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Abstract: Dynamic time warping is one of the important distance measures in similarity search of time series; however, the 

exact calculation of dynamic time warping has become a bottleneck. We propose an approach, named early abandon dynamic 

time warping, to accelerate the calculation. The method checks if values of the neighbouring cells in the cumulative distance 

matrix exceed the tolerance, and if so, it will terminate the calculation of the related cell. We demonstrate the idea of early 

abandon on dynamic time warping by theoretical analysis, and show the utilities of early abandon dynamic time warping by 

thorough empirical experiments performed both on synthetic datasets and real datasets. The results show, early abandon 

dynamic time warping outperforms the dynamic time warping calculation in the light of processing time, and is much better 

when the tolerance is below the real dynamic time warping distance. 
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1. Introduction 

Time-series data naturally occur in a wide range of 

applications, examples include computational biology, 

astrophysics, geology, multimedia, and economics, to 

name a few. Therefore, there has been great research 

efforts devote to mining time series in the last decade. 

Similarity search in time series is useful in its own right 

to explore the properties of time series data. On one 

hand, similarity search is one of the important tools for 

mining time series; on the other hand, it usually acts as 

a subroutine in other time series mining tasks  [5], and 

has wide applications in classification  [12], pattern 

detection  [9], and others. Recently, searching for 
similar time series has been one of the hot topics in 

time series mining, and many similarity search methods 

have been proposed. 

A large body of earlier work have been based on the 

Euclidean distance. The distance is calculated in a point 

by point manner, and works well when the time series 

have the same unit of scale. However, there is an 

increasing awareness that Euclidean distance suffers 

from the distortion in time axis and shows poor 

accuracy in searching [1, 3, 4]. 

Recently, more and more researchers examined the 

superiority of Dynamic Time Warping (DTW) over 

Euclidean distance in searching similar time series. 

DTW is a distance allowing stretching on time axis, 

which provides a way to optimally align time series that 

are intuitively better than Euclidean distance does. 

Since it was first introduced into the time series mining 

community by Berndt et al.  [1], the distance has 
attracted great attention. However, the calculation of 

DTW has long been a research topic, though there are 

some lower bounding functions to approximate the 

calculation of DTW, as we will show later, the exact 

DTW calculation is in reality unavoidable. A variety 

of work on DTW calculation mainly focused on the 

following aspects: 

• Calculation of DTW with dynamic programming. 

The original calculation of DTW is a recursive 

routine, and may incur many redundant 

computations during the process. The real 

calculation of DTW is usually based on the 

dynamic programming method, which constructs a 

distance matrix to reuse the already known values, 

and improves efficiency. 

• Indexing based on DTW distance. Since DTW was 

proved to not obey the property of triangle 

inequality  [3], and cannot be used to the exactly 

indexing time series sequences, some researchers 

introduced the lower bounding functions, such as 

LB_Kim  [8], LB_Keogh [3, 4], LB_PAA  [15], etc, 

and indexed sequences with these functions. As 

lower bounding functions are generally fast, they 

gain a good efficiency in large scale computations. 

The lower bounding theorem in  [2] ensured that the 

index methods will not incur the false negative (i.e., 

the final result set will contain all the qualified 

sequences, and no qualified sequence will be 

missed), however, lowering functions may cause 

the false positive (i.e., the sequences returned by 

the index may not be the qualified sequences, and 

the unqualified sequences may be contained in the 

result set). To get the exact results, the query on the 

index proceeds in two steps: the first step is to 



Early Abandon to Accelerate Exact Dynamic Time Warping                                                                          145
                                                                                                                  

 

retrieval in the index space, and find all the 

candidate sequences; the second step is a post 

processing step, which is to refine the candidate sets 

of sequences from the first step by exact calculation 

of DTW, and discard all the unqualified sequences. 

The work in  [7] tested the indexing approaches on 

subsequence matching with thorough experiments, and 

the results show, the step of post processing has been 

the performance bottleneck in the query.  Similarly, 

there is a sequential scan on the post posting step of 

previous proposed methods on querying by DTW based 

indexing, thus it is desirable to devise methods to 

accelerate the exact calculation of DTW in refining 

step. Overall, our contributions in this work can be 

simply summarized as follows: 

• We introduce the idea of early abandon in the exact 

calculation of DTW. The early abandon has been 

used in previous work for the calculation of 

Euclidean, and we apply it to the calculation of 

DTW. 

• We propose the Early Abandon DTW (EA_DTW) to 

accelerate the exact calculation of DTW. We 

demonstrate the process of early abandon in DTW. 

• We show the superiority of EA_DTW over plain 

dynamic DTW calculation by thorough empirical 

experiments, and the results validate the utility of 

EA_DTW. 

The rest of the paper is organized as follows. Section 2 

provides a background for our work. In section 3 we 

present the method of EA_DTW for the exact 

calculation of DTW. Section 4 presents the 

experimental results. We discuss some related work in 

section 5. Finally we offer conclusions and future work 

in section 6. 

 

2. Preliminary 

In this section, we first give some definitions to confine 

our problem scope, and then discuss the exact dynamic 

time warping as well as the early abandon technique on 

Euclidean distance calculation. 

 

2.1. Some Definitions 

We are now in the position to give the formal definition 

on the problem context we are considering, similarity 

search. We first define the data type we are interested 

of, time series. 

Definition 1: Time series: time series is a sequence of 

data measured by the time, denoted as 1 2{ , ,..., }nT t t t= , 

where ( 0)n n >  is the length of time series, i.e., | |T n= . 

Definition 2: Similarity search: given the set of time 

series sequences 1 2{ , ,..., }pC c c c= , the query 

sequence q , the tolerance given by users ( 0)ε ε > , the 

distance measure d , find all the qualified 

sequences c C∈ , that ( , )d q c ε≤ . 

There are two types of similarity search in time 

series, one is the whole sequence search, and the other 

is the subsequence search, i.e., searching all the 

occurrences of sub sequences that are qualified. While 

it is possible to convert the subsequence search into 

whole sequence search by the methods of sliding 

window  [6], segmentation etc, we consider whole 

sequence search in this work. 

 

2.2. Exact Calculation of DTW 

Suppose there are two sequences with length of 

m and n , respectively. 

                     1 2{ , ,..., },mU u u u=                     (1) 

                     1 2{ , ,..., }.nV v v v=              (2) 

To align the two sequences with DTW, we can 

construct an m n×  distance matrix, where the 

cell ( , )(1 ,1 )i j i m j n≤ ≤ ≤ ≤  corresponds to the 

aligning of data point iu  and jv , and the value in the 

cell is the distance between iu  and jv , also called base 

distance. Though there are many ways to define the 

base distance, we use the distance 
2( , ) ( )base i j i jd u v u v= − as the base distance in 

accordance with other work  [3]. However, other 

distance measures such as 1L ( ( , ) | |base i j i jd u v u v= − ) 

will not affect our discussions. 

After constructing the distance matrix, we calculate 

a warping path W from cell (1,1), and to cell 

(m,n):
1 2{ , ,..., }(max( , ) 1),cW w w w m n c m n= ≤ ≤ + −  

as shown in Figure 1. 

 
 

Figure 1. Illustration of classic DTW calculation (a) Construct 

warping matrix and search for the minimal warping path, denoted 

with grey squares; (b) The DTW alignments between sequences. 
 

We can formally define a mapping function 

: ( , )
w
f U V W→ to represent the alignment between 

U and V in the warping path W as: ( , ),k w i jw f u v=  

where1 k c≤ ≤ , {1,2,..., }, {1,2,..., },i m j n∈ ∈
i
u  and jv  

are aligned, and the cell ( , )i ju v is the kth cell 
k
w in the 

warping path. 

In the calculation of DTW, the warping path is 

considered to subject to several constraints: 
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• Endpoint: the warping path starts from the beginning 

of both sequences, and ends to the ending of both 

sequences, i.e., 

       
1 1 1

( , ), ( , ).
w c w m n

w f u v w f u v= =                 (3) 

• Continuity: neighbouring cells in the warping path 
are adjacent to each other (including the diagonally 

adjacent cells), i.e., 

 
1 ' '

( , )
' 1, ' 1.

( , )

k w i j

k w i j

w f u v
i i j j

w f u v+

=
⇒ ≤ + ≤ +

=
       (4) 

• Monotonicity: the warping path spaces 

monotonically in time, i.e.,  

     
1 ' '

( , )
', '.

( , )

k w i j

k w i j

w f u v
i i j j

w f u v+

=
⇒ ≤ ≤

=
              (5) 

The DTW distance between ,U V is calculated from the 

optimal warping path with the minimum distance: 

1
( , ) argmin( ).

c

kk
W

DTW U V w
=

= ∑  Though a variety of 

techniques can be applied to the calculation of DTW, 

the most established one is the dynamic programming 

method, which is calculated as follows: 

 {

( , ) ( , ),

( , ) ( , )

min ( 1, ), ( 1, 1), ( , 1)}.

(0,0) 0, (0, ) , ( ,0) ,

( 1,2,..., ; 1,2,..., ).

base i j

DTW U V m n

i j d u v

i j i j i j

i m j n

γ
γ

γ γ γ

γ γ γ

=

= +

    − − − −

= ∞ = ∞ ∞ = ∞

= =

        (6) 

The value in cell ( , )i jγ  is the cumulative sum of 

values in the warping path from cell (1,1) to ( , )i j .Given 

the warping path 
1 2

{ , ,..., },
k

W w w w=  the value in cell 

is
1

( , )
k

i

i

i j wγ
=

=∑ . The matrix containing the cells 

( , )(1 ,1 )i j i m j nγ ≤ ≤ ≤ ≤  is called cumulative distance 

matrix. Figure 2 shows an example of distance matrix 

and the corresponding cumulative distance matrix. 
 

 

Figure 2. {2, 5, 2, 5, 3}, {0, 3, 6, 0, 6,1}.U V= = (a) The distance 

matrix of two sequences. (b) The cumulative distance matrix of two 

sequences. The DTW distance is 15. 

2.3. Early Abandon Technique 

Early abandon is a technique in the constraint distance 

calculation. Here constraint means the calculation is not 

for the exact distance, but for a comparison between 

distances (such as to determine one distance is bigger 

than the other). The similarity search of time series 

needs to check ( , )d q c ε≤ , which is a comparison and 

if the distance exceeds theε , the candidate 

sequence c is not qualified, and will be excluded in the 

final result set. With this in mind, if current 

calculation already exceeds theε , we should 

terminate, since if ( ', ') (| ' | | |,| ' | | |)d q c q q c cε> < < , and 

then we will come to the conclusion that ( , )d q c ε> , 

the sequence c should not be qualified. 

The work in [3], [5] applied early abandon to 

eliminate redundant calculations of Euclidean distance 

between sequences. The idea is illustrate in Figure 3.  
 

 
 

Figure 3. Early abandon on Euclidean distance calculation. 

 

Since the calculation of Euclidean distance is a 

forward step-wised process, and once the calculation 

exceeds the threshold, the calculations unfinished will 

be interrupted and terminated, and report no-match, 

thus saving the computational power and improving 

the efficiency. 

 

3. Early Abandon on Exact DTW 

Calculation 

The exact DTW distance can be calculated with 

equation 6 recursively, for two sequences with length 

of m and ( 1, 1)n m n> > , respectively, we can construct 

a m n× cumulative distance matrix, and the value 

( , )m nγ is the DTW distance between the sequences. 

However, it should point out that we can apply the 

idea of early abandon to accelerate the calculation. For 

simplicity, for the given threshold 0,ε > if the value of 

( , ) ,i jγ ε> we call cell ( , )i jγ  overflows. 

 

3.1. Theoretical Analysis 

Now we examine the properties of the cumulative 

distance matrix. 

Lemma 1: (overflow transmission) If cells 

( 1, ), ( 1, 1), ( , 1)i j i j i jγ γ γ− − − −  in cumulative 

distance matrix overflow, then the cell ( , )i jγ will 

overflow. 

 Proof:  

� ( 1, ) , ( 1, 1) , ( , 1) ,i j i j i jγ ε γ ε γ ε− > − − > − >  

� {min ( 1, ), ( 1, 1), ( , 1)}i j i j i jγ γ γ ε− − − − > Moreover 

we have ( , ) 0base i jd u v ≥ . Hence with equation 10, we 

get ( , )i jγ ε> .            

Lemma 1 depicts the transmission of overflow of 

cells in cumulative distance matrix, as illustrated in 
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Figure 4. We check the overflow of neighbouring cells 

before calculating current cell in the cumulative 

distance matrix, and if all neighbouring cells overflow, 

the current cell should overflow. 
 

 
 

Figure 4. Illustration of transmission of overflow of cells. 

 

Lemma 2: (overflow omission) If cells ( 1, ),i jγ −  

( 1, 1),i jγ − −  ( , 1)i jγ −   in cumulative distance matrix 

overflow, then the calculation of base distance 

( , )base i jd u v can be omitted. 

Proof: 

from Lemma 1, we have that the cell ( , )i jγ will 

overflow without regarding what the value of 

( , )base i jd u v is, thus ( , )base i jd u v takes no effect on the 

overflow of ( , )i jγ and can be omitted.  

By Lemma 2, we know that if the cell overflows, we 

should not be bothered to calculate the base distance for 

the cell, and save computations. 
 

Lemma 3: (overflow replacement) If cell 

( , )i jγ overflows, then replacing the value of cell 

( , )i jγ  with any value * *( )ε ε ε>  will not affect the 

overflow of cell ( ', ')( ' , ' ).i j i i j jγ ≥ ≥  

Proof:  

we prove the theorem with two cases: 

• The value of ( ', ')i jγ  is determined by the value 

of ( , )i jγ . As ( , )i jγ ε> , so ( ', ')i jγ ε> , and if 

replacing value of ( , )i jγ  with a value * *( )ε ε ε> , 

the ( ', ')i jγ ε> holds. 

• The value of ( ', ')i jγ  has no relation with the value 

of ( , )i jγ .Surely in this case, the replacement will 

not affect the overflow of cell ( ', ')i jγ .                

By Lemma 3, if the cell overflows, the exact 

value of the cell can be replaced with any value that 

is above the threshold. As we will see in later part, 

the solution of EA_DTW replaces the value with the 

most max double value on one machine 

( _DOUBLE MAX ).  

Lemma 4: If cell ( , )i jγ overflows, then replacing the 

value of cell ( , )i jγ  with any value * *( )ε ε ε>  will not 

affect the overflow of the DTW distance. 

Proof: 

 similarly, we consider the proof with following two 

cases: 

• The minimal warping path crosses the cell ( , )i j . 

( , )i jγ ε> , γ is the cumulative distance and with 

the equation 6, we have ( , )DTW U V ε> . If we 

replace ( , )i jγ with a value aboveε , the same 

conclusion holds. 

• The minimal warping path does not cross the 

cell ( , )i j . From theorem 3, provided 

that ( , )i jγ ε> , the replacement will not affect the 

overflow of remaining cells. The value in ( , )i j will 

not affect the value of ( , )DTW U V  and can be 

omitted.                                                 

Lemma 5: (condition for early abandon on DTW) If 

one cell in the minimal warping path of cumulative 

distance matrix overflows, we have ( , )DTW U V ε>  

Proof:  

before we go on, we first prove following fact: 

in the minimal warping path *W of cumulative 

distance matrix, for two cells 

( , )i jγ and ( ', ')( ', ')i j i i j jγ < < , the following 

equation holds. ( , ) ( ', ').i j i jγ γ≤  Suppose the minimal 

warping path is *

1 2{ , ,..., }cW w w w= , and ( , ),
k w
w f i j=  

' ( ', ')( ' ) .k ww f i j k k= >  Thus,      
1

( , ) ,
k

t

t

i j wγ
=

=∑   

' '

'

1 1 1

( ', ') .
k k k

t t t

t t t k

i j w w wγ
= = = +

= = +∑ ∑ ∑  

As 
i
w is the value in the warping path, 0

i
w ≥ , thus, 

'

1

0
k

t

t k

w
= +

≥∑ .Hence we have ( , ) ( ', ') .i j i jγ γ≤  

Note that, ( , ) ( , )DTW U V m nγ= , if one cell in the 

warping path overflows, say ( , ) ( , )i j i m j nγ ε> ≤ ≤ , 

we have ( , ) ( , )DTW U V i jγ ε≥ > .                           

The implication of Lemma 5 is exceedingly 

important. It provides the theoretical basis of the 

argument of early abandon on dynamic time warping. 

By Lemma 5, as long as one cell in the minimal 

warping path of cumulative distance matrix overflows, 

one can terminate the DTW calculation. 

Lemma 6: If cells in one row or one column of the 

cumulative distance matrix all overflow, then we 

have ( , )DTW U V ε> . 

Proof:  

from the constraints on the warping path (3) (4) and 

(5), warping path is a continuous curve from cell 

(1,1) to cell ( , )m n ,thus warping path must cross each 

row and each column in the distance matrix (though 

not each cell). If all cells in one row or column 

overflow, then there must be a cell in the warping path 

of cumulative distance matrix with the value exceeds 

ε .By Lemma 5, we have ( , )DTW U V ε> .  
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3.2. Early Abandon on DTW Algorithm  

From the above analysis, we know that if one cell 

overflows, we can replace the value of the cell with an 

on-the-fly value that is above the threshold and omit the 

calculation of base distance without affecting the final 

result. Furthermore, if the cells in one row or column 

overflow, we should terminate the calculation of DTW, 

and return no-match. The idea of early abandon on 

exact DTW is illustrated in Figure 5. EA_DTW returns 

false if the two sequences are not matched, i.e., the 

distance exceeds the given threshold, and returns true if 

they are matched. 

  

Input:
0 1 1

{ , ,..., }
m

U u u u −=
0 1 1

{ , ,..., }
n

V v v v −= ε : the 

threshold for the query. 

Output: true  if ( , )DTW U V ε≤ ,otherwise false . 

1.  construct an m n×  matrix M ; 

2. 
0 0

[0][0] ( , );
base

M d u v←  

3.  if [0][0]M ε> then 

4.     return ;false  

5.  end if; 

 (Initialize the [0][.]M  and [.][0]M ) 

6.  if [ 1][0]M i ε− >  then 

7.       [ ][0] _ ;M i DOUBLE MAX←  

8.  else   

9.     
0

[ ][0] [ 1][0] ( , )
base i

M i M i d u v← − +  

10. end if;  

(Repeat lines 6~10 similarly on [0][.]M ) 

11. for 1i =  to 1m −  do 

12.    ;overflow true←  

13.    for 1j =  to 1n −  do 

14.        min{ [ 1][ 1], [ 1][ ], [ ][ 1]};v M i j M i j M i j← − − − −  

15.       if v ε> then 

16.         [ ][ ] _ ;M i j DOUBLE MAX←  

17.       else 

18.         [ ][ ] ( , );base i jM i j v d u v← +  

19.            if [ ][ ]M i j ε> then 

20.                 [ ][ ] _ ;M i j DOUBLE MAX←  

21.            else 

22.                ;overflow false←  

23.            end if; 

24.      end if; 

25.    end for; 

26.    if overflow then 

27.        break; 

28.    end if; 

29. end for; 

30. if overflow then 

31.    return ;false  

32. end if; 

33. return [ 1][ 1] ;M m n ε− − ≤  
 

Figure 5. Early abandon on DTW. 

 

For more details, in Figure 5, the algorithm 

EA_DTW constructs an m n× matrix for the 

cumulative distance and initializes the margin of the 

matrix (in lines 6 to 10). Lines 3 to 5 check if the first 

point alignment exceeds the threshold, and if so, we 

just cancel the calculation and return false. The 

rational here is that with the Endpoint constraint of 

warping path equation 6, the first point in the matrix 

will be in the warping path. 

Lines 11 to 25 do the early abandon and calculation 

of DTW. Before calculating the value of each cell, we 

first check if the value will overflow according to the 

Lemma 1. If the cell overflows, then we replace the 

cell value with the max possible double 

value ( _ )DOUBLE MAX  according to Lemmas 3 and 

4, and omit the calculation of base distance according 

to Lemma 2; otherwise we calculate the value in 

normal way.  Lines 26 to 28 check if the whole row 

overflows and if so, break out the loop and terminate 

the further calculation according to Lemma 6. The 

time complexity of EA_DTW is ( )O mn , where ,m n  is 

the length of the two sequences, respectively. 
 

3.3. Case Study 

To further demonstrate the process of early abandon 

on DTW, we give a case study in this section. We use 

the same sequences {2,5,2,5,3},U =  

{0,3,6,0,6,1}V =  in Figure 2 for example. Figure 6 

shows the process of early abandon on DTW, and the 

toleranceε  is 9. Early abandon on DTW proceeds as 

follows:  

• Step 1: Figure 6 (a) calculate the distance between 
first points, and check if it overflows. Since 4 < 9, 

we continue to step 2; 

• Step 2: Figure 6(b) calculate the margin for the 

matrix, and fill with the overflowed cells with 

_DOUBLE MAX (denoted in the Figure 6 as “#”); 

• Step 3: Figure 6(c) calculate the body of the matrix 

sequentially and do the early abandon. This is the 

main step for the calculations.  

For comparative study of the effects on early 

abandon, we draw the whole cumulative distance 

matrix in Figure 6(d). As the figure shows, there are 

many overflowed cells in the early abandon method, 

where the calculations of base distance are omitted. 

Another important, yet interesting observation in 

Figure 6(c) is that, the whole cells in 4
th
 row of the 

matrix overflow, and after the detection, the remaining 

calculations are terminated (denoted as “##” in Figure 

6(c)), which will improve the efficiency. 
 

4. Experimental Study 

In this section, we test the improvement of EA_DTW 
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on the performance with a comprehensive set of 

experiments. 

 

4.1. Experiment Setup 

For these experiments, we used a PC and the 

configurations are listed in Table 1. 

 

Figure 6. Illustration of early abandon on DTW (a) Calculate the 

first point and check if it overflows; (b) Calculate the margins of the 

matrix; (c) Calculate the body of the matrix  with early abandon; (d) 

The comparative calculation results without early abandon. 

(“#”=Overflow, all cells denoted in bold are overflowed, 

“##”=Omit the calculation.) 
 

Table 1. Experiment configurations. 
 

Items Value 

Processor Intel Pentium 3-866 

Operating System 
Ubuntu Linux 4.1.1-13 

(Kernel version 2.6.2) 

RAM 256 Megabytes 

Disk Space 40 Gigabytes 

Implement Language ANSI C 

Compiler GNU gcc 4.1.2.20060928 

 

In order to allow reproducibility, all the source codes 

and datasets are freely available, interested readers may 

email the authors. For completeness, we implemented 

all the methods proposed in this work, which are the 

EA_DTW, calculation of DTW with dynamic 

programming (denoted as dyn_DTW), and calculation 

of DTW recursively (denoted as raw_DTW). There is a 

step for construction of cumulative distance matrix in 

EA_DTW and dyn_DTW, while this is not a must in 

raw_DTW, which calculates the DTW in a recursive 

way. We have taken great care to create high quality 

implementations of all techniques. All approaches are 

optimized as much as possible. 

In our experiments, we evaluated the efficiency of 

different techniques using two metrics. We measured 

the elapsed time as the performance metric directly 

perceived by the user, and the skip rate as a factor of 

saving computations. 

• Elapsed Time: we used wall-clock time to measure 

the elapsed time during the evaluation. This time 

includes both CPU and IO time. As we repeated 

each experiment in several times, the elapsed time 

reported is the averaging value with the same 

parameters configured. 

• Skip Rate: the steps that EA_DTW skips during 

calculation is a factor for the improvement, we use 

the following equation to denote the skip rate 

during early abandon: 

     
_ _

_ 1
_ _

calculated cells number
skip rate

total cells number
= −            (7) 

We performed the experiments on both of synthetic 

and real data sets.  

• Synthetic Datasets: the synthetic data sets were 
created using a random time series generator that 

produces n  time series that confirm to simple, 

normal and exponential distributions, respectively. 

• Real Datasets: our real dataset is the synthetic 
control chart, which was obtained from 

http://www.db-isc.uci.edu. 

Sample data of data sets are shown in Figure 7. We 

randomly extracted 1 percent of the entries from each 

data set, the other subset of objects become our query 

set. This practice allowed us to use a query object that 

is in the same domain as the candidate query set. 

dyn_DTW

EA_DTW

0 5 10 15 20 25 30
0

0.5

1
Simple Random

v
a
lu
e

0 5 10 15 20 25 30
0

10

20

30
Normal Random

v
a
lu
e

0 5 10 15 20 25 30
0

5

10

15
Exponential Random

v
a
lu
e

0 10 20 30 40 50 60
0

20

40
Real Data

v
a
lu
e

 
Figure 7. Plotting a fraction of the data sets. 

 

4.2. Evaluation on Random Generated 
Datasets 

The configurations for the random generated data are 

listed in Table 2.  
 

Table 2. Parameters for experiments on random generated data 

sets. 
 

Data Sets 
Exact DTW 

Distance 
Size of Matrix 

Simple Random 1.3 10 * 13 

Normal Random 66.4   8 * 11 

Exponent Random 370.2 10 * 12 

 

We found that there were many redundant 

calculations in raw_DTW compared with dyn_DTW, 

and raw_DTW had a poor performance, as shown in 

Table 3. For this reason, we mainly compare our 

method, EA_DTW, with the method dyn_DTW for 

the rest of the experiments. 
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Table 3. Comparisons of raw_DTW and dyn_DTW on elapsed time 

(in milliseconds). 
 

Data Sets raw_DTW dyn_DTW 

Simple Random 7,418,316.0 141.8 

Normal Random 3,929,671.3 140.9 

Exponential 

Random 
251,528.6 130.3 

 

The comparisons of the elapsed time on the 

randomly generated data are shown in Figure 8, Figures 

9 and 10, respectively.  In general, the results show 

that, the EA_DTW outperforms the dynamic 

calculation of DTW in the elapsed time, and wins in all 

threshold configurations, even when the threshold 

exceeds the exact distance.  

We present the results of step rate on the random 

data sets in Figure 11.  As the interesting results show, 

the skip rate becomes lower with the threshold grows, 

and when the threshold exceeds the exact distance of 

dynamic time warping, we may have less calculations 

on cells to omit (the most obvious example is the 

normal random case in Figure 11, when threshold 

exceeds the threshold, the skip rate becomes zero.). 

This is, however, not surprising and consistent with our 

theoretical analysis presented in section 3.2. Since the 

threshold exceeds the exact distance (1.3 in Simple 

random, 66.4 in normal random and 370.2 in 

exponential random), the early abandon behaviors more 

similarly to the whole calculation with dynamic 

programming, and no cells in the whole row or column 

will be skipped.  

Nevertheless, we note that the time series objects 

obtained from querying is far more less than the whole 

set of objects. When performing exact dynamic time 

warping calculation on the objects that are not 

qualified, we may have that the threshold is below the 

exact distance. In this sense, we can adopt early 

abandon to gain more pruning power. 
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Figure 8. Comparison of elapsed time on simple random data. 
 

 
Figure 9. Comparison of elapsed time on normal random data. 
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Figure 10. Comparison of elapsed time on exponential random 

data. 
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Figure 11. Skip rate on random data. 

 

 
 

Figure 12. Comparison of elapsed time on real data. 

 

4.3. Evaluation on Real Dataset 

The length of the sequences in real datasets is 60, and 

the exact dynamic time warping distance between the 

randomly chosen sequences for querying is 413.1. The 

elapsed time on real dataset is illustrated in Figure 12. 

The same trend, as expected, is observed from the 

results, and EA_DTW yielded more evident 

performance gains in real data. With the same 

parameter configured, the EA_DTW finished the 

calculation in less time. The elapsed time of 

dyn_DTW ranged from 513 to 788, while the elapsed 

time of EA_DTW ranged from 267 to 499, which is 

roughly 60% of that in the dyn_DTW case. 
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Figure 13 shows the skip rate on real dataset. As the 

result indicates, the skip rate ranges from 55.3% to 

70.9%. More than half of the cells calculations are 

omitted and the pruning power of EA_DTW is 

satisfying.  
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Figure 13. Skip rate on real data. 

 

Note that even when the threshold is bigger than the 

distance, we have some improvement on the elapsed 

time, as well as the skip rate. This is due to that we can 

skip the calculations of base distance to save 

computations. Considering the size of the matrix (60 * 

60), the overall gains on the omission of calculations is 

tremendous. 

 

5. Related Work 

Now that we have provided detailed descriptions of our 

contributions in this paper, we proceed to make a brief 

comparison with previous work. While there have been 

many methods proposed to calculate DTW, we use 

early abandon to accelerate the exact calculation of 

DTW.  The methods of lower bounding functions in 

[4], [9], [14], [15] are, in reality, the approximate 

calculations of DTW, and need a step of refinement. 

Recently, the work in  [13] also used the early abandon 
(they used the term early stopping) to terminate the 

calculation, however, we deepened the notation by 

omitting the calculation on base distance as well as 

terminating the whole DTW calculation. 

 

6. Conclusions and Future Work 

In this work, we examined the problem of the exact 

calculation of DTW, and proposed a method called 

EA_DTW to accelerate the calculation. The approach 

adopted the idea of early abandon to skip the 

unnecessary calculations. The experiment results show, 

EA_DTW, compared with the dynamic programming 

method of DTW calculation, works with less 

calculation time, and the skip rate is better when the 

threshold is below the exact distance.  

For future research, we plan to apply the method to 

the segmented-wised DTW calculation  [9], where 

sequences are first segmented before the calculation of 

DTW, the difference with this work is that if we skip 

one cell in the cumulative distance matrix, we may 

skip more cells from same segment, since the values 

in one segment are more the same to each other. 
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