
The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008 87

Applying Genetic Algorithms for Searching Key-

Space of Polyalphabetic Substitution Ciphers

Ragheb Toemeh
1
and Subbanagounder Arumugam

2

1
Department of Computer Science and Engineering, Government College of Technology, India

2
Directorate of Technical Education, India

Abstract: In this paper the Cryptanalysis of polyalphabetic by applying Genetic algorithm is presented. The applicability of

Genetic algorithms for searching the key space of encryption scheme is studied. In Vigenere cipher, guessing the key size is

done by applying Genetic Algorithm. The frequency analysis is used as an essential factor in objective function.

Keywords: Polyalphabetic cipher, Vigenere cipher, genetic algorithm.

Received May 27, 2006; Accepted August 5, 2006

1. Introduction

Cryptanalysis is the process of attempting to recover

the plaintext and /or key from a ciphertext. In the Brute

Force attack the attacker tries every possible key on a

piece of ciphertext until an intelligible translation into

plaintext is obtained; it has the disadvantage of high

computational complexity. In order to overcome this

drawback, the optimization heuristics techniques like

Genetic Algorithm (GA) are used. The possibility of

using a random type search to break a cipher is

explored. The focus of this work is on the use of a GA

to conduct a directed random search of a key space and

to guess the key size. In 1863, a prussian major named

Kasiski proposed a method for breaking a Vigenere

cipher that consisted of finding the length of the

keyword and then dividing the message into many

simple substitution cryptograms [9]. In this paper, to

find the key length, new method is used; this method is

based on the use of GA and frequency analysis. One of

the main problems with simple substitution ciphers is

that they are so vulnerable to frequency analysis. Given

a sufficiently large ciphertext, it can easily be broken

by mapping the frequency of its letters to the know

frequencies of English text. Therefore, to make ciphers

more secure, cryptographers have long been interested

in developing enciphering techniques that are immune

to frequency analysis. One of the most common

approaches is to suppress the normal frequency data by

using more than one alphabet to encrypt the message. A

polyalphabetic substitution cipher involves the use of

two or more cipher alphabets. Instead of there being a

one to-one relationship between each letter and its

substitute, there is a one-to-many relationship between

each letter and its substitutes. To give a concrete

example of redundancy in English, single character

frequencies (including the apostrophe) are shown for a

sample corpus in Figure 1.

Figure 1. Relative Character Frequencies from Great Expectations

(1860-1861).

2. Genetic Algorithms

A GA is general method of solving problems to which

no satisfactory, obvious, solution exists. It is based on

the idea of emulating the evolution of a species in

nature and so the various components of the algorithm

are roughly analogous to aspects of natural evolution.

Common mathematical tasks amenable to genetic

solutions include computing a curve to fit a set of data

or approximating Nondeterministic Polynomial (NP)

problems. Often these operators consist of flipping a

single random bit of one individual or swapping two

randomly selected substrings from a pair of parents to

generate a new child. To simulate Darwinian survival

of the fittest some representation of the fitness of the

individuals must be generated. GA is applied in four

steps:

1. Initialize algorithm variables: G the maximum

number of generations to consider, M the solution

pool size and any other problem dependent

variables.

2. Generate an initial solution pool containing M

candidate solutions.

3. For g iteration, using the current pool:

88 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

a. Select a breeding pool from the current solution

 pool and make pairings of parents.

b. For each parental pairing, generate a pair of

 children using a suitable mating function.

c. Apply a mutation operation to each of the newly

 created children.

d. Evaluate the fitness function for each of the

 children.

e. Based on the fitness of each of the children and the

 fitness of each of the solutions in the current pool,

 decide which solutions will be placed in the new

 solution pool. Copy the chosen solutions into the

 new solution pool.

f. Replace the current solution pool with the new one.

 So, the new solution pool becomes the current one.

4. Choose the fittest solution of the final generation as

the best solution.

3. Polyalphabetic Substitution Cipher

The polyalphabetic substitution cipher is a simple

extension of the monoalphabetic one. The difference is

that the message is broken into blocks of equal length,

say B, and then each position in the block (1… B) is

encrypted (or decrypted) using a different simple

substitution cipher key. The block size (B) is often

referred to as the period of the cipher. An example of a

polyalphabetic substitution cipher is shown in Table 1.

B is chosen to be three, and Table 1 gives an example

key and shows the corresponding encryption [4].

Table 1. Example of the polyalphabetic substitution cipher key and

encryption process.

KEY:

Plaintext:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_

Ciphertext:

ND_WIEURYTLAKSJQHFGMZPXOBCV (Position 1)

LP_MKONJIBHUVGYCFTXDRZSEAWQ (Position 2)

GFTYHBVCDRUJNXSEIKM_ZAOLWQP (Position 3)

ENCRYPTION:

Position: 12312312312

Plaintext: HOW_ARE_YOU

Ciphertext RYOVLKIQWJR

The decryption process is reversal of the encryption.

The polyalphabetic substitution cipher is somewhat

more difficult to cryptanalyse than the simple

substitution cipher because of the independent keys

used to encrypt successive characters in the plaintext,

but it is still relatively simple to cryptanalyse the

polyalphabetic substitution cipher based on the n-gram

statistics of the plaintext language. So, despite the

monoalphabetic substitution cipher where every bigram

(for example _A) is mapped to the same encrypted

bigram each time, this is not the case for the

polyalphabetic substitution cipher, where the encrypted

value of a bigram is dependent upon two factors: the
individual key values and the position of the characters

within the block. The algorithm which proposed in [4]

is re-implemented.

4. The Vigenere Tableau

The Vigenere Cipher, proposed by Blaise de Vigenere

from the court of Henry III of France in the sixteenth

century, is a polyalphabetic substitution based on the

following tableau:

Table 2. Vigenere tableau.

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T T U V W X Y Z A B C D E F G H I J K LM N O P Q R S

U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

For example, suppose we wish to encipher the

plaintext message: “TO BE OR NOT TO BE THAT IS

THE QUESTION", using the keyword

SUBSTITUTION. We begin by writing the keyword,

repeated as many times as necessary, above the

plaintext message. To derive the ciphertext using the

tableau, for each letter in the plaintext, one finds the

intersection of the row given by the corresponding

keyword letter and the column given by the plaintext

letter itself to pick out the ciphertext letter.

*Keyword:

SUBSTITUTIONSUBSTITUTIONSUBSTI

*Plaintext:

 TOBEORNOTTOBETHATISTHEQUESTION

*Ciphertext:

LICWHZGIMBCOWNISMQLNAMEHWMUAHVG

Decipherment of an encrypted message is equally

straightforward. One writes the keyword repeatedly

above the message:

*Keyword:

SUBSTITUTIONSUBSTITUTIONSUBSTI

*Ciphertext:

LICWHZGIMBCOWNISMQLNAMEHWMUAHVG

*Plaintext:

TOBEORNOTTOBETHATISTHEQUESTION

Applying Genetic Algorithms for Searching Key-Space of Polyalphabetic Substitution Ciphers 89

This time one uses the keyword letter to pick a

column of the table and then traces down the column to

the row containing the ciphertext letter. The index of

that row is the plaintext letter.

5. Proposed Algorithm for Vigenere Cipher

The following is an outline of proposed algorithm:

1. Input to the algorithm the cipher text, the key size

and relative character frequencies.

2. Initialize the algorithm parameters: maximum

number of iterations (M).

3. Generate 10 keys randomly each one is having the

same known key length.

4. Decrypt the ciphertext by the 10 generated keys.

5. Calculate the suitability of each key from every

decrypted text using the formula.

6. Sort the keys based on the increased fitness values.

7. for 1 to (M) do:

a. Choose 5 pairs from 10 keys.

b. For 1 to (5 pairs) do

i. Apply crossover to get children

 ii. Generate random number from 2 to (key size -1)

 iii. Swap the parts of parents as example:

Parent 1 sungti | hutior

Parent 2 subdti | dution

Child1 sungtidution

Child 2 subdtihutior

 iv. Generate random position number between

 (1 to key size) for each child and mutate the

 letter in that position.

c. Decrypt cipher text by 20 keys.

d. Calculate the suitability of each key.
e. Sort the 20 keys based on increased fitness values.

f. Choose best 10 keys.
g. go to 7.

8. Output is the best solution.

This algorithm is illustrated by the following example:

 the 10 random keys are listed as:

AAIAJFNFSYHL

CSOBEVRTVYFL

YVYVLPRPOSCK

DRMMOIWGEKSE

NQQAUGLKJPPH

EUHIKGKBMZAK

BBGZJKFFFGTX

XTLNADLMPGCS

QXWBONQUGFGI

ODPAYFVQSTOO

After one generation the output is:

EBHIKHKUMZPG

ODPAYFVQSTOO

DRMMOIWGEKSE

EUHIKGKBMZAK

OXWBONQSQTQO

YVYEOGWIVKSE

BBGZJKFFFGTX

ZAOBEVRTVYFA

NQQAUGLKJPPH

AQQAPGLKJUNK

XTMNADLPLGTX

AAIAJFNFSYHL

QXWBONQUGFGI

CSFAJISFNYHL

BBGZSKFJFGCF

UDPAYVFOGFGI

DRPMLMSPORCK

XTLNADLMPGCS

YVYVLPRPOSCK

CSOBEVRTVYFL

After 30 generations the output is:

BUBSTHXFHIOO

JUBSTHXFCIOO

HIBSTQFUTIBN

HUBSFHXHTIOO

JUBSFHXHTIOO

After 100 generations output is:

SUBSTIUUTBON

SUBSTUBUTION

SUBSTUBUTION

SUBSTUDUTION

The final solution is (SUBSTITUUTBON) for

ciphertext, which is having 1500 bytes size for 100

generations.

6. Guessing the Length of Key in Vigenere

Cipher

To find the key length, new method is used; this

method is suitable for the text which is having the size

more than 500 bytes, because the main idea in this

method is to employ frequency analysis. GA is applied

here to find the key length. The first proposal key

length will be chosen two and GA operations are

applied for small population size and small number of

generation., Fitness value is saved for next generation

and key length must be increased to three, again

fitness is saved and compared with previous key

length; if it is better, the new will be taking for next

generation, the method is still working till any key

size. Best solution is expected to be the key length;

this number will be submitted to next stage to get most

of correct key letters. If the decrypted text is not

readable, guessing the key length mater should be

continued more than the key length itself.

7. Implementing the Attack for Vigenere

Cipher

The attack is implemented by generating 10

independent keys to represent the target key. The

first generation is generated randomly using a

90 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

simple uniform random number generator. The

fitness value is incremented and finally normalized to

the number of pairs. The GA then goes in the normal

way to generate new generations. The algorithm is

terminated based on the criteria described earlier. The

algorithm has been implemented to get fitness;

essentially the attack shall continue upward to get the

best key. These functions are used in the code:

void Encrypt ()

This function performs encryption.

void Decrypt ()

This function performs decryption taking input as

key.

void Keygen ()

This function creates the initial population it will

generate n keys randomly.

void Getfitness ()

This function measures fitness of a particular

chromosome in the population set indexed by its

position in the population.

void Sorting()

This function is responsible for sorting population of

chromosomes (The genetic material of an individual -

represents the information about a possible solution to

the given problem) based on fitness value.

void Crossover()
This function performs cross over between

chromosomes and stores them in the new population set

as indexed by pos1, pos2.

void Mutation ()

This function is responsible for mutate the new

generated chromosomes.

8. Fitness Measure

The technique used to compare candidate keys is to

compare n-gram statistics of the decrypted message

with those of the language (which are assumed known).

Equation 1 is a general formula used to determine the

suitability of a proposed key (k).

C k = α.∑
∈

−
Ai

u

i

u

i DK)()(
+ β. ∑

∈

−
Aji

b

ji

b

ji DK
,

),(),(

 + γ. ∑
∈

−
Akji

t

kji

t

kji DK
,,

),,(),,((1)

Here, A denotes the language alphabet (i.e., for

English, [A. . . Z], K and D denote known language

statistics and decrypted message statistics, respectively,

and the indices u, b and t denote the unigram, bigram

and trigram statistics, respectively. The values of α, β

and γ allow assigning of different weights to each of the

three n-gram types [4].

The ability of directing the random search process of

the GA by selecting the fittest chromosomes among the

population is the main characteristic of the algorithm.

So the fitness function chosen is the main factor of the

algorithm. This may be the main factor, selecting the

fitness function, that GA were not applied the

cryptanalysis problems. The fitness function relied on

the language statistical characteristic to represent the

fitness the key. For example, the letter "E" is the most

common letter in English language, so the fitness of

the key can be measured based on how likely it is

going to give correct letter frequency in the de-

ciphered text. This choice of fitness measure depends

entirely on the language characteristics and hence

these characteristics must be known and of course the

language used itself.

9. Terminating Criteria

This is one of the classical problems of using GA in

problem solving, that is when to terminate. The

problem at hand really needs a terminating criterion

that can be used to determine when it is enough for

GA. The one chosen here is also one of the classical

choices that are when the algorithm can generate no

more better solutions for a number of generations.

10. Characteristics of Testing Environment

The algorithm is implemented using C++ and tested in

machine with following configurations

• Intel P IV processor with speed 3 GHz.

• RAM 512 MB.

11. Result

The attack was implemented with a polyalphabetic

substitution cipher with a block size of three. The

average results for the polyalphabetic substitution

cipher are given in Figure 2.

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000

Amount of ciphertext

R
e
c
o
v
e
re
d
 l
e
tt
e
rs

100

200

Figure 2. Known cipher text versus percent recovered letters.

The result is showing the effect of number of

generations on the recovered letters. The result of

guessing method of the key length is tabulated as

comparison of fitness of some key lengths proposed,

the population size is six, number of generation is 30,

and text size is 1.5 kb, as in Table 3.

Applying Genetic Algorithms for Searching Key-Space of Polyalphabetic Substitution Ciphers 91

Table 3. Result of guessing key length.

Number of proposed key length Fitness value

5 32.47

8 32.27

12 21.66

15 30.69

As the fitness value should be less, as Equation 1,

the expected key length is 12. This number will be

given to next stage in code to find the key word.

 The result for vigenere cipher is tabulated as a

comparison of performance for different cipher text

lengths and these were encrypted using key

‘SUBSTITUTION’ as Table 4.

Table 4. Result of Vigenere cipher.

Cipher

Text Size

(in chars)

Solution Found No of

Generat

-ions

Time (in sec)

500 subativusior 100 10

1000 substevusior 100 11

2000 substibution 100 13

12. Conclusion

The results in the implementation of Polyalphabetic

Substitution Cipher are showing the effect of ciphertext

size on recovered plaintext letters. The time in

cryptanalysis of vigenere cipher is less by using GA.

The method to find key length gives good result with

compare with other methods.

References

[1] Albassal A. and Wahdan A., “Genetic Algorithm

Cryptanalysis of the Basic Substitution

Permutation Network,” in Proceedings of the 46th

IEEE International Midwest Symposium on

(MWSCAS'03), pp. 471-475, 2003.

[2] Bagnall A., “The Application of Genetic

Algorithm in Cryptanalysis,” Master Degree

Thesis, School of Information Systems, University

of East Anglia, 1996.

[3] Clark A. and Dawson E., “Optimisation Heuristics

for the Automated Cryptanalysis of Classical

Ciphers,” Journal of Combinatorial Mathematics

and Combinatorial Computing, vol. 28, pp. 63-86,

1998.

[4] Dimovski A. and Gligoroski D., “Attack on the

Polyalphabetic Substitution Cipher Using a

Parallel Genetic Algorithm,” Technical Report,

Swiss- Macedonian Scientific Cooperation

Trought SCOPES Project, Ohrid, Macedonia,

March 2003.

[5] Gester J., Solving Substitution Ciphers with

Genetics Algorithm, www.cs.rechester.edu/

ubrown /Crypto/studprojs/SubstGen.pdf, 20
th

December 2003.

[6] http://www.trincoll.edu/depts/cpsc/cryptogra

phy/caesar.html, 5/8/2006.

[7] http://www.trincoll.edu/depts/cpsc/cryptogra

phy/index.html, 5/8/2006.

[8] http://www.trincoll.edu/depts/cpsc/cryptogra

phy/substitution.html, 5/8/2006.

[9] http://www.trincoll.edu/depts/cpsc/cryptogra

phy/vigenere.html, 5/8/2006.

[10] http://en.wikipedia.org/wiki/Letter_frequenci

es, 5/8/2006.

[11] Spillman R., Janssen M., Nelson B., and Kepner

M., Use of a Genetic Algorithm in the

Cryptanalysts of Simple Substitution Ciphers,

Cryptologia, vol. 16, no. 1, pp. 31- 4, January

1993.

[12] Stallings W., Cryptography and Network

Security: Principles and Practices, 3rd edition,

Pearson Education, 2004.

Ragheb Toemeh received the BE in

electronics engineering degree from

Tishreen University, Lattakia, Syria

in 1996 and the ME in computer

science and engineering degree from

PSG College of Technology,

Coimbatore, Anna University in

2004. He is currently working toward the PhD degree

at Government College of Technology, Coimbatore,

Anna University, Chennai, India. His research interest

area is in network security.

Subbanagounder Arumugam
received the PhD degree in

computer science and engineering

from Anna University, Chennai in

1990. He also obtained his BE in

electrical and electronics

engineering and MSc in

engineering, applied electronics degrees from PSG

College of Technology, Coimbatore, University of

Madras in 1971 and 1973, respectively. He is working

in the Directorate of Technical Education,

Government of Tamil nadu from 1974 at various

positions from associate lecturer, lecturer, assistant

professor, professor and principal. Presently, he is

working as additional director of Technical Education.

He has guided four PhD students and currently

guiding ten PhD students. He has published 70

technical papers in international and national journals

and conferences. His area of interest is including

network security, biometrics, and neural networks.

