
102 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

Shadow Casting with Stencil Buffer for
Real-Time Rendering

Lee Weng, Daut Daman, and Mohd Rahim
Faculty of Computer Science and Information System, Universiti Teknologi Malaysia, Malaysia

Abstract: We present a new method for real-time rendering of soft shadows in dynamic scenes. Our approach is based on
shadow volume algorithm which provides fast, accurate and high quality shadows. The shadow volume algorithm is used to
generate hard shadows before adding fake soft shadows onto it. Although the generated soft shadows are physically
inaccurate, this method provides soft shadows that are smooth and perceptually convincing. This proposed hybrid method
adds more realism to a dynamic scene which is an important factor in computer graphics.

Keywords: Shadow volume, silhouette detection, rendering, depth-pass, soft shadow.

Received November 14, 2006; accepted May 31, 2007

1. Introduction

Shadows are essential elements to realistic and visually
appealing images, but are difficult to compute in most
display environments especially in computer games.
Similar to lighting, there are increasing levels of
realism possible, paid for with decreasing levels of
rendering performance. Since the introduction of
shadow volume [7], shadow map [14] and fake
shadows [5], there have been numerous developments
done to improve shadow algorithm in real-time graphic
application. Among current issues concerns real-time
dynamic soft shadows and hardware improvement that
improvise real-time shadow generation.

The important element in shadows is the dynamic
and accuracy of the hard shadow as it provides
information and spatial cue while the soft shadow
determines the type of light source. Thus in this
research, we attempt to create an accurate real-time
dynamic fake soft shadow, where the hard shadow will
be accurate and dynamic and the soft shadow will be
fake. Stencil shadow volume algorithm will be
combined with plateaus soft shadow in order to create
the dynamic fake soft shadow.

2. Related Work

Early work on shadows bring us back to 1977 where
Frank Crow first published his paper on shadow
algorithm for computer graphics [7], in which his
method explicitly clip shadows geometry to the view
frustums, generating perfect caps where the volume
crosses a clipping plane. [11] suggested the use of
stencil buffer in implementing crow's original algorithm
which gave the algorithm the name by which it is best
known today. Stencil shadows belong to the group of

volumetric shadow algorithms as the shadowed
volume in the scene is explicit in the algorithm.
In 2000, Carmack suggested a slightly different
approach which entails that the view rays are traced
from infinity towards the eye, stopping when
encountering the pixel on the geometry that is closest
to the eye [6]. This reversal of the view rays' direction
has given the algorithm the name Carmack’s Reverse.
[13] created a hybrid algorithm that uses a faster z-
pass rendering when the viewport is not shadowed and
reverts to robust z-fail rendering when the viewport is
shadowed. Following this, several other shadow
volume improvements have also been suggested;
papers [1, 2, 3] for example described how to create
soft shadows using penumbra wedges rendered from
shadow volume. [9] developed a technique for highly
efficient coverage calculation for spherical light
sources. The technique can avoid clipping operations
in the pixel shader and let the texture sampler do the
clipping for free. The only setback is the technique is
limited to spherical shaped light source only.

3. Algorithm

Our proposed method combines the existing stencil
shadow volume algorithm with the concepts of
Heckbert and Herf’s soft shadow technique [10] which
was originally for shadow map. This research was
divided into two important steps, as shown in Figure
1.

3.1. Step 1: Creating Hard Shadow - Shadow
 Volume

A shadow volume for an object and light is the
volume of space that is shadowed. That is, all points in
the volume are in the shadow for that light. In

103 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

generating shadow volume, the first step is to create the
shadow volume using the silhouette edges of
shadowing object/ occluder as seen by the light source.
The edges are then extruded away from the light as
shown in Figure 2.

Figure 1. Research methodology.

Figure 2. Silhouette edge.

Next, as shown in Figure 3, the shadow volume is
clipped to the view/ camera volume, and forms the
polygons that bound the shadow volume. The final
result is a set of shadow volume boundary polygons
with all points within the shadow volume are in the
shadow. Along a ray from the eye, we can track the
shadow state by looking at intersections with shadow
volume boundaries following the rules below (assume
the eye is not in shadow):

• Each time the ray crosses a front facing shadow
polygon, add one to a counter.

• Each time the ray crosses a back-facing shadow
polygon, subtract one from a counter.

• Places where the counter is zero are lit, others are
shadowed.

The algorithm to implement stencil shadow volumes is
summarized as the following [12]:

A. Render all the objects using only ambient lighting
and any other surface-shading attribute. Rendering

should not depend on any particular light source.
Make sure depth buffer is written.

B. Starting with a light source, clear the stencil buffer
and calculate the silhouette of all the occluders with
respect to the light source.

C. Extrude the silhouette away from the light source to
an infinite distance to form the shadow.

D. Render the shadow volumes using the depth-pass.
E. Using the updated stencil buffer, do a lighting pass

to shade (make it a tone darker) the fragments that
corresponds to non-zero stencil values.

F. Repeat step 2 to 5 for all the lights in the scene.

Figure 3. Shadow volume clipping with view volume.

From the above list of steps, it should be quite
obvious that having more lights leads to having more
passes, which can increase frame rate intensity. Thus,
we have to be very selective when deciding which
lights should be used for casting shadows.

3.1.1. Silhouette Determination

As stated before, the very first step to construct a
shadow volume is to determine the silhouette of the
occluder. The stencil shadow algorithm requires that
the occluders be closed triangle meshes. This means
that every edge in the model must only be shared by 2
triangles thus disallowing any holes that would expose
the interior of the model. There are many ways to
calculate the silhouette edges and every single one of
these methods are CPU cycles hungry.

Edge connectivity information must be pre-
computed so that we can determine a mesh’s
silhouette for shadow volume rendering. The method
used here can be explained by using an array of N
vertices V1, V2 ..,VN and an array of M triangle faces
F1, F2,.., FM. Each triangle faces simply indicate
which three vertices it uses by storing three integer
indexes i1, i2 and i3. An index ip precedes an index iq if
the number p immediately precedes the number q in

Shadow Casting with Stencil Buffer for Real-Time Rendering 104

the cyclic chain 1→2→3→1. The indexes i1, i2 and i3

are ordered such that the positions of the vertices Vi1, Vi2

and Vi3 to which they refer are wound counter-
clockwise about the triangles normal vector. Suppose
that two triangles share an edge with endpoints of
vertices Va and Vb. The consistent winding rule
enforces the property that for one of the triangle faces,
the index referring to Va precedes the index referring to
Vb and that for the other triangle and the index referring
to Vb precedes the index referring to Va.

With this the edges of a triangle mesh can be
identified by making a single pass through the triangle
face list. For any triangle having vertex indexes i1, i2

and i3, create an edge record for every instance in which
i1→ i2, i2→ i3, and i3→ i1 and store the index of the
current triangle face in the edge record. Once all the
edges are identified, make a second pass through the
triangle face list to find the second triangle that shares
each edge. This is done by locating triangles for which
i1→ i2, i2→ i3, or i3→ i1 and matching it to an edge
having the same vertex indexes that has not yet been
supplied with a second triangle index. The general
concept of the explanation above can be summarized in
the following pseudo code:

A.for each triangle face (A) in the object/ model
B. for each edge in A
C. if we don’t know this edges triangle face (neighbors)

yet
D.for each triangle face (B) in the object/ model except

A
E. for each edge in B
F. if A’s edge is the same as B’s edge, then they are

neighboring each other on that edge, set the neighbor
property for each triangle face A and B, then move
onto next edge in A.

With the edge list of a triangle mesh/ face, the
silhouette is determined by substituting the light
position with the plane equation. A triangle face that is
visible to light source will have a value of plane
equation>0 otherwise the triangle face is not visible
from light source. The silhouette is equal to the set of
edges shared by one triangle face that is visible by the
light and one triangle face that is not visible by the
light. This is done by going through all the triangle
faces and if it is visible, the edges are checked. If at the
edge, there is no neighboring triangle face or the
neighboring triangle face is not visible to light source
then this edge is a silhouette and it cast shadow.

It is important to note that silhouette determination is
one of the two most expensive operations in stencil
shadow volume implementation. The other operation is
the shadow volume rendering passes to update the
stencil buffer. These two areas are the prime
candidates for aggressive optimizations.

3.1.2. Shadow Volume Construction

Once the set of an object’s silhouette edges is
determined with respect to a light source, each edge
must be extruded away from the light source’s
position to form the object’s shadow volume. For a
point light source, which was implemented in this
research prototype, the extrusion of the silhouette
edges consist a set of quads (which can also be
substituted with triangle strips). The quads are
constructed from the two vertices belonging to an
edge and two additional vertices corresponding to the
extrusion of the same edge to “infinity” (a large value)
by using homogeneous coordinates. Shadow volume
is extruded to “infinity” in order to avoid light source
being too close to an occluder. If this happens, the
situation shown in Figure 4 will occur where a finite
shadow volume extrusion fails to cover all the shadow
receivers in a scene. However, it is not compulsory to
extrude the silhouette edges to infinity if it is ensured
that the situation in Figure 4 can be avoided. In
practical cases, a large value would normally be more
than adequate.

Figure 4. Finite shadow volume fails to shadow other objects.

The extrusion distance is the distance the vertices
of the bottom cap of the shadow volume are extruded
away from the light. The approach implemented in
this research prototype is brute force approach that
simply draws the extrusion polygon to “infinity” (a
large value) and the shadow volume is just clipped
against all the polygon it encounters (refer Figure 5 for
illustration). The procedure of silhouette
determination and getting the triangle faces that is
visible to light source will provide a triangle faces that
are situated at the edge of the silhouette, a triangle
face with no neighboring triangle face or the
neighboring triangle face is not visible to light source
(refer Figure 6) which will be called silhouette triangle
face from this point on.

With a single silhouette triangle face (marked with
black and white lines in Figure 6), edge test are done

105 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

so that the edge of the silhouette (the black line edge)
can be obtained. That single edge provides two vertices
which will be used to extrude another two vertices that
will be generated after this. After obtaining the two
vertices, the extrusion to “infinity” will be done using
homogeneous coordinates. Here a basic scaling
transformation is used to extrude the shadow volume by
using the two vertices of the silhouette edge. This will
produce two new vertices which are projected along the
vector between the light source and the first silhouette
edge. It is scaled to INFINITY (the variable used in the
implemented prototype for “infinity” value) which has
been set to a very large value (refer Figure 7).

Figure 5. Extrusion option.

Figure 6. The edge for casting shadow volume.

The scaling transformations used to produce the new
vertices are shown below;

xff sxxxx)(' −+=
(1)

yff syyyy)(' −+=
(2)

zff szzzz)(' −+=
(3)

Vertices P’(x’, y’, z’) is a new vertex, L(x, y, z) is the
light source location and O(x, y, z) is the vertex from
the silhouette edge. With two vertices from the
silhouette edge, using the above equation, two new
vertices are produced and this form the quadrilateral (in
research prototype implementation triangle strips are
used) needed to create shadow volume. After creating
the shadow volume the next process is to render it so
that the hard shadow is visible, which will be explained
in the next section.

3.1.3. Rendering Shadow Volume with Depth Pass

Depth-pass is also commonly known as z-pass. Let's
assume that the objects had already been rendered
onto the frame buffer prior to the above stenciling
operations. This means that the depth buffer would
have been set with the correct values for depth testing
or z-testing. Referring to Figure 8, the two leftmost
ray originating from the eye position does not hit any
part of the shadow volume (in grey), hence the
resultant stencil values is 0, which means that the
fragment represented by this two rays are not in
shadow. The 3rd ray from the left, when the front face
of the shadow volume is rendered, the depth test
would pass and the stencil value would be
incremented to 1. However when the back face of the
shadow volume is rendered, the depth test would fail
since the back face of the shadow volume is behind
the occluder. Thus the stencil value for the fragment
represented by this ray remains at 1. This means that
the fragment is in shadow since its stencil value is
non-zero.

Figure 7. Extruding to INFINITY by producing two new vertices.

Figure 8. Depth-pass.

 After determining the object’s silhouette with
respect to a light source and constructing a shadow
volume by extruding the silhouette edges away from
the light source, finally the shadow volume is ready to
be rendered into stencil buffer using depth-pass
technique. The frame buffer is cleared and an ambient
rendering pass is performed to initialize the depth
buffer. Lighting is disabled because there will be no
rendering to the colour buffer except the stencil buffer.

Then the stencil buffer is cleared, initialized and
configured so that it always passes (which is why it is
called depth-pass technique). The depth test is
configured to always pass only when fragment depth
values are less or equal than those already in the depth

Occluder/
object

Shadow volume

Shadow at d,
distances

Infinity

Light source

Silhouette edge with
two vertices

New
vertices

Shadow volume

Light
source

To
INFINITY

Silhouette
triangle face

Shadow Casting with Stencil Buffer for Real-Time Rendering 106

buffer. The drawing will only be done into the stencil
buffer, write to colour buffer and depth buffer are
disabled so that shadow volume don’t appear as solid
objects in the depth buffer.

Shadow volume faces which were constructed as
described earlier are rendered using different stencil
operations depending on whether they are facing
towards or away from the camera. It is rendered in two
passes, first pass increase the stencil buffer with front
faces (casting shadow) and the second pass decrease the
stencil buffer with back faces (“turning off” the shadow
between the object and any other surfaces).

Once shadow volumes have been rendered for all
objects that could potentially cast shadows into the
visible region of the scene, it will cause all the areas
that are in the shadow volume to have a non-zero
stencil value while all those areas in the light area
remain zero. Lighting pass is performed to illuminate
surfaces where the stencil value remain zero, re-enable
write to the colour buffer, change the depth test to pass
only when fragment depth values are equal or less to
those in the depth buffer and configure the stencil test
to pass when the value in stencil buffer is not equal to
zero. Finally, a blend drawn over the whole screen will
cast a shadow which is how the hard shadow is
produced. This fulfils the first objective of generating
accurate hard shadow. The technique is known as
depth-pass technique since it manipulates the stencil
values only when the depth test passes, and below is the
general overview of the algorithm;

A.Render front face of shadow volume. If depth test
passes, increment stencil value, else does nothing.
Disable draw to frame and depth buffer.

B. Render back face of shadow volume. If depth test
passes, decrement stencil value, else does nothing.
Disable draw to frame and depth buffer.

3.2. Step 2: Adding Fake Soft Shadows

Adding fake soft shadows to existing shadows
generated by shadow volume will increase the realism
of the shadow in a 3D scene. Our proposed method in
implementing soft shadows in shadow volume was
developed originally from the concept from [10] along
with the well-known stencil shadow volume. The
algorithm by [10] had been previously implemented in
shadow map algorithm where the result proved to be
quite convincing even though it is not a conventional
method. The algorithm was implemented at interactive
rates by exploiting graphics workstation hardware.
Since hardware have become increasingly faster and
more affordable, nowadays this technique is feasible to
be implemented on desktop computers with an
adequate graphic card.

Our method was developed by methodically
addressing the fundamental limitations of the
conventional stenciled shadow volume approach

towards soft shadow and also the approach taken by
previous researchers. The work flow is shown in
Figure 9 followed by brief description of each step.

Figure 9. Work flow for adding soft shadows.

3.2.1. Get the Original Hard Shadow Geometrics

The very first step in generating the soft shadows is to
obtain the geometrics of the hard shadows generated
earlier. This were done by saving all the generated
coordinates of the vertices while rendering shadow
volume in depth-pass technique so that no re-
calculation is needed, saving ample computation cost.

3.2.2. Generate Samples of Hard Shadows

Next is to generate samples of hard shadows with the
blending of gradient colours. This can be done by
drawing the same shadow volume geometrics obtained
earlier only that the size of the shadow volume
polygon is scaled to be slightly bigger than the
original shadow volume, as shown in Figure 10. The
number of samples that needs to be generated depends
on how high the required quality of the soft shadows
before blending it with gradient of reduced shadow
colours.

Figure 10. Samples of new hard shadows generated.

While generating these samples doesn’t affect
much of the processing time but rendering it again
with depth-pass and stencil buffer test does involve a

Get the original hard
shadow geometrics

Generate new sample of
hard shadows with new
blending of gradient colour

Blend/average the sample
of new hard shadows with
original hard shadow

107 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

lot of processing. Thus the number of samples
generated must be taken into consideration so that it
won’t slow down the frame rate. Although the more
samples generated will produce a higher quality of soft
shadows, this will also in turn increase CPU
consumption.

3.2.3.Blending Samples of Hard Shadows

After the samples were generated, the last step is to
blend or average out the samples together with the
original shadow volume. This process is done by
stacking the samples on top of one another, starting
with the lightest sample to the darkest sample available
and finally to the original shadow volume. The
illustration is shown in Figure 11.

Figure 11. Stacking of the sample and original shadow volume.

The order of the stacking must be done from the less
dark to the darkest so that the produced soft shadow
will create a penumbrae effect to the edges of the
original shadow. As shown in Figure 12, the difference
can be seen when compared this with the original
shadow volume with only the hard shadow.

Figure 12. Comparison of original shadow volume and new soft
shadow volume.

The creation of soft shadow using this technique
accepts two parameters that can differentiate the quality
of the soft shadow produced. The first parameter is the
length factor which determines how far the penumbrae
or the soft shadow will be extended to and the second
parameter is the gap factor which determines the gap
between the samples of the hard shadows produced
(refer Figure 13). The number of samples the hard
shadow produced depends on the length and gap factor
which is equal to length divided by gap. The produced
new soft shadow will have a more realistic and
convincing effect compared to the original algorithm,
thus fulfilling the second objective of this research.

Figure 13. Length and gap factor.

4. Results

As one of the main goals for this research was to test
the applicability of soft shadow in a true 3D
environment, the prototype implementation of our
method and testing stage were done using complex,
high polygon models. The tests performed are the
accuracy or resemblance test, followed by quality test
and lastly real-time test. Side by side visual
comparisons with reference examples were used to
determine the accuracy of the produced shadow on
how far it resembles real life shadow. This comparison
approach was also applied to measure the quality of
the produced fake soft shadows. Speed test were
performed by observing the frame rate and comparing
it to reference examples. The running time of the
algorithms depends on factors such as number of
polygons, desired quality, screen resolution, graphics
hardware and also the speed of the CPU.

4.1. Accuracy or Resemblance Test

The shadows generated by the prototype are
guaranteed true, real and accurate as it uses the model
or shadow caster geometric to produce the shadow.
Moreover there is no model simplification done to
optimize rendering. By providing the graphic images
of the implemented shadow below, it is shown that the
shadow in this research prototype is accurate and
furthermore resembles the model/ shadow caster, as
shown in Figure 14.

Figure 14. Resemblance test.

4.2. Quality Test

The test involved rendering a cube with 8 vertices and
12 faces of triangle polygons using different values of
length and gap factors as parameters. Images from
test results were captured and the number of polygon

Stacking

Length factor

Gap factorOriginal hard
shadow

Sample hard
shadow

Shadow Casting with Stencil Buffer for Real-Time Rendering 108

triangles produced was recorded so that comparison
and analysis can be done to evaluate the quality of the
soft shadow produced. Figure 15 illustrate the result.

Figure 15. Test results using cube with different length and gap.

The test results achieved a frame per second rate of
60, which can be deemed as a good run time rate. The
captured images also show that with increased number
of rendered polygon triangles, along with smaller gap
and greater length parameters will produce a better
quality of soft shadow. Although these parameters
provided a good blending of the shadow with the
environment, some drawbacks were also found. The
bigger the gap is the more aliasing effect will be visible
to the image, as shown in the images with 1.0 gap
factor in Figure 15. Greater length also causes more
changes to the geometric shape of the shadow.

Thus it is concluded from this test that for this model
or shadow caster the appropriate value for parameter
length should be between 2 to 3, as any different value
will cause dramatic changes in geometric shape.
Moreover, the optimized gap factor value for this cube
should be anywhere between 0.3 to 0.5, as the produced
soft shadow will not be visible to the human eyes if any
different values were used, beside causing aliasing
effect. This also applies to model or shadow caster
other than cubes which was not shown here. We also
conduct tests by visually comparing the shadow images
rendered by our research prototype in comparison to
other existing algorithm. We choose the shadow
volume algorithm [1], known as “Approximate Soft
Shadow on Arbitrary Surfaces Using Penumbra
Wedge” to be our reference example. The chosen
model or shadow caster was a cube and sphere; this was
done without any other model in the scene except the
wall and floor.

The result showed that our prototype were able to
render at about 60 FPS which was about 6 time faster
than Ulf and Tomas algorithm although the quality of
our produced soft shadow is undeniably lesser.
However, the soft shadows produced were still
convincingly realistic on top of being able to render at
real-time speed. The comparison is shown in Figure
16.

Figure 16. Comparison of soft shadow generated.

4.3. Real-Time Test

One way to obtain a fast soft shadow algorithm is to
utilize graphics hardware. According to Moore’s
Law, the speed of graphics hardware has so far more
than doubled every 12 months, compare to CPUs
which double approximately every 18 months. As
shadow volume requires a lot of computations
especially in silhouette edge determination and two-
pass rendering, it is very high consuming for both
CPU and GPU processor. Here, the shadow volume
algorithm developed by Ulf and Tomas will again be
used as a reference example to compare its speed with
our produced algorithm.

Both algorithms will be tested against three
different hardware systems to determine the best
system available to the public. Our proposed method
was tested using the same model or shadow caster that
was used in Ulf and Tomas implementation. The
quality of the soft shadow produced by both
algorithms was identically leveled with parameters set
to 3.0 for length and 0.3 for gap. Identical resolution at
800x600 with 32 bit colours was also set as the
environment for both algorithms. This is to ensure that
the same amounts of polygon are used to render the
soft shadow so that a precise comparison can be done.

Two graphs were produced at the end of the test
shown here as Figure 17 and 18. Figure 17 shows the
result of the test using our proposed method where
system 2 is shown to be the best system, followed by
system 3 and system 1.

109 The International Arab Journal of Information Technology, Vol. 5, No. 4, October
2008

Figure 17. FPS vs. model polygon count for 3 different systems
using fake soft shadow volume with stencil buffer.

From here it could be concluded that system 1
requires a much better graphics hardware and system as
it can only achieve 10 FPS with 216 polygons and will
dropped even further to 3 FPS if the numbers of
polygon exceed 500. System 2 only have 1.5 GHz
CPU and 768 MB RAM, much lower than system 3
which have a 2.4 GHz CPU and 1 GB RAM but yet the
graphic card used in system 2 was way too powerful
and was able to render soft shadow at almost 640 FPS
for 200 polygons.

However, it also gradually goes down to 50-60 FPS
after the number of polygon exceeds 500 as the object
geometric become complex. System 3 is a mid range
system which is able to render soft shadow at 60 FPS
for polygons below 250. After 500 of triangle polygons
the FPS remain static at 15 FPS even though the
number of polygons reached 1800.

Figure 18. FPS vs. model polygon count for 3 different systems
with approximate soft shadows on arbitrary surfaces using
penumbra wedges algorithm.

Figure 18 above is the result of the test using Ulf and
Tomas soft shadow algorithm where in comparison to
the graph in Figure 17, shows a much slower rate of
FPS. From the graph it is shown that the maximum FPS
is not very high but as the number of triangle polygons
increase, the decreasing of FPS is not as low as the
statistic shown in Figure 17. The graph had shown that
it only decreased almost two to three times in FPS as

the number of triangle polygon count increased three
times. However, in terms of speed this test has shown
that our proposed method performed much better than
Ulf and Tomas soft shadow algorithm as it has at least
matches the FPS or even faster, which at one point it
was eleven times faster.

5. Conclusions and Future Work

In this paper we have shown a method to generate an
accurate hard shadow volume and adding fake soft
shadows onto it. Among clear benefits is that the
method produces high quality soft shadows at high
speed. This method can be further improved and be
implemented using programmable graphics hardware
to achieve real-time performance.

An important aspect yet to be incorporated is how
to extend the effect of shadows onto other surfaces
and objects in the scene other than planar/ surface.
Thus this area is something we would like to explore
in our future work in attempts to further improve
efficiency. Problems concerning shadow volumes that
intersect at near or far clipping plane were not
discussed in this paper as the solution were already
presented in [8].

References

[1] Akenine-Moller T. and Assarsson U.,
“Approximate Soft Shadows on Arbitrary
Surfaces Using Penumbra Wedges,” in
Proceedings of the 13th Eurographics Workshop
on Rendering, Eurographics Association, pp.
297-306, 2002.

[2] Assarsson U. and Akenine-Moller T., “A
Geometry-Based Soft Shadow Volume
Algorithm Using Graphics Hardware,” ACM
Transactions on Graphics, vol. 22, no. 3, pp.
511-520, 2003.

[3] Assarsson U., Dougherty M., Mounier M., and
Akenine-Möller T. , “An Optimized Soft
Shadow Volume Algorithm with Real-Time
Performance,” in Proceedings of ACM
SIGGRAPH/ EUROGRAPHICS Conference on
Graphics Hardware, Eurographics Association,
pp. 33-40, 2003.

[4] Blinn J. and Corner J., A Trip Down the
Graphics Pipeline, Morgan Kaufmann
Publishers, San Francisco, 1996.

[5] Blinn J., “Me and My (Fake) Shadow,” IEEE
Computer Graphics and Applications, vol. 8,
no. 1, pp. 82-86, 1988.

[6] Carmack J., “John carmack on shadow
volumes,” http://developer.nvidia.com/ object/
robustshadow - volumes.html, 2000.

[7] Crow F., “Shadow Algorithms for Computer
Graphics,” ACM SIGGRAPH Computer

http://portal.acm.org/author_page.cfm?id=81100093806&coll=GUIDE&dl=GUIDE&trk=0&CFID=32730804&CFTOKEN=45900782

Shadow Casting with Stencil Buffer for Real-Time Rendering 110

Graphics (SIGGRAPH’77), vol. 11, no. 3, pp.
242-248, 1977.

[8] Everitt C. and Killgard M., “Practical and Robust
Stenciled Shadow Volumes for Hardware-
Accelerated Rendering,” Technical Report,
NVIDIA Cooperation, 2002.

[9] Fauerby K. and Kjaer C., “Real-Time Soft
Shadows in a Game Engine,” Master’s Thesis,
2003.

[10] Heckbert P. and Herf M., “Simulating Soft
Shadows with Graphics Hardware,” Technical
Report CMU-CS-97-104, Carnegie Mellon
University, January 1997.

 [11] Heidmann T., “Real Shadows, Real Time,” Iris
Universe, vol. 18, pp. 23-31, Silicon Graphics
Inc., 1991

[12] Kwoon H., “The Theory of Stencil Shadow
Volumes,” http://www.gamedev.net. 2002.

[13] Lengyel E., “The Mechanics of Robust Stencil
Shadows,” Gamasutra, http://www.gamasutra.
com/features/20021011/lengyel_01.htm, 2002.

[14] Williams L., “Casting Curved Shadows on
Curved Surfaces,” Computer Graphics, vol. 12,
no. 3, 1978.

Lee Weng received his BSc form
Universiti Teknologi Malaysia in
computer science with majoring
computer graphics. He also receives
MSc from University Teknologi,
Malaysia, in computer science with
research project in computer games.

He is currently a senior computer graphics engineer at
international company which is Seagate Penang,
Malaysia.

Daut Daman received his BSc form
University Sains Malaysia and MSc
from University of Cranfield, United
Kingdom. He is currently an
associate professor in the Faculty of
Computer Science and Information
System of Universiti Teknologi

Malaysia. He has over 27 years of experience in the
field of computer graphics and visualization. He has
also been actively involved in many research projects
related to computer graphics and visualization and has
published more than 120 publications.

Mohd Rahim received his Diploma
in computer science 1997, BSc
computer science 1999 form
University Teknologi Malaysia and
MSc in GIS and visualization in
2002 from University Teknologi
Malaysia. Now he is going to

complete the PhD (spatial modelling) in University
Putra Malaysia. He also is lecturer in Department of
Computer Graphic and Multimedia, Faculty of
Computer Science and Information System of
University Teknologi Malaysia. He has over 8 years of
experience in the field of computer graphics and
visualization and GIS data model. He has also been
actively involved in many research projects related to
GIS and visualization, GIS data management,
computer graphics and has published more than 70
publications. Currently his research was on going in
spatial, temporal and spatiotemporal data management
applications, 3D data visualization, mobile computing
for computer graphics application.

	3.1.1. Silhouette Determination
	3.1.2. Shadow Volume Construction
	3.2. Step 2: Adding Fake Soft Shadows

