
A Framework to Automate the Parsing of Arabic Language Sentences 119911

A Framework to Automate the Parsing of

Arabic Language Sentences

Essam Al Daoud and Abdullah Basata

Faculty of Science and Information Technology, Zarqa Private University, Jordan

Abstract: This paper proposes a framework to automate the parsing (بإ'&ا) of Arabic language sentences in general,

although it focuses on the simple verbal sentences but it can be extended to any Arabic language sentence. The proposed

system is divided into two separated phases which are lexical analysis and syntax analysis. Lexical phase analyses the words,

finds its originals and roots, separates it from prefixes and suffixes, and assigns the filtered words to special tokens. Syntax

analysis receives all the tokens and finds the best grammar for the given sequence of the tokens by using context free

grammar. Our system assumes that the entered sentences are correct lexically and grammatically.

Keyword: Lexical analysis, syntax analysis, Arabic language parser.

Received December 5, 2007; accepted February 20, 2007

1. Introduction

Arabic ranks fourth in the world's league table of
languages, with an estimated 186 million native
speakers. As the language of the Qur'an, the holy
book of Islam, it is also widely used throughout the
Muslim world. It belongs to the Semitic group of
languages which also includes Hebrew and Amharic,
the main language of Ethiopia.

 Natural language analysis serves as the basic
block upon which natural language applications such
as machine translation, natural language interfaces,
and speech processing can be built. A natural
language parsing system must incorporate three
components of natural language, namely, lexicon,
morphology, and syntax. As Arabic is highly
derivational, each component requires extensive
study and exploitation of the associated linguistic
characteristics. Arabic grammar is a very complex
subject of study; even Arabic-speaking people
nowadays are not fully familiar with the grammar of
their own language. Thus, Arabic grammatical
checking is a difficult task. The difficulty comes from
several reasons: the first is the length of the sentence
and the complex Arabic syntax, the second is the
omission of diacritics (vowels) in written Arabic
‘>?@ABCا’, and the third is the free word order nature of
Arabic sentence. The modern form of Arabic is called
Modern Standard Arabic (MSA) [2, 5, 6]. MSA is a
simplified form of classical Arabic, and follows the
same grammar. The main differences between
classical and MSA are that MSA has a larger (more
modern) vocabulary, and does not use some of the
more complicated. Arabic words are generally
classified into three main categories: noun, verb and

particle. While an Arabic sentence has two forms:
nominal sentence and verbal sentence.

 The proposed system covers the basic grammar
rules for verbal sentence which can be generalized to
any sentence. We will call the proposed system:
A'reb (أ'&ب). However, A'reb has the following
limitations:
• The system is assuming that sentence has been

written correctly, whether morphologically or
grammatically, and grammar correction is not
included right now.

• As a nature of Arabic verbs, the verb could be in
passive, or active voice e.g., ب&L could be read
as َب&ِLُ (doreb) or َب&َLَ (darab), the system
assumes the verb as it is in the active voice.

• The A'reb does not prevent errors that are related
to incorrect use of semantic meaning, means that
the semantic analysis is not verified.

The goals of the project which we like to achieve in
our A'reb system are:

• To serve the Arabic in the automation field,
especially in noteworthy subject like E'rab.

• To build kernel functions, which can be used to
Arabic sentence correction, translation, natural
language interfaces, and speech processing.

• To design a system that applies the major of
lexical services , like getting the root, the various
form of the word,

• To design a comprehensive system that covers the
most verbal sentence cases, including repetition
case.

• To design an easy to use and intuitive system with
short learning curve.

 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009192

• To design a general system to be applicable for
different persons such as student or teachers.

• To provide an e-learning notion in the simplest
way.

2. The Architecture of A'reb

The system is based on syntactic analysis and relies
on a feature relaxation approach for detection of ill-
formed Arabic sentences. A'reb helps the user to
write a sentence by analyzing each word and then
only accepting the sentence if it is grammatically
correct. The main features of our A'reb system are:
give some lexical feature of Arabic words and parse
the simple verbal Arabic language sentences, but it
can be extended easily to any Arabic language
sentence. The design of the whole system is shown
in Figure 1. The A'reb is basically composed of two
parts: An Arabic lexical analyzer, and a syntax
analyzer.

Figure 1. The Architecture of the A'reb system.

With quick looking to the system main functions,
it is evident that the system needs only two
stakeholders: user and administrator. The
administrator tasks are updating the data, and adding
more services.

3. Lexical Analysis

The main function of a lexical analyzer is to break
down the input stream into lexical items or
morphemes. If the morpheme can function alone,
such as the word سQRST (engineer), it is called a free
morpheme. Other morphemes cannot be used by
themselves, such as the general plural ending ون and
the letters XY in the word نZ[QRST (engineers). Such
morphemes are called ‘bound’. Bound morphemes, in
Arabic, serve as additions at the beginning or ending
of a stem. Using the definitions of free and bound
morphemes, a word can be defined as a single free
morpheme, and an inflected word can be defined as a
complex form which is a single free morpheme
combined with one or more bound morphemes [3, 7].

A lexical (morphological) analysis must tokenize
and categorize the Arabic words (past, present,
future, intransitive, transitive…) and separate them
from prefixes and suffixes. In previous works, many
methodologies have suggested to drive all the Arabic
words from the roots. However, the best algorithm
suggested has an accuracy of less than 90% which is
not accepted in Arabic sentence parsing [1, 2, 8].
Thus in A’reb system we must store all the Arabic
words in a database (lexicon) excluding the prefixes
and the suffixes (which is around 2 millions words),
and by using tree indexing we can find the required
word very fast O(s), where s is the length of the
required word, and since the maximum length of the
Arabic word can not be more than 10, thus the
complexity is constant.

 In our database or lexicon we have used five main
tables namely root, present, order, noun and particle
table. All the tables' entries are free morpheme
(without prefixes and suffixes).

 Two main tasks must be achieved in the A’reb
lexical analysis: the first is to separate the input
words from the prefixes and suffixes and the second
is to assign a suitable symbol to each lexeme. To
separate the Arabic word from prefixes and suffixes
we suggest a multi-level comparing as follows:

• First Level: the input words without prefixes and
suffixes, which means comparing the input word
with the word stored in the database directly, and
then tokenizing it. If the word is not in the
database then we go to the second level.

• Second Level: the input word without prefixes,
which means that we have to isolate all the
possible suffixes and then go to the first level. If
the word is not in the database then we go to the
third level.

• Third Level: the input words without suffixes,
which means that we have to isolate all the
possible prefixes and then we go to the first level.
If the word is not in the database then we go to the
fourth level.

• Fourth Level: the input words with prefixes and
suffixes, which means that we have to isolate all
the possible prefixes and suffixes and then we go
to the first level. if the word is not in the database
then we consider it a noun or we ask the user.

Table 1. Examples explaining the separation of the input

words.

After Separation

Input Word

aـcـdـY ـ[aــcـdـ?[

eو ه aـcـ]ـg eهـZـhـcـdـg

eآ jk@Y ف س e@?k@?dg

 اnkoCن اCـ km< ان

A Framework to Automate the Parsing of Arabic Language Sentences 119933

The second lexical analysis task is to assign a
suitable symbol to each lexeme. To achieve this task
we first have to suggest a symbol (token) to each
group of the lexemes, where each group has a
common parsing behavior, Table 2 contains sample
of the suggested symbols (tokens). Table 4 explains
the output stream after the lexical analysis achieved
on a stream of Arabic sentences.

Table 2. Sample of the suggested symbols (tokens).

Lexemes/Words Symbol

Token

Terminal

Notes

A word in the Noun Table N e[qا

A word in the Root Table
with transitive attribute

ls يQtBuCا jLvuCا >tkCا

A word in the Root Table
with intransitive attribute

lm زمnCا jLvuCا >tkCا

A word in the Order Table
with transitive attribute

om يQtBuCا &Tyا >tkCا

A word in the Order Table
with intransitive attribute

ol زمnCا &Tyا >tkCا

A word in the Present Table
with transitive attribute

prM يQtBuCرع اv|uCا >tkCا

A word in the Present Table
with intransitive attribute

prL زمnCرع اv|uCا >tkCا

XSآ,eSآ,Xه,eه,vuه,vه,} Swh ~v�Cء اvه �c~v�Cا ،�...

�vء اSt ،�mv�uC ت,�Zu�,X�,e�,vuا
�cmv�uCا...

v� Na X?u�@BuCن اZ�

 �Zن اZdRCة Snn ن
 أ�C اSa X?R�q ا
 واو اSw �'vu�C و
 واو اSwa �'vu�C وا

����T j اZ[���uCاء آ��v) ي(
�c~v� أو �cmv�T

Sy �du�Cل اvtgyا �T

]vuء ا�CZ�ZuC اPcm y اj�nC,اj~nC,اjBC,ا�Cي
�?RcuCا

 اvu[yء اPcba �CZ�ZuC اvB�Cن,ا��Cان
��&tuCا

XY�Cا,X?B�Cا Pcby �CZ�ZuCء اvu[yا
��&tuC2ا

 أ]vuء ا��vرة اPim �?RcuC أوqء,أو��C,ه�qء,ذ�C,���,ه�{,ه�ا
 أ]vuء ا��vرة ا��v� Pira ��&tuC,ذا��,هv�vن,ه�ان

XYه�,X?�vه Piry Cرة اvء ا��vu[أ��&tu2

 اvu|C~& اPff ���kRuC أ�XB,هX,هvu,هj,هZ,أ��
X�� Pfd ���kRuCا &~vu|C2 ا

vأ�,vuBأ�,eBأ�,vuه,eه Pfs ���kRuCا&~vu|C3 ا

 أ�&ف اe� …. PreAtf �otC,و,ف
XY Sfvy �du�Cل اvtgyا �T
 �T اvtgyل اSfva �du�C ان
 �T اvtgyل اSfvw �du�C ون

 �&ف 'PreAtf �o و

 �&ف 'PreAtf �o ف
 ا�Cy واnCم Al ال

XYأ,XT,آ?� ,أ��,eه<,آ PreI مأ�&فvSkB[qا

 أ�&ف اAC&ط vuST PreSH,أvu ?�,vuRY,إذqZC,ZC,vT,إذ,إذا

Q¢,إن PreK Q?آ�BCأ�&ف ا
et�,��� PreJ ابأ�&فZ�Cا
q,vT PreN أ�&فjkRCا

 أ�&ف اPreNsb ��RC أن,XC,آj,إذن
q,vuC,eC PreJzm مأ�&ف¤�Cا

qZC,nه,vTZC,qأ PreD ¥?|�BCأ�&ف ا

Ambiguity is another problem that must be solved
during the lexical analysis. The ambiguity in the
Arabic words occurs if we do not use the diacritics
>?@ABCا as the following examples:

 �uSg اQCرس
]vRhc اv��Cن

The first example has three meanings without
diacritics:

 uْSgَ� اQCرس، uْSgِ� اQCرس، uَSgُ� اQCرس

 The second example has two meanings without
diacritics:

]hcْـvR اv��Cنَ،]hcَـvR اv��Cنُ

The ambiguity problem can be solved by two ways;
the first is asking the user each time the ambiguity
occur and the second is accepting, parsing and
displaying all the possibilities.

4. Syntax Analysis

Parsing (more formally syntactical analysis) is the
process of analyzing a sequence of tokens to
determine its grammatical structure with respect to a
given formal grammar, the parsing transforms input
text into a data structure, usually a tree, which is
suitable for later processing and which captures the
implied hierarchy of the input [4].

 There are two tasks in the syntax analysis phase
that must be accomplished, the first is determining all
the Arabic language rules and then write the
equivalent Context Free Grammar (CFG). The
second is choosing and building the parser, in the
proposed system we have selected the recursive
parser.

There are two possible output of the syntax
analyzer: first; the analysis is successful and no
syntactic inconsistencies are found, in this case the
sentence will be able to parse and the result (E'rab)
will printed. Second; the analysis fails, and the results
contain at least one syntactic inconsistency. In this
case an error message is displayed and the system
will ask the user to correct the errors. Moreover, the
system can advise the user about the nearest correct
sentence.

5. Arabic Language Context Free

Grammar

A grammar is a formal system which specifies which
sequences of words are well-formed in the language,
and which provides one or more phrase structures for
well-formed sequences.

Table 3. CFG non-terminals.

Non-Terminal Meaning

AT Arabic Text
NS Nominal Sentence
VS Verbal Sentence
SUB Subject
O Object
V Verb
PRE Prefixes

 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009194

The CFG consists of four components: set of
terminals, set of non- terminals, a start symbol and
set of productions. The terminals in the proposed
system are the set of all tokens received from the
lexical analyzer and explained in Table 2, while the
non-terminals are the set in Table 3.

Table 4. Output lexemes and tokens of input sentences.

The start production is AT → VS AT|NS AT|ε
and the suggested productions of past verb
intransitive are:

VS → lm SUB | PRE lm SUB

PRE → preAtf | preK |preSH | preI | preN | preJ | preD

SUB → es SUB2 | em SUB2 | er SUB2 | ef SUB2 | sa SUB2 | sw
SUB2 | snn SUB2 | st SUB2 | N SUB2 | pim SUB2 |
pira SUB2 | pcm SUB2 | pcba SUB2 | pcby SUB2 | pf
SUB2 | dm SUB2 | piry SUB2 | pff SUB2 | pfd SUB2 |
pfs SUB2

SUB2 → preAtf es SUB2 | preAtf em SUB2 | preAtf er SUB2 |

preAtf ef SUB2 | preAtf N SUB2 | preAtf pim
SUB2 | preAtf pira SUB2 | preAtf pcm SUB2 |
preAtf pcba SUB2 | preAtf pcby SUB2 | preAtf pf
SUB2 | preAtf dm SUB2 | preAtf piry SUB2 |
preAtf pff SUB2 | preAtf pfd SUB2 | preAtf pfs
SUB2 | ε

the suggested productions of present verb transitive
are:

VS → prM SUB O | PRE1 prM SUB O | prM SUB O | PRE2
prM SUB O | prM O SUB | PRE1 prM O SUB | O prM
SUB | PRE2 O prM SUB| PRE3 prM SUB O| PRE3 O
prM SUB ...

PRE1→ preK
PRE2→ preNsb
PRE3 → preJzm

--
SUB → es SUB2 | em SUB2 | er SUB2 | ef SUB2 | sa SUB2 | sw

SUB2 | snn SUB2 | sy SUB2 | N SUB2 | pim SUB2 |
pira SUB2 | pcm SUB2 | pcba SUB2 | pcby SUB2 | pf
SUB2 | dm SUB2 | piry SUB2 | pff SUB2 | pfd SUB2 |
pfs SUB2 | sfva SUB2 | sfvw SUB2 | sfvy SUB2

SUB2 → preAtf es SUB2 | preAtf em SUB2 | preAtf er SUB2 |
preAtf ef SUB2 | preAtf N SUB2 | preAtf pim
SUB2 | preAtf pira SUB2 | preAtf pcm SUB2 |
preAtf pcba SUB2 | preAtf pcby SUB2 | preAtf pf
SUB2 | preAtf dm SUB2 | preAtf piry SUB2 |
preAtf pff SUB2 | preAtf pfd SUB2 | preAtf pfs
SUB2 | ε

O → N O2 | es O2 | em O2 | er O2 | ef O2 | swh O2
O2 → N | es | em |ef | er | ε

And so on, we have to produce productions
corresponding to all Arabic rules. Note that, we can

reduce the above productions, but we have included
the redundancy in the above CFG to explain our idea.

6. The Recursive Parser

A recursive parser is a top-down parser built from a
set of mutually-recursive procedures where each such
procedure usually implements one of the production
rules of the grammar. Thus the structure of the
resulting program closely mirrors that of the grammar
it recognizes. The following is a part of a recursive
parser algorithm which we have used:

Procedure AT()

 Begin

 If look_Ahead ={ preAtf | preK |preSH | preI | preN

 | preJ | preD | preNsb | preJzm| lm| prM }

 Call VS()

 Call AT()

 Else if look_Ahead={ N|Pcm |Pcba |Pcby |Pim| pira.....}

 Call NS()

 Call AT()

 End Procedure

Procedure VS()

 Begin

 If look_Ahead =lm

 Match (lm);Print ¬BkCا ��' jRcT jLvT >tg " "
 Call SUB()

 Else if look_Ahead =preAtf

 Match(preAtf); Print " ف&��o' "
 Match(lm); Print ¬BkCا ��' jRcT jLvT >tg "

 Call SUB()

 Else if look_Ahead = preK

 Match(preK); Print " ف&� Q?آ��"
 Match(lm); Print "¬BkCا ��' jRcT jLvT >tg"

 Call SUB()

 Else if look_Ahead = preSH

 Match(preK); Print " ط �&ف&�"
 Match(lm); Print " ¬BkCا ��' jRcT jLvT >tg"

 Call SUB()

 Else

 Error

End Procedure

 The complexity of the syntax analyzer (the
recursive parser) is O(l) where l is the syntax length.
Thus, the total complexity of the suggested system is
O(s) + O(l) which can be performed in milliseconds.

Figure 2. Sample input/output of our system.

After Lexical Analysis

Tokens Lexemes Input Sentence

N Al Swa prM PreJzm مvtm آ< وا ال�Y eC eC
�Yآ�Zا
 اvtoCم

Tr N Al lm س انQRST ء الv° ءv°
 اv[QRSuCن

A Framework to Automate the Parsing of Arabic Language Sentences 119955

7. Conclusion

An Arabic parsing program is a complex program
that needs extensive research and linguistic resources.
In the proposed system we tried to highlight the most
attractive property in Arabic language, which is Al-
E'rab. However, the proposed system still needs a lot
of work such as the rest of verbal sentences, nominal
sentences and semantic analysis. The semantic
analysis can be used to solve some type of ambiguity
automatically. Once the Arabic parser is completed
many problems can be solved such as automatic
diacritics, Arabic sentences correction and accurate
translation.

References

[1] Ahmed A. and Khaled F., “Lexical Analysis of
Inflected Arabic Words Using Exhaustive
Search of an Augmented Transition Network
Software,” Computer Journal Practice and
Experience, vol. 23, no. 6, pp. 567-588, 1993.

[2] Black W. and El-Kateb S., “A Prototype
English-Arabic Dictionary Based on Word
Net,” in Proceedings of the Second

International WordNet Conference GWC 2004,

Czech Republic, UK, pp. 169-174, 2004.
[3] Eman O., Khaled F., and Ahmed R., “A Chart

Parser for Analyzing Modern Standard Arabic
Sentence,” MT Summit'IX Workshop: Machine

Translation for Semitic Languages, USA, 2003.
[4] George L., Artificial Intelligent, Structure,s and

Strategies for Complex Problem Solving,
Benjamin-Cummings Publishing, UK, 1993.

[5] Khaled F., “Arabic GramCheck: A Grammar
Checker for Arabic, Softw,” Computer Journal
Practice and Experience, vol. 35, no. 7, pp.
643-665, 2005.

[6] Khaled F., Ahmed A., Azza A., and Hoda B.,
“Machine Translation of English Noun Phrases
into Arabic,” International Journal Computer
Processing Oriental Language, vol. 17, no. 2,
pp. 121-134, 2004.

[7] Plant R. and Murrell S., “A Natural Language
Help System Shell Through Functional
Programming,” Computer Journal Knowledge-
Based Systems, vol. 18, no. 1, pp. 3-19, 2005.

[8] Tahir Y. and Chenfour N., “Realization of a
Morphological Analyzer for Arabic Language
Text,” in Proceedings of the Workshop on

Information Technology, Rabat, Morocco, pp.
348-350, 2003.

Essam Al Daoud received his BSc
from Mu’tah University, MSc from
Al Al-Bayt University, and his
PhD in computer science from
University Putra Malaysia in 2002.

Currently, he is an assistant
professor in the Computer Science

Department at Zarqa Private University, Jordan. His
research interests include quantum computation,
quantum information, cryptography, natural language
processing, and nanotechnology.

Abdullah Basata received his BSc
from Zarqa Private University in
2007. His research interests
include natural language
processing, Arabic language
processing, and artificial
intelligent.

 The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009196

A Framework to Automate the Parsing of Arabic Language Sentences 119977

