
The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008 119

Modelling Concurrent Mobile Transactions
Execution in Broadcasting Environments

Ahmad Al-Qerem1 and Walter Hussak2

1Computer Science Department, Zarqa Private University, Jordan
2Department of Computer Science, Loughborough University, UK

Abstract: Broadcast is an efficient and scalable method for resolving the bandwidth limitation in a wireless environment.
There is a trade-off between clients’ access time and throughput for update mobile transactions in on-demand data
dissemination environments. Data scheduling at the fixed server can allow more transactions to commit while retaining the
access time for each transaction. In this paper, we present a data scheduling scheme for both read only and update mobile
transactions in pull-based broadcasting environments. Rather than consider access time, which is well studied elsewhere in [1,
2, 3], our concern is to examine the probability that a mobile transaction is able to avoid conflict and commit. Specifically, a
set of formulas giving an analysis of this probability is examined. Furthermore, a report of a simulation study for validating
these formulas is also provided.

Keywords: Wireless broadcast, data organization, mobile transactions.

Received February 13, 2007; accepted June 8, 2007

1. Introduction

The rapid advances in computer software, computer
hardware, and wireless network technologies have led
to the widespread implementation of mobile
computing. In this environment, users can retrieve
information from wireless channels (with generally
narrow bandwidth) anytime and anywhere. The
problem of how to disseminate data efficiently to a
large number of users in the mobile computing
environment is challenging due to the necessity to
consider time and energy efficiencies, given that
mobile devices have limited energy capacities
associated with their reliance on battery power. There
are two general methods to disseminate data through
wireless channels: (1) broadcast (push-based), which
enables users to retrieve data by simply listening to a
particular channel, and (2) on-demand (pull-based), in
which users send requests to get data. Two important
factors must be considered in a broadcast-based
information system, access time [1, 8, 9, 12, 13, 14]
and tuning time [4, 5, 7, 10]. The access time is the
time elapsed from the moment a client device submits
a query into the broadcast channel to the moment the
desired data are acquired. This is the total time a client
device must spend and is often used to evaluate the
performance of the broadcast system. The tuning time
is the time spent by the client listening to the broadcast
channel. When the clients are listening to the data in
the broadcast channel, the clients are in the active
mode. Therefore, the tuning time is often used to
evaluate the power consumption of the clients. The aim
of our paper is to reduce the access time through

intelligent organization of the broadcast data. Many
approaches have been proposed to reduce the access
time [1, 2, 6, 11]. They can be classified into two
categories: uniform data broadcasting [6] and no
uniform data broadcasting [1, 2, 11]. [1] proposed the
concept of broadcast disk for no uniform data
broadcasting. A single broadcast channel is used to
broadcast data items in different frequencies according
to their relative access rates. That is, popular data items
are more frequently broadcast than unpopular ones. In
[11], a scheduling method is proposed to make the
broadcast by using a stochastic model. It considers the
access frequencies of data objects and controls their
delivery intervals. None of these studies considers the
relationship between data objects when the mobile
transaction contains more than one data object.
Furthermore, all these approaches assume read only
mobile transactions. In this paper we investigate an
efficient scheduling method that take into account an
update mobile transaction. Our scheduling algorithm
works in an ad hoc manner to determine efficiently the
best placement of data items that maximizes the
number of committed transactions per broadcast cycle.
The remainder of this paper is organized as follows.
Section 2 formulates the data organization problem.
Section 3 proposes our scheduling algorithm. In
Section 4 a mathematical model is introduced along
with its probability formulas. Section 5 contains the
experimental results. Finally, conclusions are given in
section 6.

120 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

2. Problem Formulation

Since transaction conflict is the main factor affecting
throughput for transaction processing in wireless
computing environments, our server analyzes the
accessed data patterns of the mobile transactions and
decides the ordering of the data items in the broadcast
channel. Data items are broadcast in a way that
minimizes both the access time and probability of abort
for transactions, and so data objects with minimum
conflict and a maximum number of requests are
favoured. A good placement of data in a broadcast
channel can help a large number of mobile transactions
to be committed early and, as a result, increase the
system throughput and decrease the response time. Let
T = {T1, T2, … ,Tn} be a set of n mobile transactions,
where each mobile transaction Ti requests a set of data
objects either for write or read access. Transaction Ti is
an update mobile transaction if it requests at least one
data object for write access, otherwise the transaction
is read only. Let D = {d1, d2, … , dm}, denote the union
of the data items accessed by transactions in T, that is,

)Ti(TDSD

ni1
�

⊆⊆
=

(1)

where TDS(Ti) is the set of data items requested by
transaction Ti. Let RDS(Ti) and WDS(Ti) denote the
sets of read and write requests respectively, and
assume that WDS(Ti) ⊆ RDS(Ti) which means that
transaction Ti must read a data item before it can write
to it (i.e., no blind writes). Further, assume that
transaction Ti sends its writes to the database in
finishing its execution. So each transaction Ti consist
of RI+1 steps - the first RI steps read data items from
the broadcast channel and the last operation sends its
update to the database server with a commit request.
We consider the following Data Scheduling Problem
(DSP): given a set of conflicting transactions
T = {T1, T2, … ,Tn} arriving at the server during

broadcast i, in the time interval [i
lBC , i

uBC], each

with their read set RDS(Ti) and write set WDS(Ti),
the broadcast scheduling problem is to find an optimal
broadcasting schedule which minimizes the total
number of aborted transactions during broadcast cycle
i+1, for given access time for the broadcasted data.

3. Scheduling Algorithm

Most existing approaches assume read only mobile
transactions. In many applications, a mobile client
might need to execute a transaction updating more than
one data item. Under these circumstances, mobile
transaction processing is highly affected by the data
organization in the broadcast channel. To allow more
transactions to commit, the data scheduling strategy

can take the similarity between data accessed by
different mobile transactions and the order in which
each mobile transaction requests these data. The way a
mobile client accesses a broadcast stream is illustrated
in Figure 1, where the server broadcasts a set of data
objects {d1, d2, d3, d4, d5} in one bcast, and a client
accesses data items it needs in a sequential manner,
i.e., d1, d4.

Figure 1. Data broadcasting.

Given a set of transactions T = {T1, T2, … ,Tn}
whose union of accessed data items is the set
D = {d1, d2, … , dm}, with read and write sets for Ti
RDS(Ti) and WDS(Ti) respectively, our scheduling
algorithm for broadcasting data tries to optimize the
following two factors: (1) the average access time for
read only and update mobile transactions, and (2) the
number of aborted transactions due to update made by
one of the mobile transactions.

4. Mathematical Model

4.1. Transaction Conflict

Transactions are classified into equivalence classes.
The transactions in one class process the same read set
and write set. A transaction Xj in class J causes a
transaction Xi in class I to be aborted if the update
order of transaction Xj of an item in the union of WSI
and RSI before Xi reads it, or Xj reads an item in WSI
before Xi updates it. Therefore, a potential conflict
between two transactions depends on the items they
request and the partial order of operations in each
transaction. For each class I, two sets of equivalence
classes, Gr(I) and Gw(I), are defined that give
transactions which may conflict with those in class I.
Let Xi be a transaction in class I. The set Gr(I) gives
the classes of transactions whose update requests may
abort some of Xi’s read requests. The set Gw(I) gives
the classes of transactions which may abort Xi’s update
request by reading some items in WSI. Below, is the
algorithm that finds the sets Gr(I) and Gw(I):

A class J which is in both Gw(l) and in Gr(i)
contains transactions which will read some items in
Xi’s write-set and update some items in the union of
Xi’s write set and read set suppose that a transaction X
arrives during the course of the execution of
transaction XL. If X comes neither from the classes

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TYP-4MHPW79-1&_mathId=mml2&_user=122878&_cdi=5624&_rdoc=12&_ArticleListID=519002420&_acct=C000010119&_version=1&_userid=122878&md5=7713a26a4c68fd6cb07530b18921f540

Modelling Concurrent Mobile Transactions Execution in Broadcasting Environments 121

which are neither in Gr(I) nor in GW(I), It will never
cause Xi to be aborted.

Input (all transaction requests during [i
lBC , i

uBC])

Output (data items organization for broadcast cycle i+1)
1. Construct the data -to- data matrix Di as follow

nn2n2nn

n222222

n222222

n22

i

cf...cfcfd
.

.

.

.
cf...cfcfd

cf...cfcfd

d...dd

D =

(1)

where co-freq (di ,dj) represents the occurrences frequency of data items di,

dj in all mobile transactions during broadcast cycle i (i.e.,[i
lBC ,

i
uBC])

 cfij =

=

≠

ji if 2

j i if)d,(d freq-co ji
 (2)

2. Construct transaction- to- data matrix TDi as follows:

 TDi =

nm2nn

m222222

m222222

m22

td...tdd
.

.

.

...

...

...

.

.

.

.

.

.
td...tdtdd

td...tdtdd

T...TT

(3)

where

 tdij =

∈

otherwise 2

)(T WDS d if
LT

)T,pos(d
 ji

j

ji

 (4)

and pos(di,Tj) represents the position of the operation that accesses di in
transaction Tj with respect to the partial order for all operations of
transaction Tj, and LTj is the cardinality of transaction Tj (i.e., the number of
operations in Tj).

3. Find iϕ = (TDi)T * Di (5)

4. Map the data item with the highest value of its column to the first
position and the second highest to the second and so on. If two data items
have the same value then use the row sum (i.e., the weight for the
transaction) to determine the order of those data items that have same
value.

Figure 2. DSP computational algorithm.

4.2. Probabilistic Formulas

This section investigates the performance of our
scheduling algorithm in terms of the probability that a
transaction is able to avoid conflict and commit. A
conflict between two transactions results from a bad
scheduling of their requests for a common set of items.
The schedule of a transaction’s requests can be
determined by the co-frequency of the data items (d1,
d2,…dn) in each transaction and the access order Q of
these data items in each transaction, that is, for each
transaction Xi in class I, the partial order of its
operations and the updates made by conflicting
transactions between any two consecutive data
accesses. Since a database server broadcasts data to a
large number of mobile clients at the same time, it is
assumed that the arrivals of transactions in each class I
determined by their first access of the broadcast
channel happen according to a poisson process.
Specifically, each equivalence class is viewed as a
poisson stream of transactions.

For each class i, find the sets Gr(I) and Gw(I):
Gr(I) := [] ; // Gr(I) is the set of equivalence classes each of which
contains transactions whose update requests may abort some of Xi’s read
requests.
Gw(I):= []; // Gw(I) is the set of equivalence classes each of which
contains transactions whose read requests may abort Xi’s update request.

For each class J Do

If (WSJ ∩ (WSI ∪ + RSI)) ≠ [] Then Gr (I):= Gr (I) + [J];

If ((WSJ ∪ RSJ) ∩ WSI) ≠ [] Then Gw (I):= Gw (I) + [J];

End;

Figure 3. Computational algorithm 1.

The life-time of a transaction consists primarily of
the access time for all data items needed by the
transaction. The time between two consecutive
accesses of a transaction is therefore based on the data
organization of the broadcast channel. For our
performance study the following term will be used:

• D is the time between two consecutive accesses of a
transaction. It is the sum of access time of the two
accessed data items; Since a transaction in class I
reads k items from the broadcast channel in a
sequential manner and sends q ≤k updated items to

the database server, it takes ∑
=

k

2i
i)d(AC +bq time

to commit, where bq is the time needed to send the
update to the database server. For the investigation
of the probability that a transaction Xi in class I will
commit, the following terms are defined:

• Pi: the probability that the transaction Xi will
commit.

• Qi: an integer ranging from 1 to RI! inclusively. It
is used to denote a specific order in which the read
requests are made by the transaction Xi from the
broadcast channel

(9)

122 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

• c(Qi, d) : the item accessed by the transaction Xi
in its d-th operation, given that it accesses the
items in the specified order Qi.

• Pi (Qi, d): the probability that the transaction Xi is
successful at its d-th request, given that it read the
items in the specified order Qi.

Because data broadcast in the downlink channel is
accessible by all transactions, any read operation of a
transaction is never rejected, thus

 Pi (Qi, 1) =1 (6)

where Pi(Qi, RI+1): is the probability that the
transaction Xi will commit, given that it reads the items
in the specified order Qi. A transaction which starts
after Xi in class i, has Ri! different ways to read the RI
items in the union of its read set and write set. Using
the assumption that all the RI! Sequences of read
requests are equally likely, we have

 Pi = ∑
=

+!

1 !

)1,(RI

Q

ii

i
RI

RIQP

(7)

Let Qi be fixed and c(Qi, l), c(Qi.2). ,c(Qi.RI) be
the items listed in the order in which they are read by
the transaction Xi. If the transaction Xi succeeds at its
d-th read request and d ≤RI, it reads each of the first j
items before any transaction updates it. Suppose that a
transaction Xj starts before the transaction Xi makes its
d-th read request and that J is in Gr(I). For the
investigation of the conflict between the transactions
Xi and Xj, we find among the sequence of the items c
(Qi, l), c(Qi,2), . . ., c(Qi, d) an item whose position e
(Qi.J, d) in the sequence is defined as follows:

• e(Qi, J.d) <= d,
• c(Qi, e (Qi,J,d)) is in WSJ, and
• e(Qi, J.d) is the largest integer that satisfies the

above two conditions.

If (e(Qi,J,d)-l-RJ- WSj)>0, and the transaction Xi is
able to avoid the conflict and succeeds at its d-th read
request, no transactions in class J start in the time
interval (st(Xi), st(Xi)+(e(Qi,J,d)-I-RJ- WSj)*D)
and commit. Considering all the classes in Gr(I), we
obtain

Pi (Qi, d)=

∏
−<+

−−−

)1)d,J,Qi(e(WSJRJ(and)I(inGr..J

D*)WSJRJ1)d,J,Qi(e(*Pje

(8)

where 1<d<RI and st(Xi) is the start time for
transaction Xi.

A transaction Xj in one of the classes in Gw(I) may
cause Xi to be aborted at its update request by reading
an item in the write set WSI. Let Qj be fixed and c(Qj,

l), c(Qj,2), , c(Qj, RJ), be the sequence of items
read by the transaction Xj in that order. In the above
sequence of items the position g(1, Qj) of the first item
that is in the write-set WSI is determined by the
following conditions:

• g(i, Qj) = RJ,
• c(Qj. g(i,Qj)) is in WSI, and
• g(i,Qj) is the smallest integer that satisfies the above

two conditions.

If the transaction Xi succeeds at its (RI+l)th update
request, it succeeds at each of its read requests, and no
transactions in any class J of the set Gw(I) start in the
time interval (st(Xl). st(XI)+(RI+;WSI-g(i,QJ)+l)*D)
and read successfully their respective c(Qj.g(i,Qj)).
The statement that no transactions in any class of the
set Gw(I) start and read any item in the write set WSI
since Xi’s start, implies that no transactions in the
intersection of GW (I) and Gr (i) are able to commit
and conflict with any Xi’s read request. Considering all
the classes in the sets Gw (I) and Gr (l), we obtain

Pi (Qi, RI+1) =

∏

+<−=

+−+

)WSIRI()1)Qj,i(g(and1andQj)I(Gw(in..J

D*)1)Qj,i(gWSIRI(*))Qj,i(g,Qj(Pje

*

∏

−<+−

−−−

)1)RI,J,Qi(e(WSJRJ..(and)I(Gw)I(Gr(in..J

D*)WSIRJ1)RI,J,Qj(e*Pje

The above equality is due to the assumption that the
probability Pj for class J in (Gr(I)-Gw(I)) is not
significantly affected by the condition that no
transactions in any class of the set Gw(I) start. The
equations 1 to 4 are true for any class I and any
operation order Qi = 1, 2,…, RI!

4.3. Computational Algorithm

The equations 1 through 4 represent a set of non-linear
equations expressed in terms of the probabilities Pi and
Pi(Qi,d) for any class I and any Qi = 1, 2, . . . , Rl+l.
The solution of these equations depends on the fact
that a short transaction that takes a short time to
commit, experiences a conflict with a small number of
transactions, and its probabilistic formula involves
fewer undetermined probabilities than those of a long
transaction. The computational algorithm to solve
these equations begins with the class of transactions
which take the shortest time to commit. The
probabilities for the transactions in this class can be
obtained straightforwardly. Consequently, the number
of classes of transactions whose probabilities are to be
determined is reduced by one. The computational
algorithm then repeats with the remaining classes of
transactions. The mathematical analysis of the
performance of our scheduling algorithm is complete
with computational algorithm 2.

Modelling Concurrent Mobile Transactions Execution in Broadcasting Environments 123

5. Simulation Experiments

Our model specifies a set of broadcasted data items
and different classes of transactions. A class of
transactions is further specified by a write set, a read
set and order for which transactions in that class access
their data items. We model the broadcast channel as a
server with a fixed rate of broadcast and assume that
the broadcast channel is error-free. A data object
delivered on the broadcast can be received
simultaneously by all of the clients that are waiting for
it at that time. To justify the probabilistic formula
which the model is based on, Table 1 shows a
comparison of simulation and mathematical analysis
results for the probabilities that a transaction avoids
conflict and commits under different parameter
settings. The order in which each transaction accesses
its data items in a certain class is simulated by
generating all the permutations of data accesses in that
class and then assigning to each transaction one of
these permutations randomly. Two experiments are
conducted: one with repletion which allows more than
one transaction in the same class to have the same
order and the second gives each transaction in the same
class a unique order. The remaining parameters
represent the number of classes used and the number of
transactions in each class. The number of operations
for all classes is assumed to be fixed and equal to 8.
The number of write operations is also assumed to be
fixed and equal to 3 per transaction.

Input :(a set of classes where the probabilities for transactions in all these
classes have not been obtained yet - we denote it by Undetermined set)

 Output (a set of classes, where the probabilities for transactions in all
 these classes have been obtained already. We denote it by Determined set)
 Undetermined: = [all the classes];
 Determined: = []
 While Undetermined <> [] Do

Find a class I, among the classes in
 Undetermined, which has the smallest RI +WSI

m: = RI + WSI ;

 For each class j in Undetermined Do
 For (Qj = 1, 2,..., RJ!) Do
 For every d, d<=RJ AND d<=m AND Pj
 (Qj, d) is Undetermined Do

 Compute Pj (Qj, d) by using Formula 3,
 // in Formula 3; this probability is only
 related to the probabilities for the classes
 in //Determined
 End ;
 End ;
 End ;
 For Qi = 1, 2, . . ., RI! Do

 Compute Pi (Qi, Rl+l) by using Formula 4;
 // In Formula 4, this probability is only related
 to the Determined probabilities.
 End ;
 Compute Pi by using Formula 2;
 Undetermined: = Undetermined - [I];
 Determined: = Determined + [I];
 End ;

Figure 4. Computational algorithm 2.

Table 1. Simulation versus mathematical values.

6. Conclusion

The construction of a mathematical model and an
algorithm for a scheduling method has been presented.
The model provides insight into aspects of transaction
processing in broadcast environments taking into
consideration the access order for the data items being
broadcasted to large numbers of users that may have a
common data access, and the scheduling of these data
items to avoid conflict as much as possible for these
transactions. The development is unique in its use of
sets of equivalence classes as the basis for the study of
transaction conflict. A simulation study was designed
to test the model, i.e., to justify the underlying
assumptions of the model and the probabilistic
formulas on which the model is based.

References

[1] Acharya S., Alonso R., Franklin M., and Zdonik
S., “Broadcast Disk: Data Management for
Asymmetric Communication Environments,” in
Proceedings of the ACM SIGMOD Conference,
pp. 199-210, 1995.

[2] Acharya S., Franklin M., and Zdonik S.,
“Disseminating Updates on Broadcast Disks,” in
Proceedings of the Very Large Data Bases
Conference, pp. 354-365, 1996.

[3] Chang Y. and Hsieh W., “An Efficient
Scheduling Method for Query-Set-Based
Broadcasting in Mobile Environment,” in
Proceedings of the IEEE International
Conference on Distributed Computing Systems
Workshops, pp. 478-483, 2004.

[4] Chen M., Wu K., and Yu P., “Optimizing Index
Allocation for Sequential Data Broadcasting in
Wireless Mobile Computing,” IEEE
Transactions on Knowledge and Data
Engineering, vol. 15, no. 1, pp. 161-173, 2003.

[5] Chung Y. and Kim M., “An Index Replication
Scheme for Wireless Data Broadcasting,”
Journal of Systems and Software, vol. 51, no. 3,
pp. 191-199, 2000.

[6] Chung Y. and Kim M., “Effective Data
Placement for Wireless Broadcast,” Distributed
and Parallel Databases, vol. 9, no. 2, pp.
133-150, 2001.

[7] Imielinski T., Viswanathan S., and Badrinath B.,
“Energy Efficient Indexing on Air,” in Special
Interest Group on Management of Data
(SIGMOD) ACM, pp. 25-36, 1994.

Number
of Classes

Number of
Transaction

Per Class

Order
Repetition

Probability of
Commit

(Mathematical)

Probability
of Commit

(Simulation)
20 5 Yes 0.9031 0.8997
40 5 Yes 0.9171 0.9121
20 5 No 0.9331 0.9297
40 5 No 0.9471 0.9421

124 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

[8] Lam K., Chan E., and Yuen J., “Approaches for
Broadcasting Temporal Data in Mobile
Computing Systems,” The Journal of Systems
and Software, vol. 51, no. 3, pp. 175-189, 2000.

[9] Lee G., Lo S., and Chen A., “Data Allocation on
Wireless Broadcast Channels for Efficient Query
Processing,” IEEE Transactions on Computers,
vol. 51, no. 10, pp. 1237-12525, 2002.

[10] Lo S. and Chen A., Optimal Index and Data
Allocation in Multiple Broadcast Channels, Data
Engineering, 2000.

[11] Su C., Tassiulas L., and Tsotras V., “Broadcast
Scheduling for Information Distribution,”
Wireless Networks, vol. 5, no. 2, pp. 137-147,
1998.

[12] Tan K. and Yu J., “Generating Broadcast
Programs that Support Range Queries,” IEEE
Transactions on Knowledge and Data
Engineering, vol. 10, no. 4, pp. 668-672, 1998.

[13] Vaidya N. and Hameed S., “Scheduling Data
Broadcasting in Asymmetric Communication
Environments,” Kluwer Academic Publishers,
Dordrecht, vol. 5, no. 3, pp. 171-182, 1999.

[14] Yee W., Student Member, Navathe S.,
Omiecinski E., and Jermaine C., “Efficient Data
Allocation over Multiple Channels at Broadcast
Servers,” IEEE Transactions on Computers, vol.
51, no. 10, pp. 1231-1236, 2002.

Ahmad Al-Qerem graduated in
applied mathematics, obtaining a
BSc in 1997 from JUST University
and a Masters in computer science
from Jordan University in 2002.
After that he was appointed a full-
time lecturer in the department of

Computer Science at Zarqa Private University and also
a part-time lecturer for the Arab Open University. He
has also held a post in the Ministry of Labour.
Currently, he is a PhD student at Loughborough
University, UK. He is interested in concurrency control
for mobile computing environments, and particularly
transaction processing. He has published several
papers in various areas of computer science.

Walter Hussak graduated in
mathematics, obtaining a BSc in
1979 and a PhD in 1983 from
Sheffield University. Later he
obtained an MSc in systems design
from Manchester University,
awarded in 1987. He joined

Manchester University and worked for Professor Brian
Warboys as a research associate on the Alvey Flagship
Parallel System Project and later the ESPRIT II
European Declarative (Parallel) System (EDS) project

which was collaborative with industrial partners ICL,
Bull and Siemens and was an industrial-scale system to
run relational database systems and declarative
(functional and logic) languages efficiently. The
success of the EDS system was indicated by a
subsequent commercial derivative, the ICL
GOLDRUSH system. He was appointed to his first
university full academic post as a lecturer in computer
science at Loughborough University in 1991. He has
published several papers at international conferences
and in journals, on formal methods and database
concurrency. He is currently a member of the
networks, control and complex systems research group
at Loughborough University and is interested in formal
methods and mathematical aspects of database
concurrency.

