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Abstract: We present a new method for real-time rendering of soft shadows in dynamic scenes. Our approach is based on  
shadow volume algorithm which provides fast, accurate and high quality shadows. The shadow volume algorithm is used to  
generate  hard  shadows  before  adding  fake  soft  shadows  onto  it.  Although  the  generated  soft  shadows  are  physically  
inaccurate, this method provides soft shadows that are smooth and perceptually convincing. This proposed hybrid method  
adds more realism to a dynamic scene which is an important factor in computer graphics.  
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1. Introduction

Shadows are essential elements to realistic and visually 
appealing images, but are difficult to compute in most 
display environments especially in computer games. 
Similar to lighting, there are increasing levels of 
realism possible, paid for with decreasing levels of 
rendering performance. Since the introduction of 
shadow volume [7], shadow map [14] and fake 
shadows [5], there have been numerous developments 
done to improve shadow algorithm in real-time graphic 
application. Among current issues concerns real-time 
dynamic soft shadows and hardware improvement that 
improvise real-time shadow generation. 

The important element in shadows is the dynamic 
and accuracy of the hard shadow as it provides 
information and spatial cue while the soft shadow 
determines the type of light source. Thus in this 
research, we attempt to create an accurate real-time 
dynamic fake soft shadow, where the hard shadow will 
be accurate and dynamic and the soft shadow will be 
fake. Stencil shadow volume algorithm will be 
combined with plateaus soft shadow in order to create 
the dynamic fake soft shadow.  

2. Related Work

Early work on shadows bring us back to 1977 where 
Frank Crow first published his paper on shadow 
algorithm for computer graphics [7], in which his 
method explicitly clip shadows geometry to the view 
frustums, generating perfect caps where the volume 
crosses a clipping plane. [11] suggested the use of 
stencil buffer in implementing crow's original algorithm 
which gave the algorithm the name by which it is best 
known today. Stencil shadows belong to the group of 

volumetric shadow algorithms as the shadowed 
volume in the scene is explicit in the algorithm.  
In 2000, Carmack suggested a slightly different 
approach which entails that the view rays are traced 
from infinity towards the eye, stopping when 
encountering the pixel on the geometry that is closest 
to the eye [6]. This reversal of the view rays' direction 
has given the algorithm the name Carmack’s Reverse. 
[13] created a hybrid algorithm that uses a faster z-
pass rendering when the viewport is not shadowed and 
reverts to robust z-fail rendering when the viewport is 
shadowed. Following this, several other shadow 
volume improvements have also been suggested; 
papers [1, 2, 3] for example described how to create 
soft shadows using penumbra wedges rendered from 
shadow volume.  [9] developed a technique for highly 
efficient coverage calculation for spherical light 
sources. The technique can avoid clipping operations 
in the pixel shader and let the texture sampler do the 
clipping for free. The only setback is the technique is 
limited to spherical shaped light source only.

3. Algorithm

Our  proposed  method  combines  the  existing  stencil 
shadow  volume  algorithm  with the  concepts  of 
Heckbert and Herf’s soft shadow technique [10] which 
was  originally  for  shadow  map.  This  research  was 
divided into two important steps, as shown in Figure 
1.

3.1. Step 1: Creating Hard Shadow - Shadow   
       Volume

A  shadow  volume  for  an  object  and  light  is  the 
volume of space that is shadowed. That is, all points in 
the  volume  are  in  the  shadow  for  that  light.  In 
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generating shadow volume, the first step is to create the 
shadow  volume  using  the  silhouette  edges  of 
shadowing object/ occluder as seen by the light source. 
The  edges  are  then  extruded  away from the  light  as 
shown in Figure 2.   

Figure 1. Research methodology.

Figure 2. Silhouette edge.

Next, as shown in Figure 3, the shadow volume is 
clipped to the view/ camera volume, and forms the 
polygons that bound the shadow volume. The final 
result is a set of shadow volume boundary polygons 
with all points within the shadow volume are in the 
shadow. Along a ray from the eye, we can track the 
shadow state by looking at intersections with shadow 
volume boundaries following the rules below (assume 
the eye is not in shadow):      

• Each  time  the  ray  crosses  a  front  facing  shadow 
polygon, add one to a counter.

• Each  time  the  ray  crosses  a  back-facing  shadow 
polygon, subtract one from a counter.

• Places where the counter is zero are lit,  others are 
shadowed.

The algorithm to implement stencil shadow volumes is 
summarized as the following [12]:

A. Render  all  the objects  using only ambient  lighting 
and any other  surface-shading attribute.  Rendering 

should not  depend on any particular  light  source. 
Make sure depth buffer is written.

B. Starting with a light source, clear the stencil buffer 
and calculate the silhouette of all the occluders with 
respect to the light source.

C. Extrude the silhouette away from the light source to 
an infinite distance to form the shadow.

D. Render the shadow volumes using the depth-pass.
E. Using the updated stencil buffer, do a lighting pass 

to shade (make it a tone darker) the fragments that 
corresponds to non-zero stencil values.

F. Repeat step 2 to 5 for all the lights in the scene.

Figure 3. Shadow volume clipping with view volume.

From the  above  list  of  steps,  it  should  be  quite 
obvious that having more lights leads to having more 
passes, which can increase frame rate intensity. Thus, 
we  have  to  be  very  selective  when  deciding  which 
lights should be used for casting shadows.

3.1.1. Silhouette Determination

As stated before, the very first step to construct a 
shadow volume is to determine the silhouette of the 
occluder. The stencil shadow algorithm requires that 
the occluders be closed triangle meshes. This means 
that every edge in the model must only be shared by 2 
triangles thus disallowing any holes that would expose 
the interior of the model. There are many ways to 
calculate the silhouette edges and every single one of 
these methods are CPU cycles hungry. 

Edge connectivity information must be pre-
computed so that we can determine a mesh’s 
silhouette for shadow volume rendering.  The method 
used here can be explained by using an array of N 
vertices V1, V2 ..,VN and an array of M triangle faces 
F1, F2,.., FM.  Each triangle faces simply indicate 
which three vertices it uses by storing three integer 
indexes i1, i2 and i3.  An index ip precedes an index iq if 
the number p immediately precedes the number q in 
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the cyclic chain 1→2→3→1. The indexes i1, i2 and i3  

are ordered such that the positions of the vertices Vi1, Vi2 

and Vi3 to which they refer are wound counter-
clockwise about the triangles normal vector. Suppose 
that two triangles share an edge with endpoints of 
vertices Va and Vb.  The consistent winding rule 
enforces the property that for one of the triangle faces, 
the index referring to Va precedes the index referring to 
Vb and that for the other triangle and the index referring 
to Vb precedes the index referring to Va.

With  this  the  edges  of  a  triangle  mesh  can  be 
identified by making a single pass through the triangle 
face list.  For any triangle having vertex indexes  i1,  i2 

and i3, create an edge record for every instance in which 
i1→  i2,  i2→ i3,  and  i3→ i1 and store  the  index of  the 
current  triangle face in the edge record.  Once all  the 
edges are identified, make a second pass through the 
triangle face list to find the second triangle that shares 
each edge.  This is done by locating triangles for which 
i1→  i2,  i2→ i3,  or  i3→ i1 and matching  it  to  an edge 
having the same vertex indexes that has not yet  been 
supplied  with  a  second  triangle  index.   The  general 
concept of the explanation above can be summarized in 
the following pseudo code:

A.for each triangle face (A) in the object/ model
B. for each edge in A
C. if we don’t know this edges triangle face (neighbors) 

yet 
D.for each triangle face (B) in the object/ model except 

A
E. for each edge in B
F. if A’s edge is the same as B’s edge, then they are 

neighboring each other on that edge, set the neighbor 
property for each triangle face A and B, then move 
onto next edge in A.

With  the  edge  list  of  a  triangle  mesh/ face,  the 
silhouette  is  determined  by  substituting  the  light 
position with the plane equation.  A triangle face that is 
visible  to  light  source  will  have  a  value  of  plane 
equation>0  otherwise  the  triangle  face  is  not  visible 
from light source.  The silhouette is equal to the set of 
edges shared by one triangle face that is visible by the 
light  and  one  triangle  face  that  is  not  visible  by  the 
light.   This is  done by going through all  the triangle 
faces and if it is visible, the edges are checked.  If at the 
edge,  there  is  no  neighboring  triangle  face  or  the 
neighboring triangle face is not visible to light source 
then this edge is a silhouette and it cast shadow. 

It is important to note that silhouette determination is 
one  of  the  two  most  expensive  operations  in  stencil 
shadow volume implementation.  The other operation is 
the  shadow  volume  rendering  passes  to  update  the 
stencil  buffer.   These  two  areas  are  the  prime 
candidates for aggressive optimizations.

3.1.2. Shadow Volume Construction

Once  the  set  of  an  object’s  silhouette  edges  is 
determined with respect to a light source, each edge 
must  be  extruded  away  from  the  light  source’s 
position to form the object’s shadow volume.  For a 
point  light  source,  which  was  implemented  in  this 
research  prototype,  the  extrusion  of  the  silhouette 
edges  consist  a  set  of  quads  (which  can  also  be 
substituted  with  triangle  strips).  The  quads  are 
constructed  from  the  two  vertices  belonging  to  an 
edge and two additional vertices corresponding to the 
extrusion of the same edge to “infinity” (a large value) 
by using homogeneous coordinates.  Shadow volume 
is extruded to “infinity” in order to avoid light source 
being too close  to  an occluder.  If  this  happens,  the 
situation shown in Figure 4 will occur where a finite 
shadow volume extrusion fails to cover all the shadow 
receivers in a scene. However, it is not compulsory to 
extrude the silhouette edges to infinity if it is ensured 
that  the  situation  in  Figure  4  can  be  avoided.  In 
practical cases, a large value would normally be more 
than adequate.

Figure 4. Finite shadow volume fails to shadow other objects.

The extrusion distance is the distance the vertices 
of the bottom cap of the shadow volume are extruded 
away  from the  light.  The  approach  implemented  in 
this  research  prototype  is  brute  force  approach  that 
simply draws  the  extrusion polygon  to  “infinity”  (a 
large  value)  and the  shadow volume  is  just  clipped 
against all the polygon it encounters (refer Figure 5 for 
illustration).  The  procedure  of  silhouette 
determination  and  getting  the  triangle  faces  that  is 
visible to light source will provide a triangle faces that 
are  situated at  the  edge of  the  silhouette,  a  triangle 
face  with  no  neighboring  triangle  face  or  the 
neighboring triangle face is not visible to light source 
(refer Figure 6) which will be called silhouette triangle 
face from this point on.  

With a single silhouette triangle face (marked with 
black and white lines in Figure 6), edge test are done 
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so that the edge of the silhouette (the black line edge) 
can be obtained.  That single edge provides two vertices 
which will be used to extrude another two vertices that 
will  be generated after  this.   After  obtaining the two 
vertices, the extrusion to “infinity” will be done using 
homogeneous  coordinates.   Here  a  basic  scaling 
transformation is used to extrude the shadow volume by 
using the two vertices of the silhouette edge. This will 
produce two new vertices which are projected along the 
vector between the light source and the first silhouette 
edge.  It is scaled to INFINITY (the variable used in the 
implemented prototype for “infinity” value) which has 
been set to a very large value (refer Figure 7).

Figure 5. Extrusion option.

Figure 6. The edge for casting shadow volume.

The scaling transformations used to produce the new 
vertices are shown below;

xff sxxxx )(' −+=  
(1)

yff syyyy )(' −+=  
(2)

zff szzzz )(' −+=  
(3)

Vertices  P’(x’,  y’, z’) is a new vertex,  L(x, y, z) is the 
light source location and  O(x, y, z) is the vertex from 
the  silhouette  edge.   With  two  vertices  from  the 
silhouette  edge,  using  the  above  equation,  two  new 
vertices are produced and this form the quadrilateral (in 
research  prototype  implementation  triangle  strips  are 
used) needed to create shadow volume.  After creating 
the shadow volume the next process is to render it so 
that the hard shadow is visible, which will be explained 
in the next section. 

3.1.3. Rendering Shadow Volume with Depth Pass 

Depth-pass is also commonly known as z-pass. Let's 
assume  that  the  objects  had  already  been  rendered 
onto  the  frame  buffer  prior  to  the  above  stenciling 
operations.  This means that the depth buffer would 
have been set with the correct values for depth testing 
or z-testing.  Referring to Figure 8, the two leftmost 
ray originating from the eye position does not hit any 
part  of  the  shadow  volume  (in  grey),  hence  the 
resultant  stencil  values  is  0,  which  means  that  the 
fragment  represented  by  this  two  rays  are  not  in 
shadow.  The 3rd ray from the left, when the front face 
of  the  shadow  volume  is  rendered,  the  depth  test 
would  pass  and  the  stencil  value  would  be 
incremented to 1.  However when the back face of the 
shadow volume is rendered, the depth test would fail 
since the back face of the shadow volume is behind 
the occluder.  Thus the stencil value for the fragment 
represented by this ray remains at 1. This means that 
the  fragment  is  in  shadow since  its  stencil  value is 
non-zero.  

Figure 7. Extruding to INFINITY by producing two new vertices.

Figure 8.  Depth-pass.

 After  determining  the  object’s  silhouette  with 
respect  to  a  light  source and constructing a  shadow 
volume by extruding the silhouette edges away from 
the light source, finally the shadow volume is ready to 
be  rendered  into  stencil  buffer  using  depth-pass 
technique.  The frame buffer is cleared and an ambient 
rendering  pass  is  performed  to  initialize  the  depth 
buffer.  Lighting is disabled because there will be no 
rendering to the colour buffer except the stencil buffer.

Then the  stencil  buffer  is  cleared,  initialized  and 
configured so that it always passes (which is why it is 
called  depth-pass  technique).  The  depth  test  is 
configured to always pass only when fragment depth 
values are less or equal than those already in the depth 
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buffer.  The drawing will only be done into the stencil 
buffer,  write  to  colour  buffer  and  depth  buffer  are 
disabled so that shadow volume don’t appear as solid 
objects in the depth buffer. 

Shadow  volume  faces  which  were  constructed  as 
described  earlier  are  rendered  using  different  stencil 
operations  depending  on  whether  they  are  facing 
towards or away from the camera.  It is rendered in two 
passes, first pass increase the stencil buffer with front 
faces (casting shadow) and the second pass decrease the 
stencil buffer with back faces (“turning off” the shadow 
between the object and any other surfaces).

Once  shadow volumes  have  been  rendered  for  all 
objects  that  could  potentially  cast  shadows  into  the 
visible region of the scene, it will cause all the areas 
that  are  in  the  shadow  volume  to  have  a  non-zero 
stencil  value  while  all  those  areas  in  the  light  area 
remain zero.  Lighting pass is performed to illuminate 
surfaces where the stencil value remain zero, re-enable 
write to the colour buffer, change the depth test to pass 
only when fragment depth values are equal or less to 
those in the depth buffer and configure the stencil test 
to pass when the value in stencil buffer is not equal to 
zero. Finally, a blend drawn over the whole screen will 
cast  a  shadow  which  is  how  the  hard  shadow  is 
produced. This fulfils the first objective of generating 
accurate  hard  shadow.   The  technique  is  known  as 
depth-pass  technique  since  it  manipulates  the  stencil 
values only when the depth test passes, and below is the 
general overview of the algorithm;

A.Render  front  face of shadow volume.  If  depth test 
passes,  increment  stencil  value,  else  does  nothing. 
Disable draw to frame and depth buffer.

B. Render  back  face of  shadow volume.  If  depth test 
passes,  decrement  stencil  value,  else does nothing. 
Disable draw to frame and depth buffer.

3.2.  Step 2: Adding Fake Soft Shadows

Adding  fake  soft  shadows  to  existing  shadows 
generated by shadow volume will increase the realism 
of the shadow in a 3D scene. Our proposed method in 
implementing  soft  shadows  in  shadow  volume  was 
developed originally from the concept from [10] along 
with  the well-known  stencil  shadow  volume.   The 
algorithm by [10] had been previously implemented in 
shadow map algorithm where the result  proved to be 
quite convincing even though it  is not a conventional 
method.  The algorithm was implemented at interactive 
rates  by  exploiting  graphics  workstation  hardware. 
Since  hardware  have  become  increasingly  faster  and 
more affordable, nowadays this technique is feasible to 
be  implemented  on  desktop  computers  with  an 
adequate graphic card. 

Our  method  was  developed  by  methodically 
addressing  the  fundamental  limitations  of  the 
conventional  stenciled  shadow  volume  approach 

towards soft shadow and also the approach taken by 
previous  researchers.  The  work  flow  is  shown  in 
Figure 9 followed by brief description of each step. 

            
Figure 9. Work flow for adding soft shadows.

3.2.1. Get the Original Hard Shadow Geometrics

The very first step in generating the soft shadows is to 
obtain the geometrics of the hard shadows generated 
earlier.  This  were  done  by saving  all  the  generated 
coordinates  of  the  vertices  while  rendering  shadow 
volume  in  depth-pass  technique  so  that  no  re-
calculation is needed, saving ample computation cost.
 
3.2.2. Generate Samples of Hard Shadows

Next is to generate samples of hard shadows with the 
blending of  gradient  colours.   This  can be done by 
drawing the same shadow volume geometrics obtained 
earlier  only  that  the  size  of  the  shadow  volume 
polygon  is  scaled  to  be  slightly  bigger  than  the 
original shadow volume, as shown in Figure 10.  The 
number of samples that needs to be generated depends 
on how high the required quality of the soft shadows 
before  blending  it  with  gradient  of  reduced shadow 
colours. 

Figure 10. Samples of new hard shadows generated.

While  generating  these  samples  doesn’t  affect 
much  of  the  processing  time  but  rendering  it  again 
with depth-pass and stencil buffer test does involve a 
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lot  of  processing.   Thus  the  number  of  samples 
generated must  be  taken into consideration so that  it 
won’t slow down the frame rate.  Although the more 
samples generated will produce a higher quality of soft 
shadows,  this  will  also  in  turn  increase  CPU 
consumption.

3.2.3.Blending Samples of Hard Shadows

After  the  samples  were  generated,  the  last  step is  to 
blend  or  average  out  the  samples  together  with  the 
original  shadow  volume.   This  process  is  done  by 
stacking  the  samples  on  top  of  one  another,  starting 
with the lightest sample to the darkest sample available 
and  finally  to  the  original  shadow  volume.  The 
illustration is shown in Figure 11. 

Figure 11. Stacking of the sample and original shadow volume.

The order of the stacking must be done from the less 
dark to the darkest  so that  the produced soft  shadow 
will  create  a  penumbrae  effect  to  the  edges  of  the 
original shadow. As shown in Figure 12, the difference 
can  be  seen  when  compared  this  with  the  original 
shadow volume with only the hard shadow.  

Figure  12.  Comparison  of  original  shadow volume and new soft 
shadow volume.
 

The  creation  of  soft  shadow  using  this  technique 
accepts two parameters that can differentiate the quality 
of the soft shadow produced.  The first parameter is the 
length factor which determines how far the penumbrae 
or the soft shadow will be extended to and the second 
parameter is the gap factor which determines the gap 
between  the  samples  of  the  hard  shadows  produced 
(refer  Figure  13).  The  number  of  samples  the  hard 
shadow produced depends on the length and gap factor 
which is equal to length divided by gap.  The produced 
new  soft  shadow  will  have  a  more  realistic  and 
convincing effect compared to the original algorithm, 
thus fulfilling the second objective of this research.

    

Figure 13.  Length and gap factor.

4. Results

As one of the main goals for this research was to test 
the  applicability  of  soft  shadow  in  a  true  3D 
environment,  the  prototype  implementation  of  our 
method and testing stage were done using complex, 
high  polygon  models.  The  tests  performed  are  the 
accuracy or resemblance test, followed by quality test 
and  lastly  real-time  test.  Side  by  side  visual 
comparisons  with  reference  examples  were  used  to 
determine  the  accuracy  of  the  produced  shadow on 
how far it resembles real life shadow. This comparison 
approach was also applied to measure the quality of 
the  produced  fake  soft  shadows.   Speed  test  were 
performed by observing the frame rate and comparing 
it  to  reference  examples.   The  running  time  of  the 
algorithms  depends  on  factors  such  as  number  of 
polygons, desired quality,  screen resolution, graphics 
hardware and also the speed of the CPU.   

4.1. Accuracy or Resemblance Test

The  shadows  generated  by  the  prototype  are 
guaranteed true, real and accurate as it uses the model 
or  shadow caster  geometric  to  produce the  shadow. 
Moreover  there  is  no  model  simplification  done  to 
optimize rendering.  By providing the graphic images 
of the implemented shadow below, it is shown that the 
shadow  in  this  research  prototype  is  accurate  and 
furthermore  resembles  the  model/  shadow caster,  as 
shown in Figure 14.

Figure 14.  Resemblance test.

4.2. Quality Test

The test involved rendering a cube with 8 vertices and 
12 faces of triangle polygons using different values of 
length and gap factors  as  parameters.   Images  from 
test results were captured and the number of polygon 
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triangles  produced  was  recorded  so  that  comparison 
and analysis can be done to evaluate the quality of the 
soft shadow produced. Figure 15 illustrate the result. 

Figure 15. Test results using cube with different length and gap.

The test results achieved a frame per second rate of 
60, which can be deemed as a good run time rate. The 
captured images also show that with increased number 
of rendered polygon triangles, along with smaller gap 
and  greater  length  parameters  will  produce  a  better 
quality  of  soft  shadow.  Although  these  parameters 
provided  a  good  blending  of  the  shadow  with  the 
environment,  some drawbacks were also found.   The 
bigger the gap is the more aliasing effect will be visible 
to  the  image,  as  shown in  the  images  with  1.0  gap 
factor  in  Figure  15.  Greater  length also causes  more 
changes to the geometric shape of the shadow.  

Thus it is concluded from this test that for this model 
or  shadow caster  the appropriate value for  parameter 
length should be between 2 to 3, as any different value 
will  cause  dramatic  changes  in  geometric  shape. 
Moreover, the optimized gap factor value for this cube 
should be anywhere between 0.3 to 0.5, as the produced 
soft shadow will not be visible to the human eyes if any 
different  values  were  used,   beside  causing  aliasing 
effect.  This  also  applies  to  model  or  shadow  caster 
other than cubes which was not shown here. We also 
conduct tests by visually comparing the shadow images 
rendered by our  research  prototype  in  comparison  to 
other  existing  algorithm.  We  choose  the  shadow 
volume  algorithm  [1],  known  as  “Approximate  Soft 
Shadow  on  Arbitrary  Surfaces  Using  Penumbra 
Wedge”  to  be  our  reference  example.   The  chosen 
model or shadow caster was a cube and sphere; this was 
done without any other model in the scene except the 
wall and floor.  

The result  showed that  our prototype were able to 
render at about 60 FPS which was about 6 time faster 
than Ulf and Tomas algorithm although the quality of 
our  produced  soft  shadow  is  undeniably  lesser. 
However,  the  soft  shadows  produced  were  still 
convincingly realistic on top of being able to render at 
real-time speed.  The comparison is shown in Figure 
16.

Figure 16. Comparison of soft shadow generated.

4.3. Real-Time Test

One way to obtain a fast soft shadow algorithm is to 
utilize  graphics  hardware.   According  to  Moore’s 
Law, the speed of graphics hardware has so far more 
than  doubled  every  12  months,  compare  to  CPUs 
which  double  approximately  every  18  months.  As 
shadow  volume  requires  a  lot  of  computations 
especially in silhouette edge determination and two-
pass  rendering,  it  is  very  high  consuming  for  both 
CPU and GPU processor.  Here,  the shadow volume 
algorithm developed by Ulf and Tomas will again be 
used as a reference example to compare its speed with 
our produced algorithm.  

Both  algorithms  will  be  tested  against  three 
different  hardware  systems  to  determine  the  best 
system available to the public. Our proposed method 
was tested using the same model or shadow caster that 
was  used  in  Ulf  and  Tomas  implementation.   The 
quality  of  the  soft  shadow  produced  by  both 
algorithms was identically leveled with parameters set 
to 3.0 for length and 0.3 for gap. Identical resolution at 
800x600  with  32  bit  colours  was  also  set  as  the 
environment for both algorithms. This is to ensure that 
the same amounts of polygon are used to render the 
soft shadow so that a precise comparison can be done.

Two graphs were produced at the end of the test 
shown here as Figure 17 and 18. Figure 17 shows the 
result  of  the  test  using  our  proposed  method  where 
system 2 is shown to be the best system, followed by 
system 3 and system 1.      



109                                                         The International Arab Journal of Information Technology, Vol. 5, No. 4, October  
2008                                                        

Figure 17.  FPS vs. model polygon count for 3 different systems 
using fake soft shadow volume with stencil buffer.

From  here  it  could  be  concluded  that  system  1 
requires a much better graphics hardware and system as 
it can only achieve 10 FPS with 216 polygons and will 
dropped  even  further  to  3  FPS  if  the  numbers  of 
polygon  exceed  500.   System 2  only  have  1.5  GHz 
CPU and 768 MB RAM, much lower than system 3 
which have a 2.4 GHz CPU and 1 GB RAM but yet the 
graphic card used in system 2 was way too powerful 
and was able to render soft shadow at almost 640 FPS 
for 200  polygons.  

However, it also gradually goes down to 50-60 FPS 
after the number of polygon exceeds 500 as the object 
geometric become complex.  System 3 is a mid range 
system which is able to render soft shadow at 60 FPS 
for polygons below 250.  After 500 of triangle polygons 
the  FPS  remain  static  at  15  FPS  even  though  the 
number of polygons reached 1800.

           
Figure  18.  FPS vs.  model  polygon  count  for  3  different  systems 
with  approximate  soft  shadows  on  arbitrary  surfaces  using 
penumbra wedges algorithm.

Figure 18 above is the result of the test using Ulf and 
Tomas soft shadow algorithm where in comparison to 
the graph in Figure 17, shows a much slower rate of 
FPS. From the graph it is shown that the maximum FPS 
is not very high but as the number of triangle polygons 
increase, the decreasing of FPS is not as low as the 
statistic shown in Figure 17.  The graph had shown that 
it only decreased almost two to three times in FPS as 

the number of triangle polygon count increased three 
times. However, in terms of speed this test has shown 
that our proposed method performed much better than 
Ulf and Tomas soft shadow algorithm as it has at least 
matches the FPS or even faster, which at one point it 
was eleven times faster.  

5. Conclusions and Future Work

In this paper we have shown a method to generate an 
accurate  hard  shadow volume  and  adding  fake  soft 
shadows  onto  it.  Among  clear  benefits  is  that  the 
method  produces  high  quality  soft  shadows at  high 
speed.  This method can be further improved and be 
implemented using programmable graphics hardware 
to achieve real-time performance. 

An important aspect yet to be  incorporated is how 
to extend the  effect  of  shadows onto other  surfaces 
and  objects  in  the  scene  other  than  planar/  surface. 
Thus this area is something we would like to explore 
in  our  future  work  in  attempts  to  further  improve 
efficiency. Problems concerning shadow volumes that 
intersect  at  near  or  far  clipping  plane  were  not 
discussed in  this  paper  as the solution were already 
presented in [8]. 
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