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Abstract: Pavements are constructed to deteriorate because of many factors such as traffic loading, material related factors, 

climate, and other environmental factors. In order to preserve these investments, a maintenance program should be carried 

out at right time and right places. One of the most important maintenance activities is asphalt overlays. Designing an overlay 

is more challenging since it restricts the pavement design engineer to a vast number of boundary conditions that must be 

observed and designed for. The most important factor in this process is the assessment of the existing pavement structural 

capacity, and relating it to the new overlay. The process becomes more complicated when considering environmental changes 

of the pavement materials. Such process should be implemented using a computer model to overcome complexity procedures, 

repeated tasks and time consuming. An artificial neural network approach can be used for the elimination of this drawback. 

This study presents an attempt to apply artificial neural network to recommend pavement overlay thickness based on learning 

from Mechanistic-Empirical overlay design cases. Results of this study reveal that artificial neural network is appropriate for 

implementation in calculating flexible overlay thickness based on mechanistic-based design procedure.  
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1. Introduction 

Highway pavements consist of several flexible layers. 

The common layers are Asphaltic Concrete (AC) 

wearing course on the top followed by base and/or sub-

base layers in which they are rested on subgrade layer. 

Generally, pavements are constructed to fail due to 

many factors that affect on the serviceability of the 

pavement such as traffic loading and weather 

conditions. To preserve these investments achieving the 

design life, Maintenance Rehabilitation (MR) activities 

should be applied through a timely maintenance plan. It 

is important that the maintenance activities be done at 

the right time and right places [19]. 

One of the most popular M and R activities is Hot 

Mix Asphalt (HMA) overlays. They provide a 

relatively fast, cost-effective means of correcting 

existing surface deficiencies, restoring user satisfaction 

and adding structural load-carrying capacity depending 

on the designed thickness. There are many overlay 

design methods that consider many design construction 

factors. These factors should be addressed by the 

design engineer, if early failure is to be avoided and 

maximum performance achieved [17, 20]. 

A Mechanistic-Empirical (M-E) overlay design 

procedure offers a more defined engineering approach, 

to most of the current subjective methods, where it 

relates the pavement performance to actual stress-strain 

state of the pavement structure. The mechanistic-based 

design process considers many design factors to 

calculate the required thickness. These factors include 

the expected future traffic, the structural capacity of 

each pavement layer, and the variation of the 

pavement material properties due to seasonal 

environmental changes, especially the temperature and 

moisture variations [5, 3]. Due to the complexity of 

such a design system, its procedure should be 

implemented in a computer model to overcome 

complexity procedures, and time consuming. 

On the other hand, the following quote from [18] 

highlights the importance of a powerful and versatile 

computational tool in solving complex procedures: 

“over the past two decades, there has been an 

increased interest in a new class of computational 

intelligence systems known as Artificial Neural 

Networks (ANNs). This type of networks have been 

found to be powerful and versatile computational tools 

for organizing and correlating information in ways 

that have proved useful for solving certain types of 

problems too complex, too poorly understood, or too 

resource-intensive to tackle using more-traditional 

computational methods. ANNs have been successfully 

used for many tasks including pattern recognition, 

function approximation, optimization, forecasting, 

data retrieval, and automatic control [18].” 

This paper investigates the feasibility of applying 

ANN approach to recommend appropriate pavement 

overlay thickness based on learning from M-E overlay 

design cases. This is particularly promising for 

developing countries where such applications can play 



 Artificial Neural Network Approach for Overlay Design of Flexible Pavements                                                                      205                                                                 

an effective role in offsetting the lack of decision tools 

and other related factors, which is often apparent.  

 

2. M-E Overlay Design Procedure 

2.1. M-E Concept 

From an engineering point of view, there is much to be 

desired about a mechanistic approach to pavement 

design. In general, the application of the principles of 

engineering mechanics refers to “Mechanistic” term 

that can be used in calculating critical stress, strain, or 

deflection in the pavement, which leads to a rational 

design process. While, “empirical” term refers to 

prediction of resulting damages by some empirical 

failure criteria. That is why it is called M-E design 

approach, as shown in Figures 1 and 2 presents the 

elements of M-E design system [15]. 

 

Figure 1. Concept of M-E design procedure. 

 

 
 

Figure 2. Elements of M-E design system.  

 

Although the mechanistic approach to pavement 

design is much more rational than the current empirical 

approach, it necessitates high level of technical and 

computation requirements. Today, advent of high-speed 

computers overwhelms this difficulty [15]. 

Detailed description of the M-E design procedure is 

out of scope of this paper, while it can be found in 

references [5, 15, 21]. However, the following sections 

present overview on the M-E overlay design procedure. 

 

2.2. Outline of M-E Overlay Design Procedure 

In M-E overlay design procedure, the pavement layer 

thicknesses are calculated so that the damages in 

either the existing pavement or the new overlay will 

be within the allowable limits. This procedure 

considers many design factors to calculate the required 

thickness. These factors include the axle loading, 

environmental factors, and pavement material 

properties. It takes into consideration the effect of 

seasonal variation on the change of pavement layer 

properties and accounts for non-linearity of material 

properties. The main features of the method include: 

determination of design inputs, modeling pavement 

response, and damage analysis [5, 6]. 

 

2.2.1. Design Inputs 

A layered elastic model requires a minimum number 

of inputs to adequately characterize a pavement 

structure and its response to loading. These inputs are 

as follow [21, 6]: 

• Material properties of each layer (Modulus of 

elasticity, poisson's ratio, pavement layer 

thicknesses). 

• Traffic and loading conditions. 

• Environmental effects. 

Material properties: since the pavement has been 

regarded as a multi-layered elastic system, the elastic 

moduli and Poisson rations must be specified. Because 

The Poisson’s ratio has a relatively small effect on the 

pavement response, it is customary to assume 

reasonable values for design rather than determining 

from actual tests [9]. Pavement layer moduli are 

predicted from deflection data using back-calculation 

techniques. Several programs have been developed 

that perform the back-calculation [10, 16, 4]. 

Traffic and loading conditions: traffic data is one of 

the key elements required for the structural design and 

analysis of pavement structures. It is required for 

estimating the loads that are applied to a pavement and 

the frequency with which those given loads are 

applied throughout the pavement’s design life. 

Environmental effects: the key parameter that was 

selected to reflect the environmental effects is the 

layer elastic modulus. The elastic modulus of a 

flexible layer changes with surrounding environment. 

While an asphalt layer may be more sensitive to 

temperature, a clayey soil layer will be less sensitive 

to temperature variation but more affected by the 

change in moisture. Thus, the environmental 

parameters that are considered to affect the variation 

of the pavement properties are moisture for unbound 

materials and temperature for asphalt bound materials 

[5, 2].  
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2.2.2. Modeling Pavement Response 

Modeling pavement response is typically utilized to 

estimate the level of the two most common distress 

types found in AC pavements: fatigue cracking and 

rutting distress. Fatigue cracking is caused by 

horizontal tensile strain at the bottom of asphalt layers, 

while rutting distress is caused by vertical compressive 

strain on the top of the subgrade layer [5, 2, 8]. 

 

2.2.3. Damage Analysis 

The design procedure calculates the damage due to 

fatigue and rutting using the Minor’s law of linear 

cumulative damage concept [12]. Pavement is 

considered to have failed when the total damage has 

reached 100%, whether it is due to fatigue or rutting or 

other distress combinations. 

 

2.3. Developed M-E Computer Applications 

Mechanistic-based pavement design methods are being 

therefore developed in different countries such as 

Europe and North America with the main purpose to 

adequately predict pavement response and 

performance. For example in the USA, the Washington 

State Department of Transportation (WSDOT) uses M-

E design system developed at the University of 

Washington and implemented in the computer program 

EVERPAVE 5.0, March 1999. The Minnesota 

Department Of Transportation (Mn/DOT) uses M-E 

flexible pavement thickness design that is implemented 

in the computer program ROADENT 4.0, January 

1999. The Idaho Department of Transportation (ITD) 

uses M-E overlay design system for flexible pavements 

developed at the University of Idaho and implemented 

in the computer program WINFLEX, May 2001 [4]. 

Recently, the American Association of State Highway 

and Transportation Officials have also moved in that 

direction for the new AASHTO 2002 design guide, 

which is developed through the NCHRP project 1-37A 

[7].  

In Europe, the need of a more comprehensive 

mechanistic pavement design method for Europe has 

been recognized by the directorate for transport of the 

European commission as a research topic deserving a 

high priority. The two co-ordinated research actions 

were created and financially supported with the purpose 

to make definite improvements in this direction. The 

two projects; COST333 which is: “development of new 

bituminous pavement design method”, and AMADEUS 

which is: “advance methods for analytical design of 

European pavement structures”, are complementary 

actions involving the participation of up to 20 countries 

in Europe in an effort to set up the plans for a future 

integrated pavement design method. In both these 

projects, the recommendations are that future pavement 

design methods should be able to predict functional and 

structural conditions of a road over time [1]. 

This paper uses the WINFLEX program as a tool in 

creating the design cases. Detailed description of the 

WINFLEX program can be found in [5].  

 

3. Artificial Neural Networks 

3.1. Neural Network Theory 

It is not necessary to know the details of neural 

networks in order to use them, but this basic 

introduction can be helpful. A complete coverage of 

neural network theory can be found in the references 

such as a book by Principe, et al. [14]. 

 

3.1.1. Neural Network Definition 

A neural network is an adaptable system that can learn 

relationships through repeated presentation of data and 

is capable of generalizing to new, previously unseen 

data. Some networks are supervised, in that a human 

determines what the network should learn from the 

data. In this case, users give the network a set of 

inputs and corresponding desired outputs, and the 

network tries to learn the input-output relationship by 

adapting its free parameters. Other networks are 

unsupervised, in that the way they organize 

information is hard-coded into their architecture [11]. 

Neural network architectures, arranged in layers, 

involve synaptic connections amid neurons that 

receive signals and transmit them to the others via 

activation functions. Each connection has its own 

weight and learning is the process of adjusting the 

weight between neurons to minimize error between 

the calculated and predicted values. In Figure 3, a 

typical structure of ANN that consists of a number of 

neurons that are usually arranged in layers, which are 

the input layer, hidden layers, and output layers [7] 

 

Figure 3. Typical structure of ANN. 

 

3.1.2. Neural Network Use 

Neural networks are used for both regression and 

classification. In regression, the outputs represent 

some desired, continuously valued transformation of 

the input patterns. In classification, the objective is to 
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assign the input patterns to one of several categories or 

classes, usually represented by outputs restricted to lie 

in the range from 0 to 1, so that they represent the 

probability of class membership. For regression, a 

single hidden layer or Multilayer Perceptron can learn 

any desired continuous input-output mapping if there 

are sufficient numbers of axons in the hidden layer(s) 

[11]. 

 

3.2. Neural Network Software Packages 

There are many available neural network software 

packages. In this study, neurosolutions software, 

version 5.06, has been used as a tool in designing and 

training a neural network. In the neurosolutions 

software, there is a wizard tool taking the user through 

the process of designing and training a neural network. 

Neural networks can be very powerful learning 

systems. However, it is very important to match the 

neural architecture to the problem. The Neural-Builder 

of the neurosolutions software constructs the most 

popular neural architectures. However, Multi Layer 

Perceptron (MLP) model is considered the most widely 

used neural network. MLPs are layered feed forward 

networks typically trained with static back propagation. 

These networks have found their way into countless 

applications requiring static pattern classification. Their 

main advantage is that they are easy to use, and that 

they can approximate any input/output map. The key 

disadvantages are that they train slowly, and require 

lots of training data. Detailed description of this 

software can be found in the references [11]. Generally, 

the seven basic steps of neural network construction 

are: step 1 input/desired data file selection, step 2 

network analysis, step 3 neural topology, step 4 layer 

configuration, step 5 simulation control, step 6 data 

display, step 7 simulation. 

 

4. ANN-Based Overlay Design Thickness for 

Flexible Pavements 

4.1. Analysis Methodology 

In order to develop an ANN-based overlay design 

thickness procedure, it is necessary first of all to have a 

database of design cases. For this reason, a 

comprehensive analysis was carried out on suggested 

three typical flexible pavement cross sections: 3-layer, 

4-layer, and 5-layer, taking into consideration that new 

overlay layer and the subgrade layer are counted. For 

each cross section, seven failure cases to control the 

design have been selected creating 21 design cases. A 

range of input data has been suggested for each design 

case. For this purpose, the WINFLEX computer 

program, M-E overlay design system, was used to 

calculate the overlay thickness for each design case. 

Consequently, design cases database can be created. 

Training data sets were then being selected to be used 

in training process for ANN approach. Neurosolutions 

5.0 software, version 5.06, was used in designing and 

training the neural network. Sensitivity analysis on the 

trained ANN has been conducted. Finally, testing or 

validating process was performed on the trained ANN. 

Figure 4 presents in details the analysis methodology 

adopted in this study, where it can be divided into the 

following four main steps: 

• Development of design cases database. 

• Training process. 

• Sensitivity analysis on the trained ANN. 

• Testing process. 

 

 

Figure 4. Analysis methodology adopted in this study. 

 

4.2. Development of Design Cases 

To build a design cases database, three different 

pavement cross sections have been suggested: 3-layer, 

4-layer, and 5-layer, as shown in Figure 5. It shows 

also the material data inputs for each layer: elastic 

modulus (E), layer thickness (H), and Poisson rations 

(ν). 

 

Figure 5. Three different pavement cross sections. 

 

It is noteworthy that the overlay thickness, Hov, is 

the desired output to be calculated. For simplicity, 
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Poisson rations, performance prediction model for 

fatigue and rutting failure, and modulus-temperature 

adjustment for AC layers are assumed to be constant. 

Whereas the range of elastic moduli, layers thickness, 

and traffic loading is assumed to be as illustrated in 

Figure 6. 

 
 

Figure 6. Data range of input values. 
 

For each run, the overlay design software, 

WINFLEX, was used to determine an overlay thickness 

for the three cross sections based on controlling both 

fatigue failure at the bottom of the AC layers and/or 

rutting failure on the top of the subgrade layer. The 

fatigue failure mode is selected according to three 

conditions as follow: 

• The first condition of fatigue failure is selected so 

that the design is controlled by considering fatigue 

failure in the old AC layer and the new overlay 

layer. 

• The second fatigue failure mode is selected so that 

considering the fatigue failure in the new overlay 

layer only controls the design. 

• The last condition is chosen with the intention of 

considering the fatigue failure in the old AC layer. 

•  

As a result and account for rutting failure with/without, 

there are seven failure modes for each cross section, 

i.e., total of 21 design cases, as follow: 

• Considering fatigue failure in old pavement. 

• Considering fatigue failure in new overlay. 

• Considering fatigue failure in new overlay and old 

pavement. 

• Considering both rutting and fatigue failure in old 

pavement. 

• Considering both rutting and fatigue failure in new 

overlay. 

• Considering both rutting and fatigue failure in new 

overlay and old pavement. 

• Considering rutting on the sub grade layer. 

Using the data range mentioned in Figure 6, design 

cases database can be created through   more than  

1000 runs. Table 1 presents a sample of some selected 

design cases from the created database. It is 

noteworthy that pavement is considered to have failed 

when the total damage has reached 100%, whether it 

is due to fatigue at the bottom of the AC layers or 

rutting on the top of the subgrade layer. It is 

noteworthy that if the calculated overlay thickness is 

equal to 2.54mm, which was specified as increment 

value in WINFLEX, this means that there is no need 

for overlay. 
 

4.3. Training Process 

In order to develop ANN-based overlay design 

approach, it must be well trained using training sets 

extracted from the developed database. Therefore, 863 

design cases have been selected from the created 

database to represent training sets. Neurosolutions 

software has been used in the training process. 

The Neural-builder of the neurosolutions software 

only accepts column-formatted ASCII files. First step 

is to choose the neural model. MLP networks have 

been selected. After loading the training data sets, the 

Neural-Builder will scan this file and present a list of 

the columns that it finds. Initially all columns will be 

tagged as inputs. User can tag a column as either 

“Input”, “Desired”, “Symbol”, “Annotate” or “Skip”. 

To change a columns tag, simply select the column 

with the mouse and press the corresponding button. In 

this analysis, the first column “Cross Section” and the 

second column “Failure Mode” were tagged as 

“Symbol”. While the last column “Hov” was tagged as 

“Desired”. The number of hidden layers and transfer 

function should be specified. In this study, two hidden 

layers and TanhAxon transfer function were selected. 

The problem is to find the best mapping from the 

input patterns to the desired response (Hov). The neural 

network will produce from each set of inputs a set of 

outputs. Given a random set of initial weights, the 

outputs of the network will be very different from the 

desired classifications. As the network is trained, the 

weights of the system are continually adjusted to 

incrementally reduce the difference between the 

output of the system and the desired response. This 

difference is referred to as the error and can be 

measured in different ways. The most common 

measurement is the Mean Squared Error (MSE). The 

MSE is the average of the squares of the difference 

between each output and the desired output. Figure 7 

shows the designed ANN structure using 

neurosolutions software with some captured screens 

after finishing the training process. It can be noticed 

that the MSE is equal to 0.0212. 
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Table 1. Example of some selected design cases from the database. 
  

Cross 

Section 

Failure 

Mode 

Eov, 

MPa 

Eold, 

MPa 

Eb, 

MPa 

Esb, 

MPa 

Esg, 

MPa 

Hold, 

mm 

Hb, 

mm 

Hsb, 

mm 
ESAL Hov, mm 

3-Layer 1 2000 650 0 0 20 25.4 0 0 5.0E+05 205.74 

3-Layer 1 2400 670 0 0 40 40 0 0 7.0E+05 182.88 

3-Layer 1 2500 700 0 0 60 60 0 0 1.0E+06 167.64 

3-Layer 1 4400 1000 0 0 130 240 0 0 7.3E+06 55.88 

3-Layer 1 4500 3500 0 0 140 250 0 0 1.0E+06 2.54 

3-Layer 1 4600 3400 0 0 160 25.4 0 0 3.2E+06 152.4 

3-Layer 3 3200 1000 0 0 220 100 0 0 4.7E+06 134.62 

3-Layer 3 2900 2000 0 0 240 25.4 0 0 4.9E+06 180.34 

3-Layer 4 5000 800 0 0 270 80 0 0 5.0E+05 68.58 

3-Layer 4 5000 1000 0 0 270 110 0 0 2.0E+06 83.82 

3-Layer 4 4000 1500 0 0 100 140 0 0 8.0E+05 35.56 

3-Layer 5 3000 2000 0 0 80 150 0 0 8.0E+06 38.1 

3-Layer 5 3000 2000 0 0 200 150 0 0 8.0E+06 2.54 

3-Layer 7 3000 1000 0 0 100 100 0 0 4.0E+06 86.36 

3-Layer 7 5000 1200 0 0 120 120 0 0 5.0E+06 50.8 

4-Layer 1 3900 1500 400 0 80 70 90 0 5.8E+06 175.26 

4-Layer 1 4000 3000 2700 0 100 80 70 0 6.2E+06 68.58 

4-Layer 1 4300 2000 750 0 110 120 55 0 6.5E+06 104.14 

4-Layer 1 4400 1000 950 0 130 240 95 0 7.3E+06 5.08 

4-Layer 4 3400 670 600 0 180 50 100 0 1.8E+06 124.46 

4-Layer 4 3500 700 1400 0 190 60 60 0 1.0E+06 68.58 

4-Layer 5 2500 700 900 0 60 60 100 0 1.0E+06 96.52 

4-Layer 5 2600 800 1000 0 70 70 110 0 2.0E+06 91.44 

4-Layer 5 2700 900 1200 0 90 90 120 0 3.0E+06 58.42 

4-Layer 6 2500 700 900 0 60 60 100 0 1.0E+06 93.98 

4-Layer 6 2600 800 1000 0 70 70 110 0 2.0E+06 99.06 

4-Layer 6 2700 900 1200 0 90 90 120 0 3.0E+06 71.12 

5-Layer 1 3700 1000 650 350 40 60 240 220 1.0E+07 162.56 

5-Layer 1 3800 1300 1000 360 50 25.4 250 230 1.0E+07 144.78 

5-Layer 1 3900 1500 400 500 80 70 90 240 5.8E+06 134.62 

5-Layer 3 3900 1500 400 500 80 70 90 240 5.8E+06 134.62 

5-Layer 3 4000 3000 2700 1100 100 80 70 80 6.2E+06 5.08 

5-Layer 3 4300 2000 750 1200 110 120 55 200 6.5E+06 33.02 

5-Layer 4 2000 800 500 200 50 80 70 100 1.0E+07 226.06 

5-Layer 5 2000 650 345 175 20 25.4 50.8 50.8 5.0E+05 193.04 

5-Layer 5 2300 660 400 200 30 30 60 60 6.0E+05 167.64 

5-Layer 7 2400 670 500 210 40 40 80 70 7.0E+05 139.7 

5-Layer 7 2450 680 700 220 50 50 90 80 8.0E+05 111.76 

5-Layer 7 2500 700 900 240 60 60 100 200 1.0E+06 58.42 

 

 
 

Figure 7. Designed ANN structure neurosolutions software. 
 

4.4. Sensitivity Analysis 

The objective of the sensitivity analysis is to express 

the fitness of neural networks as an effective way in 

calculating overlay thickness based on M-E design 

approach with the most achievable accuracy that can be 

obtained for the most economical cost. The neural 

networks were influenced to several parameters that 

can guarantee the greatest achievable accuracy such as 

type of transfer function, number of hidden nodes, and 

hidden layers. Figure 8 shows the results of the 

sensitivity analysis with different parameters. 

The analysis indicates that changing the transfer 

function has a noticeable effect on the accuracy, where 

using the Tanh function is much better than using the 

sigmoid function. Furthermore, the Tanh function is 

mush interacting with number of nodes than sigmoid 

function. For example, using the Tanh function 

achieves average 1.48% more in accuracy than the 

sigmoid function. 

 
 

Figure 8. Results of the sensitivity analysis with different 

parameters. 

Furthermore, the number of hidden nodes has an 

effect on the accuracy, where using more number of 
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hidden nodes gives high accuracy. To achieve high 

accuracy, the number of hidden nodes is preferable to 

be more than 25 nodes. On the other hand, 

neurosolutions predicts much better with the two 

hidden layers. 

Another sensitivity analysis has been performed to 

investigate between neural models: MLP networks 

versus Radial Basis Function (RBF) networks. Results 

indicated that MLP networks are more accurate than 

RBF networks (MSE=0.042) in predicting the overlay 

thickness of flexible pavements. The reason for that is 

RBF networks give an equal importance to all input 

variables, which is not the case with MLP networks. 

Weighting process of input variables is very important 

in overlay design of flexible pavements. 

 

4.5. Testing Process 

Once the network has trained, testing process should 

start using testing data sets selected from the created 

database. The trained network should not be exposed to 

these data sets before. Therefore, 105 different design 

cases have been selected to represent training data sets 

distributed on the three cross sections. The predicted 

overlay thickness using the trained network of 

neurosolutions software should be compared with the 

actual calculated ones using WINFLEX to come up 

with the accuracy rate or reliability. If the accuracy rate 

is low, then the network is not properly trained and 

other training sets should be generated to retrain the 

network, otherwise, the network is considered to be 

reliable and ready for implementation. 

Table 2 shows example of some selected results for 

the calculated and predicted overlay thickness and the 

corresponding accuracy rate. The average accuracy rate 

for the 105 testing sets is 82.89%, which is considered 

acceptable, however 50% of the testing sets have 

accuracy rate over 90%. Figure 9 presents the 

relationship between the calculated and the predicted 

overlay thickness using a trend or a correlation line. It 

shows that the ANN predicts the overlay thickness 

around the equality line and slightly under the equality 

line for high values of designed thickness. In addition, 

the 105 testing data sets have been plotted against the 

calculated and predicted overlay thickness to show the 

fluctuation of the predicted overlay thickness in respect 

to the calculated ones, as shown in Figure 10.  

A correlation analysis was also made between the 

calculated and the predicted overlay thickness with test 

of significant 2-tailed. A two-tailed significance is the 

probability of obtaining results as extreme as the one 

calculated/observed and in either direction when the 

null hypothesis is true. It tests a null hypothesis in 

which the direction of an effect is not specified in 

advance. This correlation analysis is to show how 

strong the relationship between the calculated and the 

predicted overlay thickness is. The correlation 

coefficient is 0.959 with Standard Error of Estimate 

(SEE) 11.90mm. Results indicate that the relationship 

between the calculated and the predicted overlay 

thickness is strong with acceptable SEE.  

Finally, results indicate that the trained network of 

overlay thickness gave a quite close approximation to 

the calculated values for the three pavement cross 

sections. Accordingly, ANN can be effectively used to 

determine the overlay thickness based on M-E design 

procedure. 
 

5. Conclusions 

ANN have recently received lots of attention and 

contributed in a wide variety of applications in civil 

engineering as well as in other fields. In this study, 

ANN-based pavement overlay design tool has been 

developed using neurosolutions software, version 

5.06. Several network architectures were trained using 

training data sets developed by M-E overlay design 

program named as WINFLEX. Trained network has 

been tested using different testing data sets to 

determine the predicted overlay thickness, while the 

calculated ones have been determined by the 

WINFLEX program. The calculated and the predicted 

overlay thicknesses have been compared together to 

come up with the accuracy rate. The results indicate 

that the ANN technology can be used to determine the 

pavement overlay thickness with high accuracy based 

on M-E procedure. This study is considered an 

important attempt to simulate the M-E overlay design 

procedure using ANN technology.  

 
 

Figure 9. Relationship between the calculated and the predicted 

overlay thickness. 
 

 
 

Figure 10. Fluctuation between the calculated and the predicted 

overlay thickness. 
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Table 2. Examples of some selected results for testing sets with percentage of accuracy. 
 

 
Cross Section 

Hov (mm), Calculated 

(WINFLEX) 

Hov (mm), Predicted 

(NeuroSolutions) 
Accuracy, % 

3-Layer 198.12 194.11 97.98 

3-Layer 175.26 179.2 97.80 

4-Layer 99.06 108.23 91.53 

4-Layer 71.12 63.5 89.29 

Control the Design by Considering 

Fatigue Failure in Old Pavement 

5-Layer 33.02 35.16 93.91 

3-Layer 165.1 147.25 89.19 

4-Layer 93.98 124.14 75.70 

4-Layer 2.54 4.54 55.95 

5-Layer 66.04 74.8 88.29 

Control the Design by Considering 

Fatigue Failure in New Overlay 

5-Layer 2.54 3.21 79.13 

3-Layer 124.46 110.58 88.85 

3-Layer 152.4 149.9 98.36 

5-Layer 76.2 79.03 96.42 

5-Layer 2.54 2.33 91.73 

Control the Design by Considering 

Fatigue Failure in New Overlay & Old 

Pavement 

5-Layer 162.56 156.3 96.15 

3-Layer 20.32 21.93 92.66 

3-Layer 106.68 123.19 86.60 

4-Layer 43.18 42.8 99.12 

4-Layer 83.82 101.68 82.44 

Control the Design by Considering 

both Rutting & Fatigue Failure in Old 

Pavement 

5-Layer 114.3 128.32 89.07 

3-Layer 187.96 168.76 89.79 

3-Layer 149.86 152.12 98.51 

3-Layer 88.9 89.31 99.54 

3-Layer 93.98 113.92 82.50 

Control the Design by Considering 

both Rutting & Fatigue Failure in New 

Overlay 

3-Layer 91.44 85.8 93.83 

4-Layer 43.18 41.42 95.92 

4-Layer 2.54 2.68 94.78 

4-Layer 68.58 67.26 98.08 

4-Layer 175.26 176.34 99.39 

Control the Design by Considering 

both Rutting & Fatigue Failure in New 

Overlay & Old Pavement 

4-Layer 132.08 129.38 97.96 

5-Layer 27.94 27.9 99.86 

5-Layer 2.54 3.11 81.67 

5-Layer 73.66 102.23 72.05 

5-Layer 20.32 33.06 61.46 

Control the Design by Considering 

Rutting on the Subgrade Layer 

5-Layer 121.92 100.96 82.81 

 

Comparing with other papers related to the 

application of ANN in pavement design, the ANN 

models have proved to be a powerful tool in providing 

pavement engineers and designers with sophisticated 

solutions, without the need for a high degree of 

expertise in the input and output of the problem, to 

rapidly analyze and design flexible pavements [19, 7, 

12]. 
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