
The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008 137

Generating Exact Approximations to Model Check
Concurrent Systems

Mustapha Bourahla
 Computer Science Department, University of Biskra, Algeria

Abstract: In this paper, we present a method to generate abstractions for model checking concurrent systems. A program
using a defined syntax and semantics, first describes the concurrent system that can be infinite. This program is abstracted
using the framework of abstract interpretation where an abstract function will be given. This abstract program is
demonstrated to be an accurate approximation of the original program that may contain spurious behaviours. These spurious
behaviours will be identified and removed using a new defined abstraction framework based on the restrictions. The new
produced abstract program is an exact approximation of the original program.

Keywords: Model checking, abstractions, concurrent systems.

Received February 23, 2007; accepted June 6, 2007

1. Introduction

In the literature, there are many techniques proposed to
analyse the concurrent systems [1, 2, 3, 4, 5, 8, 22].
Model Checking [5] represents one of the most useful
results of almost twenty years of research in formal
methods to increase the quality of software and
hardware systems. A model checker works with a high
level description of a system (model), and it can
automatically inspect the reachable states of the system
to check if a given property (expressed with some
variant of temporal logic) is satisfied.

In the context of model checking, abstract
interpretation [6] is used as way of dealing with the so-
called state explosion problem, which occurs when
realistic systems are analysed. Abstract model checking
involves two activities. On the one hand, in order to
reduce the state space of the original model M , we
apply abstract interpretation to construct an abstract
model M

~ approximating M . On the other, we abstract
the original temporal properties.

The final objective of the abstraction process is the
"strong preservation", that is, the preservation of both
the truth and the falsehood, of the temporal properties
j between M and M

~ , in other words,

 ϕϕα =⇔= M)(M
~

(1)

where a is the property abstract function. However, the
strong preservation of the temporal properties is only
possible if M and M

~ are bi-similar, which entails a
considerable constraint when the objective is to
decrease the state space.

We propose in this paper a method to construct
accurate approximations of infinite concurrent systems

described by programs written with a defined syntax.
By accurate approximations, we mean abstract models
having only the states and transitions that can be
mapped to concrete states and concrete transitions
respectively. The accurate approximations can have
spurious behaviours that are executions with no
corresponding executions in the concrete system. It is
sufficient to remove these spurious behaviours to get
an abstract system strongly preserving the temporal
properties.

Our method is different from the other techniques
[9, 19, 20, 21]. For removing the spurious behaviours
in the abstract model of the concurrent system, the
techniques proposed in the literature refine gradually
the abstract model in many steps. These methods use
the generated counter-examples to refine the abstract
model. Thus, the abstract model is augmented by a
behaviour depending on the generated counter-
example. The new abstract model will be checked and
if the property is not satisfied, the process of
refinement will continue using the new generated
counter-example until the property is satisfied or no
refinement is possible. Our method identifies all the
spurious behaviours, and as a result, it will refine this
abstract model in a one step.

It is often expensive or impossible to construct M
~

directly because we must have a representation of M
to do the abstraction. We may not be able to obtain
such a representation if M is infinite or simply too
large for our system to handle. To circumvent this
problem, we use a method that is based on the fact that
we usually have an implicit representation of M as a
program in a concurrent language. We will show how
to compute an approximation to M directly from the
program text. This approximation is generally accurate

138 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

enough to allow us to verify interesting properties of
the program.

A program in a concurrent language can be
transformed into relational expressions I and R that can
be evaluated to obtain the initial states I and the
transition relation R of the concurrent system M
represented by the program. These relational
expressions are simply formulas in first-order predicate
logic that will built up from a set of primitive relations
for the basic operators and constants in the concurrent
language. We will manipulate I and R to obtain the
approximation to M .

There will typically be types associated with the
variables and relation arguments in the relational
expressions that we write. A concurrent system is now
represented by formulas I and R. Similar formulas I

~
and R

~ can be obtained representing M
~ .

The rest of the paper is organized as follows. Section
2 is devoted to the definition of the syntax and
semantics of the language used to write concurrent
systems. This language is based on the first-order
predicate logic. An example is given at the end of this
section to illustrate these definitions. In section 3, we
present the abstraction algorithm, which is based on the
abstract interpretation framework. Section 4 presents
the abstract model checking. In section 5, we present
the method of removing the spurious behaviours after
their definition to generate exact approximations. At the
end a conclusion is given.

2. Describing Concurrent Systems

A concurrent program will describe a concurrent
system, which is the parallel composition of many
processes, which is an infinite state-transition program.
In this program, we specify the composed transition
relation, the initial state and the invariant. It is possible
to derive this infinite state-transition program from a
high level language describing concurrent systems.

This program is composed of a finite set of variables
{ }1 2, , , nV v v v= L . If each variable iv ranges over a

(non-empty) set iå of possible values, then the set of
all possible program states is 1 2 nå ´å ´ ´ åL , which we
denote by å . We present the possible behaviours of the
program with a set of transitions between states.
Syntax: An infinite state-transition program P=(R, I,)
consists of
C R is the predicate of the system transition relation.

This predicate is a disjunctive formula of a set of
conjunctive sub-formulas. Each conjunctive sub-
formula representing a transition in the concurrent
system which is of the form Ay Ù , for a state
predicate y (the guard of the transition) and a set

{ }: vA v a= = of simultaneous assignments such that

for all variables v VÎ , the expression va is any
acceptable expression.

 I is the predicate of initial state.
 g, is the program invariant, a state predicate. We

require , to verify the condition, that is, for all
states s Î S , s X , .

A guarded transition defines a partial function from S
to S . Let g Ay= Ù be the guarded transition and let
s Î S be a state. The guarded transition g is enabled in
the state s if s y . Any guarded transition that is
enabled in s may be executed in s . The execution of
g , in particular, leads to the state []As , where

[] () ()vA v as s= for all variables v VÎ . The infinite

state-transition program (), ,=P =R I , defines the

transition relation PR such that (),s s ¢Î PR if

 For some guarded transition g Ay= Ù Î R , s y

and []As s¢= ,

 s , and s ¢ , .

Execution of a concurrent program may be defined by
means of a transition system M . If MP is the set of
paths of the transition relation PR , the invariant , of
an infinite state-transition program P defines
precisely the set S PR of states that occur on some M -
path. It follows that a non-deadlock infinite transition
program can be executed by starting with the initial
state that satisfies the invariant and then, repeatedly,
choose a guarded transition that is enabled and whose
execution does not violate the invariant. The iteration
of the next relation defined by a deadlock infinite
transition program, on the other hand, may lead to a
state from which execution cannot continue.
Example 1: consider a system composed of two
processes (the dining mathematicians, example taken
from [7]), which use a parallel version of the Colatz
program for the mutually exclusive access to the
critical section where they may eat. The set of system

states å is { } 2
,think eat N´ , where N is the set of

natural numbers. An element 0 1, ,m m n Î S represents
the state of each mathematician, thinking or eating,
and the current value of variable n .

The initial state 0s is , ,50think think , and the
infinite state-transition program (which is the
composition of the two processes) is defined as shown
in Figure 1. That is, the parity of n decides which
mathematician may eat. ()next ss = means that the
next value of state s will be equal s . This expression
represents the conjunctive sub-formula composed of
the assignments in that transition. The unique trace in

MP is
21

3 4

, ,50 , ,50

 , , 25 , , 25

 , ,76

t think think think eat

think think eat think

think think

tt

t t

= ¾¾® ¾¾®

¾¾® ¾¾®

L

Generating Exact Approximations to Model Check Concurrent Systems 139

For example, the transition 1t has the corresponding
predicate expression (which is evaluated to be true,
because it is taken).

1 0 1

0 1

(50 (50)

 () () () 50)

m think m think n even

next m think next m eat next n

t = = Ù = Ù = Ù Ù

= Ù = Ù =

()
()
()
()

1 1

1 1

0 0

0 0

{

 {

 , , () () , ,

 , , () , ,3 1

 , , () () , ,

 , , () , , / 2

 }

 , ,50

}

think m n odd n next eat m n

eat m n next think m n

m think n even n next m eat n

m eat n next m think n

think think

true

s s

s s

s s

s s

=

=

= Ù Ù = Ú

= Ù = ´ + Ú

= Ù Ù = Ú

= Ù =

=

=

P

R

I

,

Figure 1. The example program.

3. Abstractions

The model checking works only on finite models.
However, it is not always possible to construct finite
models from the specification programs. Thus, we need
to do abstractions. Abstractions [10] will be formed by
letting the program variables range over (non empty)
sets %

iS of abstract values. We will give mappings to
specify the correspondence between unabstracted and
abstracted values. Formally, we let 1 2, , , nh h hK be

surjection, with %: ii ih S ® S for each i . These mappings

induce a surjection %:h S ® S defined by

 1 1 1((, ,)) ((), , ())n n nh h hs s s s=K K (2)

Alternatively, the relation between unabstracted and
abstracted values can be specified by a set of
equivalence relations. In particular, each ih
corresponds to the equivalence relation i i iÍ S ´ S:
defined by

 () ()i i i i i i id d h d h d¢ ¢Û =: (3)

The mapping h induces an equivalence relation
Í S´ S: in the same manner

1 1 1 1 1(,) (, ,)n n n n nd d d d d d d d¢ ¢ ¢ ¢Û Ù ÙL : L : L : (4)

Definition 1:
Let M be a concurrent system over S and M

~ be a
concurrent system over %S . We say that M

~

approximates M (denoted M
~

0̂M k) when:

•)~(I))(I~)(h(σσσσσ ⇒∧=∃ .
•

)~,~(R
~

)),(R~)(h~)(h(

21

2122121

σσ
σσσσσσσσ ⇒∧=∧=∃∃

Then M
~ approximates M when initial states and

transitions in M have corresponding initial states and
transitions in M

~ . For exact approximation, we must
have a type of converse as well: if s% is an initial state
of M

~ , then all of the states s of M that map to s%
should be initial as well (and similarly for transitions).

Definition 2:
Let M

~ be a concurrent system over %S . We say that

M
~ exactly approximates M (denoted)M

~
M(h≈

when M
~

0̂M k and:

•))(~)(()~(
~ σσσσσ IhI ⇒=∀⇒

•

)0,0(R

~)(h~)(h()~,~(R
~

00000000

σσ
σσσσσσσσ

⇒
=∧=∀∀⇒

.

Thus, the concrete and abstract models exhibit
identical behaviour. Exact approximations generally
allow very little simplification, and hence they are not
very useful for reducing the complexity of
verification.

3.1. Generating Accurate Abstractions

An accurate abstract concurrent system has only initial
states and transitions verifying the definition of the
approximation. We call this accurate abstract
concurrent system aM

~
.

Definition 3:

aM
~

is the concurrent system over %S given by:

•))(I~)(h()~(I
~

a σσσσσ ∧=∃⇔

•

),(R

~)(h~)(h()~,~(R
~

00

00000000a

σσ
σσσσσσσσ

∧

=∧=∃∃⇔

Obviously M
~

0̂M k . Further, for any other

concurrent system M
~ over %S , we see that M

~
0̂M k

if and only if aI
~

I
~ ⊇ and aR

~
R
~ ⊇ . Thus, aM

~
is the

most accurate approximation to M that is consistent
with h .

For simplicity, we assume that all of the variables
{ }1, , nV v v= K , range over the same domain S . We

also use a set }v~,...,v~{V
~

n1= , of variables

ranging over the abstract domain %S , with iv%
representing the abstract value of iv . We will also
assume that there is only one abstraction function h
mapping elements of S to elements of %S . Each
transition ()guard nextt s s= Ù Ù , where

1 1

() and next() (())
n n

i i i i
i i

v d next v es s
= =

= = = =Ù Ù (5)

140 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

in the transition relation, which is specified in the
concurrent system program, will be accurately
approximated as.

1

1

()

 ((() | ()))

 ((() ()))

n

i i i
i

n

i i
i

AccurateApproximation

v h d guard h d

next v h e

t t

=

=

= =

= Þ Ù

=

Ù

Ù

%

 (6)

By the same way, we can compute R
~ and I

~ .
Theorem 1: R

~ and I
~ are accurate approximations of

R and I respectively.
Proof: The demonstration of this theorem is trivial,
because by construction we are creating R

~ and I
~

consisting solely from transitions and initial states that
are only mapped to concrete transitions and concrete
initial states respectively.
Definition 4: The equivalence relation : is congruence
with respect to a relation R over S if

 . () ()x y x y x y" " Î S Þ Û: R R (7)

If the mapping function h induces a congruence
equivalence relation : with respect to the transition
relation, then the generated accurate approximation

aM
~

 is an exact approximation.
Example 2: Consider the abstract concurrent system,

where % { } { }2
, ,think eat e oS = ´ , where e means the

number n is even and o means n is odd. If
{ }0 1, ,m m think eatÎ and n NÎ , we can define the

mapping function as

0 1 1 0 1 1 2

1

2

(, ,) (), (), () , where

() and

 if is even
()

 if is odd

h m m n h m h m h n

h m m

e n
h n

o n

=

=

ì
=í

î

 (8)

The abstract initial state I
~ and the abstract transition

relation R
~ generated by the algorithm accurate

approximation are presented in Figure 2.
The abstract action of : 3 1n n= ´ + is ()even nØ . But

the abstract action of : / 2n n= is indeterminate which
produces imprecise values. Observe that in this
example the imprecision of the action : / 2n n= is
solved by means of a non-deterministic selection
between the last four transitions. We should remark
also that there are no reachable states in the abstract
model from the specified initial state. The abstract trace
approximating Mt Î P is

21

3 4

() , , , ,

 , , , ,

 , ,

t h t think think e think eat e

think think o eat think o

think think e

tt

t t

= = ¾¾® ¾¾®

¾¾® ¾¾®

%

L

Note that M
~ contains spurious traces that are

caused by the presence of non-deterministic transitions.

}

,,
~

}

),,0)~(,,0
~(

),,0)~(,,0
~(

),,0)~(,,0
~(

),,0)~(,,0~(

),,0)~(,,0
~(

),1,)~(,1,~(

),1,)~(,1,~(

),1,)~(,1,~(

{
~

{
~

true

ethinkthinkI

ethinkmanextoeatma

othinkmanextoeatma

othinkmanexteeatma

ethinkmanexteeatma

eeatmanextethinkma

omthinkanextemeata

emthinkanextomeata

omeatanextomthinka

R

P

=

〉〈=

〉〈=∧〉〈=

∨〉〈=∧〉〈=

∨〉〈=∧〉〈=

∨〉〈=∧〉〈=

∨〉〈=∧〉〈=

∨〉〈=∧〉〈=

∨〉〈=∧〉〈=

∨〉〈=∧〉〈=

=

=

Figure 2. The abstract program.

4. Model Checking

After the description of the abstraction process of
concurrent systems, we will present the process of the
abstraction of their properties and we will show how
the abstract system can preserve these temporal
properties.

4.1. Temporal Logic

CTL* (Computation Tree Logic, * stands for universal
logic) [11] is a powerful temporal logic that can
express both branching time and linear time
properties. If iv VÎ is a program variable and i id Î S ,
then i iv d= and i iv d¹ are atomic state formulas. true

and false are also atomic state formulas. We denote
the set of atomic formulas by A .

Syntax and Semantics of CTL*: The grammar
given below defines two entities, state formulas
(denoted by sf) and path formulas (denoted by pf).
The logic CTL* is formally defined as the set of state
formulas obtained by the grammar:

Generating Exact Approximations to Model Check Concurrent Systems 141

:: | | | |

:: | | | | | |

 | | | |

sf p A sf sf sf sf sf

pf p A pf pf pf Fsf Gsf Xsf

sf sf Fpf Gpf Xpf pf pf

= Î Ø Ù " $

= Î Ø Ù

U U
 (9)

This grammar is not given in its most succinct form and
there exist equivalence rules to express the same
formula with different operators. In practice, by using
this equivalence rules, a formula can be written such
that the negation appears only at the level of atomic
propositions. Such a form of a formula is known as
Positive Normal Form (henceforth PNF form) [12].

When specifying abstract concurrent systems, the

atomic state formulas will take the form ii d
~

v~ =

instead of i iv d= . CTL [11] is a restricted subset of
CTL* in which the " and $ path quantifiers may only
precede a restricted set of path formulas. CTL is of
interest because there is a very efficient model-
checking algorithm for it [13]. *CTL" and CTL" [14]
are restricted subsets of CTL* and CTL respectively in
which the only path quantifier allowed is " . These two
logics are sufficient to express many of the properties
that arise when verifying programs. As we will see,
these logics will also be used when the conditions
needed for exactness do not hold.

A path in M is an infinite sequence of states
0 1 2s s sp = L such that for every i Î N , 1(,)i iR s s + . The

notation np will denote the suffix of p which begins at

ns . If 0 1 2s s sp = L is a sequence of states from S , we
denote the sequence 0 1 2() () ()h s h s h s L by ()h p .
Satisfaction of a state formula j by a state s (s j()
and of a path formula y by a path p (p y) is
defined inductively as follows.

• and s true s false

' if 1(, ,)ns e e= K , i i i is v d e d= Û =

• i i i is v d s v d¹ Û =

 s s sj y j yÙ Û Ù

 0s s sj p p j" Û " ' = Ù

• 0s s sj p p j$ Û $ ' = Ù

• 0sp j jÛ

• p j y p j p yÙ Û Ù

•
1Xp j p jÛ

• | and ,n in i np j y p y p jÛ $ Î " <U N

The notation M j indicates that every initial state of
M satisfies the formula j .

4.2. Abstract Model Checking

In the case of an abstract concurrent system M
~ , we

define satisfaction in exactly the same way except the

atomic formula ii d
~

v~ = is true at state 1, , ne e% %K if and

only if ii d
~

e~ = .

We now define a translation a between formulas
describing M and formulas describing the abstract
concurrent system M

~ . Our goal is to be able to check
a formula ()a j on M

~ and infer that the
corresponding formula j holds for M .

• () , ()true true false falsea a= =

)d(hd
~

)d
~

v~())dv((a iiiiiii ====

• () ()i i i iv d v da a¹ =Ø =

 1 2 1 2() () ()sf sf sf sfa a aÙ = Ù

• 1 2 1 2() () ()sf sf sf sfa a aÚ = Ú

• () ()pf pfa a" ="

• () ()pf pfa a$ =$

• 1 2 1 2() () ()pf pf pf pfa a aÙ = Ù

• 1 2 1 2() () ()pf pf pf pfa a aÚ = Ú

• () ()Xpf X pfa a=

• 1 2 1 2() () ()pf pf pf pfa a a=U U

Thus, a temporal property j is abstracted by this
translation a , which guarantees that every model of
the abstract property corresponds to a model of the
concrete one. This property approximation is exact.
Example 2: the following property expresses the
mutual exclusion (at any time only one mathematician
is eating)

))eatm~eatm~((G)(~
))eatmeatm((G

1011

101

=∧=¬∀==
=∧=¬∀=

ϕαϕ
ϕ

(10)

The property to express that the mathematician 0m
eventually eats is

)eatm~(F)(~

)eatm(F

000

00

=∀==
=∀=

ϕαϕ
ϕ

Lemma 1: Assume M
~

0̂M k . If p is a path in M ,

then ()h p is a path in M
~ .

Proof: The relation M
~

0̂M k means M
~ simulates M

. Thus, each execution (path) in M has its
corresponding abstract execution in M

~ .
Using this observation, we present the main

preservation theorem: formulas that hold at the
abstract level also hold for the concrete system.

Theorem 2: Assume M
~

0̂M k , and let j be a *CTL"

formula describing M
~ . Then ϕϕα =⇒= M)(M

~
.

Proof: The relation)(M
~ ϕα= means that there is

not a path in M
~ which falsifies the property ()a j (

()a j is a *CTL" formula). By Lemma 1, as all the

(11)

142 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

paths in M have their corresponding in M
~ , then there

is no path in M falsifying j . Thus, M j _ .
Note that this result only talks about preserving the

truth of formulas. These formulas describe behaviour
that should hold on all paths from a state. Since the
abstraction process adds extra behaviours to the model,
properties describing the existence of a path may not be
preserved in the same manner. Thus, verifying
something like absence of deadlock at the abstract level
requires proving a stronger progress property.

In the case where M
~ exactly approximates M , we

also have the converse result: satisfaction at the
concrete level implies satisfaction at the abstract level.
We note that paths at the abstract level and at the
concrete level exactly coincide.
Lemma 2: Assume M

~
M h≈ , and let p be an infinite

sequence of states from S (the set of states of M).
Then p is a path in M if and only if ()h p is a path in

M
~ . Then we have the analogue of Theorem 2, except

now going both ways.
Proof: By construction M

~ simulates M. Thus, it is
sufficient to prove now that M simulates M

~ . To show
this, it is sufficient to prove that for each pair of
abstract states 1s% and 2s%, if 2s% is a successor of 1s% by

t% in the abstract system, then, for every pair 1s and 2s
of states in the concretisation of 1s% and 2s%, 2s is the
successor of 1s by t in the original system. Every
concrete state 1s in the concretisation of 1s% satisfies the
guard of t , and every successor 2s of 1s is in the
concretisation of 2s%. Thus, M simulates M

~ .

Theorem 3: Assume M
~

M h≈ , and let j be a CTL*

formula describing M
~ . Then ϕϕα =⇒= M)(M

~
.

Proof: The proof is trivial because ±
hM M» means

M
~

0̂M h and M0̂M
~

h .

The strong preservation result allows us to avoid
false negative results (which can be produced by
spurious behaviours) by mapping abstract error traces
to concrete executions violating the property. However,
the condition for strong preservation requires that aM

~

be deterministic. This is usually not the case. However,
in the next section we will identify the spurious
behaviours and we will show how to remove them. The
result is a deterministic abstract system, which is an
accurate approximation, and then it is exact.

5. Removing Spurious Behaviours

In this section, we will propose a method for
abstracting the abstract concurrent system M

~ to
remove the spurious behaviours. The new abstract
concurrent system (M

~) should contain all the
behaviours that are in the original concurrent system.
With this method, we will reduce the size of M

~ by

restricting its behaviour instead of its structure (states
and transitions).

5.1. Defining Spurious Behaviours

A non-deterministic transition can yield an ordinary
non-deterministic path (we call it Form A, Figure 3) or
a non-deterministic loop (Form B, Figure 4) [15, 16,
17].

The form A means that at its states, it is possible to
have non deterministic abstract variables and the
model-checking system can take the values (or states)
to produce the path following the appropriate
transitions (coloured states) to give a counterexample
by which it demonstrates the non satisfaction of the
property. This abstract error trace represents a possible
behaviour in the concrete system, which is an
equivalent valid concrete error trace, because during
construction it was not possible to give deterministic
values to those abstract variables.

Figure 3. Non deterministic path.

In contrast, the form B (Figure 3) means that there
is a possible spurious loop from the state is until the
state ks then it returns back to the state is . In the
abstract system this loop is an infinite loop because of
the non-deterministic aspect, but it can be a finite loop
in the concrete system, which means that after a finite
number of iterations the behaviour of the concrete
system will take a transition to one of the uncoloured
states inside the loop if there is one.

Figure 4. Non-deterministic loop.

Theorem 4: Any infinite loop in the abstract system is
a spurious infinite loop if one of its transitions
contains a non-deterministic abstract variable.
Proof: We assume that the abstract system contains an
infinite loop. An infinite loop contains a finite set of
transitions from the abstract system to be executed
forever. Then the transition from one state to another
is deterministic to make this infinite loop. So, all the
guards of transitions are deterministic which means

1s ks

1ks +

1ks +¢1s ¢ 2s ¢

�

1s is ks

1is +¢ 1ks +¢

Generating Exact Approximations to Model Check Concurrent Systems 143

that there are not non-deterministic variables. This is a
contradiction with what it was supposed.

5.2. Abstraction for Removing Spurious
 Behaviours

After the identification of the spurious behaviours and
their causes that are non-deterministic transitions, we
present the method of removing these spurious
behaviours. This method adds components to be
synchronized with the original abstract concurrent
system.

For each non-deterministic transition we parallel
compose a component to be synchronized with the
original abstract concurrent system. With this parallel
composition we will restrict the abstract concurrent
system to not execute the spurious behaviours (spurious
loops).

 iP
~

1i

k
P
~

P
=

=

(12)

where, P
~ is the original abstract program with possibly

spurious behaviours, k is the number of non-

deterministic transitions in P
~ and iP

~
 is the

corresponding component to the non-deterministic
transition to be parallel composed with P

~ .

}

true

)B~(I
~

}

)B)~(nextB~(

)B)~(nextB~(

{R
~

{P
~

i

ii

ii

i

=
==

=∧¬=
∨¬=∧=

=

=

σ

σσ
σσ

where iB is a new Boolean variable used to remove the
spurious loop.
Example 3: The abstract program in Example 2
contains two non-deterministic transitions. The
abstraction of this program gives the following abstract
program.

5.3. Experimental Results

Symbolic Model Verifier (SMV) [18] is a model-
checking tool; it has an automaton-based language to
specify systems. SMV uses an automatic decision
procedure to verify the system specification against
CTL properties. The equivalent SMV module of the
abstract program that is mentioned in Example 2 is:

{R
~

{P
~

=

=
º

º
))()
))

()
))

()
))

()

1 1 2 1 1 2

1 1 2 1 1 2

1 1 2 1 1 2

0 1 2 0 1 2

{

 {

 , , , , () , , , ,

 , , , , () , , , ,

 , , , , () , , , ,

 , , , , () , , , ,

think m o B B next eat m o B B

eat m o B B next think m e B B

eat m e B B next think m o B B

m think e B B next m eat e B B

s s

s s

s s

s s

=

=

= Ù = Ú

= Ù = Ú

= Ù = Ú

= Ù = Ú

P

R

))
()
))()
))

()
))

()
)

0 1 2 0 1 2

0 1 2 0 1 2

0 1 2 0 1 2

0 1 2 0 1 2

 , , , , () , , , ,

 , , , , () , , , ,

 , , , , () , , , ,

 , , , , () , , , ,

 }

 ,

m eat e B B next m think e B B

m eat e B B next m think o B B

m eat o B B next m think o B B

m eat o B B next m think e B B

think

s s

s s

s s

s s

= Ù = Ø Ú

= Ø Ù = Ú

= Ù = Ø Ú

= Ø Ù =

=I
)

1 2, , ,

}

think e B B

true=,

MODULE main
VAR
 n : {e, o} ;
 m0, m1 : {think, eat} ;
ASSIGN
 init(n) := e ;
 init(m0) := think ;
 init(m1) := think ;
TRANS
 (m0 = think & n = o & next(m0) = eat &
 next(n) = o & m1 = next(m1)) |
 (m0 = eat & n = o & next(m0) = think &
 next(n) = e & m1 = next(m1)) |
 (m0 = eat & n = e & next(m0) = think &
 next(n) = o & m1 = next(m1)) |
 (m1 = think & n = e & next(m1) = eat &
 next(n) = e & m0 = next(m0)) |
 (m1 = eat & n = e & next(m1) = think &
 next(n) = e & m0 = next(m0)) |
 (m1 = eat & n = e & next(m1) = think &
 next(n) = o & m0 = next(m0)) |
 (m1 = eat & n = o & next(m1) = think &
 next(n) = e & m0 = next(m0)) |
 (m1 = eat & n = o & next(m1) = think &
 next(n) = o & m0 = next(m0))
INVAR
 1
SPEC
 AG(!(m0 = eat & m1 = eat))
SPEC
 AF(m0 = eat)

Figure 5. SMV program for example 2.

144 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

The model checking results, of the constructed model
from this abstract program using the SMV model
checker are:

• The first property of mutual exclusion (at any time
only one mathematician is eating) expressed in
equation 10 is checked to be satisfied.

• But the property (the mathematician 0m eventually
eats) expressed in equation 11 is checked to not be
verified. The generated counter example is as
follows:

Figure 6. Spurious loop.

This is a spurious loop. The equivalent SMV
program after removing the spurious behaviours, as
mentioned in Example 3 is shown in Figure 7.

After removing the spurious behaviours, the two
properties (equations 10 and 11) were checked
satisfied.

MODULE main
VAR
 n : {e, o} ;
 m0, m1 : {think, eat} ;
 B1, B2 : boolean ;
ASSIGN
 init(n) := e ;
 init(m0) := think ;
 init(m1) := think ;
TRANS
 (m0 = think & n = o & next(m0) = eat &
 next(n) = o & m1 = next(m1) & next(B1)
 = B1 & next(B2) = B2) |
 (m0 = eat & n = o & next(m0) = think &
 next(n) = e & m1 = next(m1) & next(B1)
 = B1 & next(B2) = B2) |
 (m0 = eat & n = e & next(m0) = think &
 next(n) = o & m1 = next(m1) & next(B1)
 = B1 & next(B2) = B2) |
 (m1 = think & n = e & next(m1) = eat &
 next(n) = e & m0 = next(m0) & next(B1)
 = B1 & next(B2) = B2) |
 (m1 = eat & n = e & B1 & next(m1) =
 think & next(n) = e & m0 = next(m0) &
 next(B1) = !B1 & next(B2) = B2) |
 (m1 = eat & n = e & !B1 & next(m1) =
 think & next(n) = o & m0 = next(m0) &
 next(B1) = !B1 & next(B2) = B2) |
 (m1 = eat & n = o & B2 & next(m1) =
 think & next(n) = e & m0 = next(m0) &
 next(B1) = B1 & next(B2) = !B2) |
 (m1 = eat & n = o & !B2 & next(m1) =
 think & next(n) = o & m0 = next(m0) &
 next(B1) = B1 & next(B2) = !B2)
INVAR
 1
SPEC
 AG(!(m0 = eat & m1 = eat))
SPEC

 AF(m0 = eat)

Figure 7. SMV program for example 3.

6. Conclusion

We have presented a method to generate abstractions
without spurious behaviours of concurrent systems.
The abstraction process takes as input a program
based on relational expressions of the transition
relation and the initial states. Then, it generates an
accurate abstraction using the abstract interpretation
framework. The abstract system is then abstracted
using the method of restrictions to remove the
spurious behaviours.

We have used the model checker [18] to verify our
method on the examples: the mathematician dining
(presented in this paper), the bakery protocol, and the
greatest common divisor.

Our future work is to develop a tool implementing
this approach and testing large concurrent systems. On
the other hand investigating special cases for the
framework of abstract interpretation.

References

[1] Dwyer M., Clarke L., Cobleigh J., and
Naumovich G., “Flow Analysis for Verifying
Properties of Concurrent Software Systems,”
ACM Transactions on Software Engineering and
Methodology, vol. 13, pp. 359-430, 2004.

[2] Siegel S., Mironova A., Avrunin G., and Clarke
L., “Using Model Checking with Symbolic
Execution to Verify Parallel Numerical
Programs,” in Proceedings of the International
Symposium on Software Testing and Analysis,
pp. 157-168, 2006.

[3] Peled D. and Qu H., “Enforcing Concurrent
Temporal Behaviors,” International Journal of
Foundations of Computer Science, vol. 17, pp.
743-762, 2006.

[4] Ostrovsky K., On Modelling and Analysing
Concurrent Systems, PhD Dissertation,
Computer Science and Electronic Engineering,
Chalmers University of Technology, Sweden,
2005.

[5] Clarke E., Grumberg O., and Peled D., Model
Checking, The MIT Press, 2000.

[6] Cousot P., “Abstract Interpretation,” ACM
Computing Surveys, vol. 28, pp. 205-212, 1996.

[7] Dams D., Gerth R., and Grumberg O., “Abstract
Interpretation of Reactive Systems,” ACM
Transactions on Programming Languages and
Systems, vol. 19, pp. 115-132, 1997.

[8] Chouali S., Julliand J., Masson P., and
Bellegarde F., “PLTL Partitionned Model-
Checking for Reactive Systems Under Fairness
Assumptions,” ACM Transactions on Embedded

, ,think think e , ,think eat e

Generating Exact Approximations to Model Check Concurrent Systems 145

Computing Systems, vol. 4, no. 2, pp. 267-301,
2005.

[9] Clarke E., Grumberg O., Jha S., Lu Y., and Veith
H., “Counterexample-Guided Abstraction
Refinement for Symbolic Model Checking,”
Journal of the ACM, vol. 50, no. 5, pp. 752-794,
2003.

[10] Clarke E., Grumberg O., and Long D., “Model
Checking and Abstraction,” ACM Transactions
on Programming Languages and Systems, vol.
16, pp. 81-112, 1994.

[11] Clarke E., Emerson E., and Sistla A., “Automatic
Verification of Finite-state Concurrent Systems
Using Temporal Logic Specifications,” ACM
Transactions on Programming Languages and
Systems, vol. 8, pp. 54-66, 1986.

[12] Emerson E. and Lei C., “Efficient Model
Checking in Fragments of the Prepositional m-
Calculus,” in Proceedings of the First Annual
Symposium of Logic in Computer Science, 1986.

[13] Bryant R., “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on
Computers, vol. 35, pp. 78-105, 1986.

[14] Grumberg O. and Long D., "Model Checking and
Modular Verification," Lecture Notes in
Computer Science (LNCS), Springer, 1991.

[15] Bourahla M. and Benmohamed M., “Predicate
Abstraction and Refinement for Model Checking
VHDL State Machines,” Electronic Notes in
Theoretical Computer Science, Elsevier Science,
vol. 66, pp. 3-17, 2002.

[16] Bourahla M. and Benmohamed M., “Abstract
Model Checking Infinite State Systems,” in
ACS/IEEE International Conference on
Computer Systems and Applications, pp. 83,
2003.

[17] Bourahla M. and Benmohamed M., “Verification
of Real-Time Systems by Abstraction of Time
Constraints,” in Proceedings of the 17th

International Symposium on Parallel and
Distributed Processing (IPDPS’2003), IEEE
Computer Society, 2003.

[18] McMillan K., Symbolic Model Checking, Kluwer
Academic Publishers, 1993.

[19] Tzoref R. and Grumberg O., “Automatic
Refinement and Vacuity Detection for Symbolic
Trajectory Evaluation,” in Proceedings of the
International Conference on Computer Aided
Verification (CAV'06), 2006.

[20] Grumberg O., Lerda F., Strichman O., and
Theobald M., “Underapproximation-Widening for
Multi-Process Systems,” in Proceedings of the
32nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages
(POPL'05), 2005.

[21] Shoham S. and Grumberg O., “Monotonic
Abstraction-Refinement for CTL,” in

Proceedings of the Conference on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS'04), 2004.

[22] Rabinovitz I. and Grumberg O., “Bounded
Model Checking of Concurrent Programs,” in
Proceedings of the International Conference on
Computer Aided Verification (CAV'05), 2005.

Mustapha Bourahla has a PhD
degree in computer science from
the University of Biskra, Algeria in
2007 and has the Master degree in
computer science from the
university of Montreal, Canada in

1989. He was a member of the VHDL group at Bell-
Northern Research, Ottawa, Canada during
1989-1993. He worked for Bell Canada for one year.
Currently, he is teacher-researcher at the University of
Biskra, Algeria. He has publications in the domains of
VLSI and formal methods. His current research
interests are in formal methods, especially model
checking critical systems. He is a member of a
research group working in the domains of VLSI and
formal methods at the University of Biskra, Algeria.

	

