that indicates that the node has no more energy to take 

more transmission jobs. The node simply discards the 

broadcast message, if the node has sufficient energy; 

the node broadcasts the message to its neighboring 

nodes. 

  

3.1.1. Shortest Path Algorithm 

The dijkstra shortest path algorithm is used to calculate 

the path between the sink and the source. Given a 

network G = (N,E), with a positive cost Dij for all 

edges (i, jєN), start node S and a set P of permanently 

labeled nodes, the shortest path from start node S to 

every other node j is shown in Figure 1: 

 

 

 

 

 

Figure 1. Shortest path algorithm. 

3.2. Pipelined Codebook Compression  

Collected sensor data packets are aggregated, 

combined into single packet, and redundancies in the 

data packets are removed to minimize data 

transmission. The collected data is in the form of a 

tuple of three values as shown in Figure 2.  
   

 

Figure 2.  Data Item produced by a sensor node. 

 

The compression is done by checking all the most 

significant bits of the packets and combining the 

packets which have the same most significant data bits. 

Any two data packets can be merged only if they have 

the same shared most significant data bits. After the 

data packets are merged the resultant data is again 

compressed by using codebook method. Codebooks for 

the data packet are formed leaving out the most 

significant bits. 

 

3.2.1.  Dictionary Size 

Codebook method of compression replaces strings of 
characters with single codes. At the start, the codebook 
is initialized to 256 entries. Our experiments focus on 
codebooks of 256, 512 and for comparison, an 
unlimited number of entries. Strings are encoded in 9 
bits while the codebook has less than 512 enties, 10 

Node Id n-bit sensor measurement Timestamp 

Initially P = {S}, DS = 0, and Dj = dSj for jєN 

Find iєP such that Di = min Dj   jєP 

Set P = PU{i}. 

If P contains all nodes then  

    stop the algorithm is complete. 

For all j єP 

   Set Dj = min [Dj,Di + dij ] 

Go to Step 1. 
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bits while it has less than 1024 entries, etc. With small 
data blocks, there is almost no difference between the 
dictionary sizes. 

To adapt codebook technique to a sensor node, three 

major inter-related points are balanced: the dictionary 

size, the size of the data to be compressed, and the 

protocol to follow when the dictionary fills. First, 

memory constraints require that the dictionary size be 

kept as small as possible. Additionally, as mentioned, 

it is required to compress and decompress relatively 

small, independent blocks of data, so that if a packet is 

lost it only affects the data that follows it in its own 

block. The codebook compression pseudo-code in its 

simplest form is as shown in Figure 3. This algorithm 

has no transmission overhead and is computationally 

simple. Since both the sender and the receiver have the 

initial dictionary and all new dictionary entries are 

created based on existing dictionary entries, the 

recipient can recreate the dictionary on the fly as data 

is received. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Figure 3.  Pipelined codebook compression algorithm. 

 

3.3. Entropy Encoded Codebook Compression  

Initially the compression is done by checking the Most 

Significant Bits (MSB) of the packets, the packets are 

merged if they have the same MSB bits, to the 

remaining data entropy encoding method of 

compression is followed. Entropy encoding is a data 

compression scheme that assigns codes to symbols so 

as to match code lengths with the probabilities of the 

symbols. Entropy method compresses the data by 

replacing data’s with symbols represented by equal-

length codes where the length of each codeword is 

proportional to the negative logarithm of the 

probability. The technique works by creating a binary 

tree of nodes. These can be stored in a regular array, 

the size of which depends on the number of symbols 

(n).The algorithm as shown in Figure 4 works as 

follows:  

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
 

Figure 4. Entropy encoded compression algorithm. 
 

A node can be either a leaf node or an internal node. 

Initially, all nodes are leaf nodes; internal nodes 

contain symbol weight, links to two child nodes and 

the optional link to a parent node. As a common 

convention, bit '0' represents following the left child 

and bit '1' represents following the right child. A 

finished tree has N leaf nodes and N−1 internal nodes. 

The resulted compressed data is again compressed 

using codebook compression technique which is 

explained in the previous section and then the data are 

transmitted to the sink node wherein the data are 

decompressed. 

 

4. Performance Analysis 

In this section, we present our simulation results that 

show that the new techniques are beneficial in reducing 

the total transmission energy. The simulation results 

are generated using simulator developed using C.  

Network topologies are generated randomly. In case of 

high performance sensor networks such as structural 

health monitoring, disaster management, emergency 

response, etc. There exist a correlation between the 

energy consumption and the loss of data.  As the data 

load increases, the key performance parameters of 

wireless sensor networks degrade. The data glut may 

result in unacceptable data loss, time delay and overall 

energy consumption. 

 

4.1. Simulation Model 

Sensor nodes around 100 are uniformly distributed 

over a 1000m×1000m area. Initially, 10 Joules of 

energy is assigned to every node and then we inject the 

network with 1000 randomly generated packets. The 

values of parameters used for simulations are as shown 

in Table 1. The source and destination of each packet 

are randomly chosen and the sizes of packets are 

drawn from a uniform distribution between 1 and 100 

units. The effective radio range is 250 meters. The log-

distance path loss model is used and the path loss 

exponent is set to 4.0. Data packets are generated at 

intervals of 1 second. The simulation is run for 750 

seconds therefore each protocol has enough time to 

discover the route from the sink to the source and 

send start code 

for each character { 

    if new-entry appended with   character is not in  

    dictionary 

   { 

       send code for new-entry 

       add new-entry appended with  character as    

       newdictionary entry 

       set new-entry blank 

   } 

   append character to new-entry 

} 

send code for new-entry 

send stop code 

• Input 

A = {a1, a2,…., an}  - symbol of alphabet size n 

W = {w1, w2,….wn}  -  set of symbol weights.  

i.e  wi = weight (ai), 1 < i < n 

• Output  

C(A,W) = {c1, c2,…., cn} - set of binary codewords 

where ci is the codeword  

    for ai, 1 < i < n 

   Let  L(C) = i=1Σ
n
 wi x length (ci) be the weighted    

   path length of code C. 

The condition is L(C) < L(T) for any code T(A,W) 
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produce substantial amount of data traffic. The power 

consumption for transmitting one unit of data is 

660mW, the power consumption for data reception is 

35mW and the power consumption in the idle mode 

i.e., when the sensor node is not in the sending or in 

the receiving and data is 35mW. 
 

Table 1. Assumed parameters. 
 

 

4.2. Energy Estimation 

The power consumption model of the radio in 

embedded devices must take both transceiver and start-

up power consumption into account along with an 

accurate model of the amplifier. The total energy 

consumed for transmitting and receiving (ETC) a packet 

of b bits over a single hop wireless link of distance d, 

can be expressed as: 
 

)ETP)b(E()ETP)d,b(E()d,b(E desstRRencstTTTC +++++= (1) 
 

where ET is the energy used by the transmitter circuitry 

and power amplifier, ER is the energy used by the 

receiver circuitry, PT is the power consumption of the 

transmitter circuitry, PR is the power consumption of 

the receiver circuitry, Tst is the startup time of the 

transceiver, Eenc is the energy used to encode and Edec 

is the energy used to decode. Since the effect of startup 

component is not taken into account for multihop 

scenario and the encoding/decoding energies are also 

assumed to be negligible equation 1 can be simplified 

as:  
 

     Elinear = [ n(eTE + eRE) – eRE + (eTAD
β
)/n

β-1
]                  (2)   

                            

where n is the number of hops between the source to 

the sink, eTE is the energy used by transmitter, eRE is the 

energy used by a receiver, eTA is the energy used by an 

amplifier, D is the total distance between a source and 

a sink, and β is the path loss exponent of the channel. 

In this equation, the distance between any two 

neighboring nodes of a data path is assumed to be 

arbitrary. The energy used by transmitter can be further 

is given by equation 3: 

 

( ) ( )( )( )( )

( )( )( )

/ 4 /RE or
TA

ant amp bit

S N NF N BW
e

G m

β
π λ

η
=                      (3) 

 

where (S/N)r  is the signal to noise ratio at the receiver, 

NFRE is the receiver noise figure, No  is the thermal 

noise floor in a 1 Hz bandwidth , BW is the channel 

noise bandwidth, λ is the wavelength, Gant is the 

antenna gain, ηamp is the transmitter amplifier 

efficiency, and mbit  is the raw bit rate. The following 

values are used for calculating the energy consumption 

in a multi-hop data transmission as shown in Table 2. 
 

Table 2. Energy Estimation Parameters. 
 

Parameter Value Parameter Value 

β 2 (S/N)r 11dB 

Gant -20dB NFRE 10dB 

ηamp 0.2 NO 4.17e-21J 

mbit 
2.50e+05 

bps 
BW 2.50e+05 HZ 

eTE 1.45e-08 J λ 0.125 m 

 

4.3. Results and Analysis 

In this section we compare the compression techniques 

EECC and PCC with the existing LZW technique. 

Lempel-Ziv-Welch (LZW) is a universal lossless data 

compression algorithm.  The types of data used in the 

network for transmission are text, image and audio. 

The image data is converted into a stream of ones and 

zeroes by converting their pixel values into binary 

form. For the audio data the bit stream is obtained by 

sampling the signal at a required data rate. The metrics 

chosen to analyze the performance of our compression 

techniques are:  

• Node Energy consumption is defined as the 

communication (transmitting and receiving) energy 

the network consumes; the idle energy is not 

counted. 

• Packet delivery fraction is the ratio of the data 

packets delivered to the sinks to those generated by 

the sources. 

• Average end-to-end delay of data packet includes all 

possible delays caused by queuing at the interface 

queue, retransmission delays at the MAC, and 

propagation and transfer times. 

• Compression Ratio is the ratio of the number of bits 

saved by compression to the uncompressed file size 

4.3.1. Node Energy Consumption  

The node energy consumption is shown in Figure 5. 

The node energy consumption is an important metric to 

show when the first dead node appears. This graph 

illustrates the behavior of the network with the change 

in the node density. Thus with the change in the node 

density the positions of the node relative to each other 

vary resulting in the change of the shortest path, 

number of hops and the distance of transmission. From 

the graph it is inferred that out of the three techniques 

Parameters Value Parameters Value 

Bandwidth 2Mb/s 
Transmission 
range 

250 m 

Transmit power  660mW Topology Size 
1000m x 

1000m 

Receive power 395mW 
Number of 
sensors  

100 

Idle power 35mW Packet rate 5 packets/s 

Initial energy in 

batteries 
10 Joules Packet size 512 bytes 
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the EECC  technique shows least energy consumption 

irrespective of the number of nodes followed by PCC 

technique. 

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

E
n
e
rg
y
 S
p
e
n
t 
(J
)

EECC PCC Codebook

 
No. of nodes 

 

Figure 5.  Node energy consumption. 

 

The graph has been plotted keeping the source and 

sink node as constants. The variations in the graph over 

different values of the number of nodes are due to the 

random assignment of node positions. The hop count 

in the shortest path varies with each simulation due to 

the above factors. 

 

4.3.2. Compression Ratio 

From Figure 6, it is seen that EECC compression gives 

better compression ratio in comparison to others 

because of employing the codebook technique to 

entropy encoding. The compression ratio increases 

with the increase in packet size for all the techniques. 

For smaller packet sizes PCC compression technique 

performs better than the rest while with increase in the 

size of the packets EECC performs better 
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Figure 6.  Compression ratio. 

 

4.3.3. Packet Delivery Fraction 

Figure 7 depicts the packet delivery fraction. It is 

found that for small packet sizes the compression ratio 

is dependent on the sequence of input stream and with 

the increase in the packet size EECC offers better 

performance and thus facilitates   the    transmission of 

more number of packets in the respective cases 
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Figure 7. Delivery ratio. 

 

4.3.4. Compression Ratio for CBR & VBR data  
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 Figure 8. Compression ratio for CBR and VBR. 

 

The compression techniques were tested for both 

Constant Bit Rate (CBR) and Variable Bit Rate (VBR) 

data types. The technique taken into consideration for 

the above plot is EECC since it is found to consume 

less energy when compared to PCC. Figure 8 shows 

that the compression ratio is better as the size of the 

packet increases which is why in the case of variable 

bit rate transmission, the efficiency is lesser due to 

transmission of a given amount of data using packets 

of smaller size. 

4.3.5. Performance Comparison  

Table 3 shows the performance of the lossless data 
compression algorithms. From the results it is inferred 
that entropy encoded compression codebook 
compression EECC provides a very good compression 
ratio of 0.18. As the compression ratio decreases, the 
amount of energy saved increases almost linearly with 
the same number of compressed packets per an original 
packet. This result could be inferred from Figure 4. 
Also, as the number of compressed data packets per 
original data increases, the amount of energy saved 
increases. The amount of energy saved can be 
expressed by the equation 4: 

 

                              )BB)(X(EE olinearsave −=                                     (4) 
 

where Esave is the total amount of energy saved, x is 

the total number of compressed data packets, B0 is the 

size of the original data packet in bit, and B is the size 

of the compressed data packet in bits. Since EECC is 

simple, there is a minimal computational overhead also 

this does not require any information exchange among 
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sensor nodes, so there is no transmission overhead. By 

applying EECC, the amount of energy consumed for 

transmission is reduced largely. 
  

Table 3. Comparison of compression techniques. 
 

 
 

The drawbacks of entropy encoded compression 

technique are the processing time required for 

compression and the memory used for storing the 

compression algorithm. In the next case the pipelined 

codebook compression provides a higher compression 

ratio than EECC so the energy consumed in for data 

transmission increases and the network life time falls 

below the lifetime of ECC technique. In the case of 

LZW the compression ratio is high because the 

compressed file size is greater than PCC and EECC 

and so more amount of energy is required in sensor 

nodes for compressed data transmission and the 

network lifetime decreases. The advantage of this 

technique is that the amount of memory occupied by 

the compression is less and the processing time 

required is also less. As a result the overall delay of the 

data packet transmitted is reduced. 

5. Conclusion  

The performance of the Wireless Sensor Network 

(WSN) for various compression schemes has been 

analyzed in this paper. A compression technique which 

works well for a given wireless sensor network might 

not suit another WSN with different requirement. The 

further enhancements that can be imbibed in the WSNs 

is to embed numerous distributed devices to monitor 

and interact with physical world phenomena, and to 

exploit spatially and temporally dense sensing and 

actuation capabilities of the sensing devices.  
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