
80 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

A New Exam Scheduling Algorithm

 Using Graph Coloring

Mohammad Malkawi
1
, Mohammad Al-Haj Hassan

2
, and Osama Al-Haj Hassan

3

1
SUN Microsystems, Network Circle, USA

2
Faculty of IT, Middle East University for Graduate Studies, Jordan
3
Department of Computer Science, University of Georgia, USA

Abstract: This paper presents a graph-coloring-based algorithm for the exam scheduling application, with the objective of
achieving fairness, accuracy, and optimal exam time period. Through the work, we consider few assumptions and constraints,
closely related to the general exam scheduling problem, and mainly driven from accumulated experience at various
universities. The performance of the algorithm is also a major concern of this paper.

Keywords: Exam scheduling, graph algorithms, graph coloring, performance analysis.

Received May 23, 2006; Accepted September 18, 2006

1. Introduction

An undirected graph G is an ordered pair (V, E) where
V is a set of nodes and E is a set of non-directed edges
between nodes. Two nodes are said to be adjacent if
there is an edge between them. The graph coloring is a
well-known problem [1, 2, 3, 4, 5]. Node coloring
assigns colors to the nodes of the graph such that no
two adjacent nodes have the same color. Edge coloring
assigns colors to the edges of the graph such that no
two adjacent edges have the same color. Two edges are
said to be adjacent if they both share a node in
common. General graph coloring algorithms are well
known and have been extensively studied by
researchers [1, 2, 5, 7, 8, 9, 11, 12, 13, 14, 16].

Exam scheduling is a challenging task that
universities and colleges face several times every year.
The challenge is to schedule so many exams of courses
in a limited, and usually short, period of time. An
Exam schedule should avoid conflicts, in the sense that
no two or more exams for the same student are
scheduled at the same time. Part of the challenge is to
achieve fairness for the students. A fair schedule does
not schedule more than two exams, for example for a
student on one day. In the meantime, a fair schedule
does not leave a big gap between exams for the
students. The exam scheduling problem is defined as
follows: "We first represent the courses by nodes of a
graph, where 2 nodes are adjacent if the 2
corresponding courses are registered by at least one
student. Then, it is required to assign each course
represented by a node a time slot, such that no two
adjacent nodes have the same slot, in condition that a
set of constraints imposed on the problem are also
met." We solve this problem by using node graph
coloring technique.

This study provides a mechanism for automatic
exam-schedule generation that achieves fairness, and

minimizes the exam period. As a result, this paper
presents a graph-coloring-based algorithm for the exam
scheduling application which achieves the objectives
of fairness, accuracy, and optimal exam time period.
Numerous studies have considered the problem of
exam scheduling [9, 10, 15, 17]. The main difference
between various studies is the set of assumptions and
constraints taken into consideration. Burke, Elliman
and Weare [9], for example, followed a similar
approach using graph coloring. However, in their
algorithm, they addressed only the conflicts without
any constraints. Moreover, the algorithm presented in
[9] does not eliminate conflicts, and only aims at
minimizing conflicts. In this paper, we consider few
but important assumptions and constraints, closely
related to the general exam scheduling, and mainly
driven from the real life requirements collected
through the experience at various universities. Such
assumptions and constraints are distinct from those
present in more general graph coloring problems. We
summarize the main assumptions and constraints as
follows:

1. The number of exam periods per day (Time Slots
(TS)) can be set by the user. TS depend on
college/department specific constraints. For
example, a university that uses a 2-hours exam
period and begins the exam day at 8:00 am and
finish at 8:00 pm, may set TS to 5.

2. The number of concurrent exam sessions or
concurrency level (Np) depends on the number of
available halls, and the availability of faculty to
conduct the exams. Np is determined by the
registrar’s office. This paper assumes that Np is a
system parameter and the scheduling algorithm has
been examined with several Np values.

A New Exam Scheduling Algorithm Using Graph Coloring 81

3. A student shall not have more than (y) exams per
day (fairness requirement), and is treated as a
system tunable parameter.

4. A student shall not have a gap of more than (x) days
between two successive exams, and this factor is to
be determined by the college or department (another
fairness requirement).

5. The schedule shall be done in the minimal possible
period of time, i.e., minimize the number of exam
slots and/or number of exam days. The exam time
period is an outcome of the scheduling algorithm.

6. Next, we give some more definitions that are
relevant to the underlined problem. Let C be a list of
all courses to be scheduled. The length of this list is
n. In other words, n is the number of courses in the
list. A course at position i in the list C is referred to
using an index ci. Let G be the graph that represents
the list C of courses. We impose a weight wij to each
edge of G, where wij is defined as the number of
students present in both courses ci and cj. An edge eij
exists between nodes ci and cj iff wij is not 0. We
define a weight matrix W to be an nxn matrix, where
n is the number of courses to be scheduled for the
exams, and wij equals the weight of the edge eij that
joins the courses ci and cj. Such a weight imposed on
the edges of G represents the exam conflict
complexity present in courses ci and cj. A multi-
section course is considered as one course.
However, the number of sections per course is taken
into consideration in the process of hall assignment.

The degree di of a node ci is defined as the number of
edges connected to a node. A large degree of a node ci
indicates that there is a large number of students
registered in this course and di other courses. The
degree di is also a measure of conflict complexity. An
example of a weighted graph G and the corresponding
weight matrix W is given in Figure 1 and Table 1,
respectively. In Figure 1, c2 and c5 both have degree 3.
In Table 1, the weight of the edge e15 is 4.

2. The Coloring Scheme

The coloring scheme for the exam-scheduling problem
uses a double indexed color (RIJ), where the index (I)
represents the day of the exam and (J) represents the
exam time slot on a given day. The range of (J), i.e.,
the number of exam time slots is determined by the
registrar and/or the faculty.

The range of the index (I) is a parameter generated
as an outcome by the algorithm. Minimizing the index
(I) is one objective of the algorithm. The parameter I
can also be set by the registrar and/or the faculty. It is
bound by the absolute minimal number of colors for
the given graph. However, finding the absolute
minimal is known to be NP complete. The algorithm
presented in this paper is claimed to achieve near
optimal performance (close to minimal number of
colors) in polynomial time.

Table 1. A weight matrix W of the graph.

 C1 C2 C3 C4 C5

C1 0 2 0 0 4

C2 2 0 1 0 3

C3 0 1 0 4 0

C4 0 0 4 0 3

C5 4 3 0 3 0

We define the weight of a color to be W (RIJ) = (I-

1)*k + J; k is the range of J. A color RIJ is said to be
smaller than color RGH if the weight W (RIJ) is smaller
than W (RGH). The coloring scheme allows two or more
non-adjacent nodes to have the same color (RIJ). The
number of nodes having the same color provides the
number of concurrent exam sessions, which is bounded
by the number of available halls and the maximum
allowable concurrent sessions by the registrar and/or
the faculty. In general graph coloring problems, there
is no restriction on the assignment of the same color to
non-adjacent nodes in the graph. The exam-scheduling
problem as explained above imposes a constraint on
the maximum number of nodes assigned the same
color. The scheduling algorithm (provided in the next
section) allows the user to impose a maximum limit on
the number of available instances of color RIJ. The
number of instances of a color RIJ is referred to as the
concurrency limit of the color RIJ denoted CL (RIJ).
Note that a course with multiple sections is assigned
one color. However, the multiple sections will
consume multiple instances of the same color,
assuming that each section will make the exam in a
separate hall.

2.1. Fairness of the Algorithm

In order to achieve fairness, as discussed in the
introduction, the algorithm defines the following
parameters:

4

3

3

4

1

 C2

 C1

 C3

 C5

 C4

2

Figure 1. A weighted graph G.

82 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

1. Internal distance (D1): This is the distance between
two colors (RIJ) and (RIK) with the same index (I)
and indexes J and K, and defined by

 D1 = |K-J| (1)

D1 represents the exam scattering on the same day I
for the same set of students.

2. External distance (D2): This is the distance between
two colors (RIJ) and (RKL), and defined by

 D2 = |K-I| (2)

D2 represents the exam scattering across different
days.

3. The total distance between colors (RIJ) and (RKG) is
given by

 D = γ * D2+ D1, (3)

or

 D= γ *(|K-I|) +|G-J| (4)

The factor (γ) can be varied to provide a different
coloring scheme. The distance D is a major design
parameter of the algorithm.

2.2. Specific Considerations

The scheduling problem has its own peculiarities,
which have to be taken into consideration at the
implementation level. For example, the node with a
large degree represents a course in which many
students are registered to many other courses (different
group of students may be registered to different
courses). Also, nodes with large degrees have large
number of students as well. In order to have an
efficient schedule; the nodes with larger degrees
should be colored first. Giving priority to the nodes
with the larger degrees is in line with typical university
schedules which tend to schedule the university
required courses early in the exam period. The nodes
representing university and college requirement
courses have large degrees.

The weight of an edge indicates the number of
common students registered at both courses (nodes)
connected to that edge. Giving priority in the coloring
algorithm to nodes connected to a large weight-edge
will enable a solution optimization geared towards the
larger groups of students. Another point to consider
before we describe the algorithm is the multi-section
courses. Multi-sections of a multi-sections course
should be scheduled at the same time, and thus the
corresponding nodes should have one color. Also, they
typically occupy several halls. The number of halls
used by a course has an impact on the concurrency
level per time slot. When such multi-sections are
scheduled for a time slot, i.e. assigned a color, the
concurrency level is to be reduced by the number of
sections for that course. For implementation purposes,
we augment the nodes of the graph with a value equal
to the number of sections in the course; we shall call
this value the course concurrency level CL (ci). Thus,

we assign a concurrency limit for each color Np (CIJ).
After assigning a color to a node Ci, we reduce the
concurrency limit of the color by CL (ci). The
concurrency limit is set by the registrar and depends on
the number of available halls, and staff to monitor the
exams.

3. Algorithm Color Schedule

The algorithm consists of two major steps. The first
step builds the weight matrix and graph. The second
step assigns colors to the nodes of the graph.

3.1.The Algorithm

A. Build Weight Matrix and Graph

1. Locate the files for students’ listings in all the
courses, which need to be scheduled for the
exam. Each course corresponds to a node in the
matrix. Set the concurrency level of each node to
the number of sections for the given course.

2. For each node (course) find the set of adjacent
nodes, and the weight of the edges connecting
the node to its adjacent nodes. Fill the weight
matrix W with weight values w.

3. Create an undirected graph using the weight
matrix.

4. Find the degree for each node.

B. Color the Graph

 Sort the nodes in the weight matrix in a descending
order based on the degree of nodes. Nodes with
similar degrees are ordered based on the largest
weight w in its adjacency list. Nodes with similar
degrees d and weights w are ordered based on their
node ID (smallest ID first).

 Set C = The sorted list of nodes mentioned
 in Step 1.
 Set No-Of-Colored-Courses = 0

for i = 1 to C-length do
 Begin
 If No-Of-Colored-Courses = No-Of-
 Courses then exit loop and finish
 If ci is not colored then
 Begin
 If i = 1 then
 Begin
 Rab = get-First-Node-Color (ci)
 If Rab = null then Exit and finish,
 {No schedule is possible.}
 End
 Else
 Begin
 Rab = get-Smallest-Available-Color (ci)
 End
 If Rab != null then
 Begin
 Set Color (ci) = Rab

 No-Of-Colored-Courses = No-Of-

A New Exam Scheduling Algorithm Using Graph Coloring 83

 Colored-Courses + 1
 CL (Rab) = CL (Rab) - CL (ci)
 End
 End
 Set Array M = get-Ordered-Adjacency-
 Courses-Of-ci ()
 For j = 1 to No-Of-Courses-In-Array-M do
 Begin
 If Mj is not colored then
 Begin
 Rcd = get-Smallest-Available-Color (Mj)
 If Colorcd != null then
 Begin
 Set Color (Mj) = Rcd
 No-Of-Colored-Courses = No-Of-
 Colored-Courses + 1
 CL (Rcd) = CL (Rcd) - CL (Mj)
 End
 End
 End
 End

C. Color the neighbor

1. Description of Sub-routine “get-First-
 Node-Color”:
 Input : The course ci that needs to be
 Colored.
 Output: The color assigned to ci or null.
 Algorithm:
 For j = 1 to Max-Schedule-Days do:
 For k = 1 to No-Of-Time-Slots do:
 If CL (Colorjk)) ≥ CL (ci) then return Colorjk
 return null

 2. Description of Sub-routine “get-Smallest-
 Available-Color”:
 Input: The course ci that needs to be
 colored.
 Output: The color assigned to ci or null.
 Algorithm:
 get AL(ci), the Adjacency-List of ci
 For j = 1 to Max-Schedule-Days do
 Begin
 For k = 1 to No-Of-Time-Slots do:
 Begin
 Set valid = true
 For r = 1 to Length (AL (ci)) do
 Begin
 Ref = Color (ALr)
 If Ref! = null then
 Begin
 If e! =j or f! =k then
 Begin
 If D2 {(Ref), (Rjk)} = 0 then
 Begin
 If D1 {(Ref), (Rjk)} <= 1 then
 Begin
 Valid = false
 Exit loop
 End

 End
 If CL (Rjk) <= CL (ci) then
 Begin
 Valid = false
 Exit loop
 End
 If Check-3Exams-Constraint (ci, Rjk , j) =
 False then
 Begin
 Valid = false
 Exit loop
 End
 End
 Else
 Begin
 Valid = false
 Exit loop
 End
 End
 Else Exit the current iteration of loop
 End
 If valid = true then Return Rjk

 End
 End
return null

3. Description of Sub-routine
 “Check-3Exams-Constraint”:
 Input : The course ci that needs to be
 colored.
 The color Rjk that needs to be tested.
 The day j for Colorkd
 Output: returns true if color is valid,
 Otherwise it returns false
 Algorithm:
 get a list of students Si registered in course
 ci
 For r = 1 to Length (Si) do:
 Begin
 Set Counter = 0
 For q=1 to No-Of-Time-Slots do:
 Begin
 Get a list of courses CRS assigned to Rjq
 For u = 1 to Length (CRS) do:
 Begin
 Get a list of students Su registered in
 course cu
 If Sir exists in list Su then
 Begin
 Counter = Counter + 1
 If Counter = 2 then return false
 End
 End
 End
 End

 return true

3.2. Complexity Analysis

A. Assume the largest degree d = d1; and that node v1
has degree K1

84 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

A.1. The first step assigns the smallest color, say c1
to node v1. The total number of steps required
to color all the nodes in the neighbor list of v1
is

 1+2+3+ … + d1 = (d1
2
+ d1)/2 = O (d1

2
) (5)

A.2. Repeat the coloring procedure for the next
node v2 with degree d2. The number of steps
required to color all the nodes adjacent to
node v2 is

 1+2+3+ … + d2 = (d2
2
+ d2)/2 = O (d2

2
) (6)

B. In general, the number of steps required to color all
the nodes in the neighbor list of any node vi with
degree di is

 (di
2
+ di)/2 = O (di

2
) (7)

C. Let the average degree of nodes be ρ. Then the
average number of steps required to color the
neighbors of node vi with degree ρ is O(ρ

 2
)

C.1. Repeat the coloring procedure in steps 1 and 2
until all nodes are colored.

C.2. Since each coloring step colors on the average
ρ nodes, the coloring procedure will be
repeated on the average (n/ρ), where n is the
number of nodes.

C.3. The total number of coloring steps required to
color all nodes, on the average is

O ((n/ ρ). (p 2) = O (n. ρ) (8)

 The complexity equation (above) can be
 expressed as

 ∑
=

n

i 1

ρ , where ρ P= (∑
=

n

i

id
1

)/n. (9)

3.3. Algorithm Efficiency Analysis

Our algorithm has a linear complexity, except when (ρ
= n-1) and hence a polynomial solution of the second
degree. We prove the following:
Lemma: The algorithm described above achieves
minimal number of colors, when the upper bound of
colors is given by the clique (largest completely
connected sub-graph).
Proof: A completely connected graph with size K
requires K+1 color. The algorithm detects the clique in
the graph. The algorithm also detects the clique related
to each node in the graph starting from the node with
the largest degree. Then, the algorithm colors the
largest completely connected sub-graphs first, thus
utilizing the minimal available colors to color the sub-
graphs. For each node, the algorithm will not use more
colors than those required by the largest completely
connected sub-graph. Thus the largest number of
colors used by the algorithm is only that required by
the largest sub-graph, which is the absolute minimal
possible number of colors.

4. Performance Analysis

The algorithm Color Schedule was applied to a course
list of a university. The number of courses in the test
bed is 546 with an average of 2 sections per course, for
a total of 1092 exam sessions to schedule. The graph
produced for the courses has an avergae degree of 54
and a maximum degree of 434. The coloring algorithm
completed in 90 seconds (almost the same for all runs).
We ran the algorithm with different paramters. The
variables are the number of exam slots per day (3, 4, 5,
6, 7). The concurrency limit is varied between 10 and
100. The constraint is that a student will not have more
than 2 exams per day. The results for the varius runs of
the algorithm are plotted in Figure 2 below. The
registrar office can use the plots to decide on the
number of days and number of exam sessions per day
for the schedule. For eample, with 7 exam slots per
day, the exam period can be copleted in 12 days with
50 sessions per day. Note that the registrar office can
produce several schedules in a short period of time (90
seconds per schedule) and select the appropriate
schedule. Figure 3 shows the time analysis
performance of the algorithm. Note that the execution
time is a linear function of the number of courses. The
average degree of the graph is also shown in the figure.
The avergae degree does not increase at the same rate
as the number of courses. This is typical of university
courses. Furthermore, we have tested our algorithm
against 5 samples of the 13 Toronto data sets collected
from 13 institutions. In this test, we took two factors
into account, namely the number of slots and the
penalty. With respect to the former factor, their results
slightly outperform ours. With respect to the later
factor, close results are obtained, where our algorithm
have beated in some sets, and has been beated in some
other sets. The results are shown in Table 2, and
plotted in Figures 4 and 5, respectively. Still some
comments are in order. In Toronto case, there was
nothing mentioned about the maximum possible
concurrent exams per time slot, which means that they
did not impose a constraint on that issue. In our case
we did. Also, in Toronto case, there is nothing
mentioned about the number of days, they only use
number of time slots. So, when we run to compare with
respect to this factor, we have counted the number of
time slots used in all days of our algorithms to get the
total number of time slots used by the schedule.

Figure 2. Algorithm color_schedule performance.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

Concurrency Limit

N
u
m
b
e
r
o
f
E
x
a
m
 D
a
y
s

3 Slots

4 Slots

5 Slots

6 Slots

7 Slots

3 Slots

4 Slots

5 Slots

6 Slots

7 Slots

A New Exam Scheduling Algorithm Using Graph Coloring 85

Figure 3. Execution time performance of the color schedule
algorithm.

Table 2. Results of our algorithm against toronto results.

 Figure 4. Results with respect to the number of slots.

Figure 5. Results with respect to penalty.

5. Conclusion and Future Work

As discussed above, the number of concurrent exam
sessions or concurrency level (Np) depends on the
number of available halls, and the availability of
faculty to conduct the exams. The value of Np is
usually determined by the registrar’s office, and the
paper assumes that Np is a system parameter, and we

will run the scheduling algorithm with several Np
values. In a later work, the actual distribution of exam
sessions to halls will be included. Also, the algorithm
presented in this paper is claimed to achieve near
optimal performance (close to minimal number of
colors) in polynomial time. We are currently
investigating a modification of the algorithm, which
will achieve the absolute minimal for a certain set of
graphs.

References

[1] Alon N., “A Note on Graph Colorings and Graph
Polynomials,” Journal of Combinatorial Theory
Series B, vol. 70, no. 1, pp. 197-201, 1997.

[2] Baldi P., “On a Generalized Family of
Colorings,” Graphs and Combinatorics, vol. 6,
no. 2, 1990.

[3] Bang-Jensen J. and Gutin G., Digraphs: Theory,
Algorithms and Applications, Springer-Verlag,
2000.

[4] Bar-Noy A., Motwani R., and Naor J., “The
Greedy Algorithm is Optimal for On-line Edge
Coloring,” Information Processing Letters, vol.
44, no. 5, pp. 251-253, 1992.

[5] Batenburg K. and Palenstijn W., “A New Exam
Timetabling Algorithm,” Leiden Institute of
Advanced Computer Science (LIACS),
http://visielab.ua.ac.be/staff/batenburg/papers/ba
pa_bnaic_2003.pdf.

[6] Bauernoppel F. and Jung H., “Fast Parallel
Vertex Coloring,” in L. Budach (eds.),
Fundamentals of Computation Theory, FCT '85,
Cottbus, GDR, Sept, 1985, vol. 199 of Lecture
Notes in Computer Science, pp. 28-35, Springer-
Verlag, Berlin, 1985.

[7] Bean D., “Effective Coloration,” The Journal of
Symbolic Logic, vol. 41, no.2, pp. 469-480, June
1976.

[8] Burke E. and Petrovic S., “Recent Research
Directions in Automated Timetabling,” European
Journal of Operational Research (EJOR), vol.
140, no. 2, pp 266-280, 2002.

[9] Burke E., Elliman D., and Weare R., “A
University Timetabling System Based on Graph
Coloring and Constraint Manipulation,” Journal
of Research on Computing in Education, vol. 27,
no. 1, pp. 1-18, 1994.

[10] Burke E., Elliman D., and Weare R., “Automated
Scheduling of University Exams,” Department of
Computer Science, University of Nottingham,
1993.

[11] Christofides N., Graph Theory: An Algorithmic
Approach, Academic Press, 1975.

[12] Gross J. and Yellen J., Handbook of Graph
Theory, Discrete Mathematics and its
Applications, CRC Press, vol. 25, 2003.

[13] Gross J. and Yellen J., Graph Theory and its
Applications, 2nd ed., CRC Press, 2005.

Toronto Results Our Algorithm
Benchmark

Data Slots Penalty Slots Penalty

CAR91 35 4.42 61 5.00059

CAR92 32 3.74 56 3.90447

KFU93 20 12.96 32 14.208

TRE92 23 7.75 42 6.41089

YOR83 21 34.84 38 23.203

Execution Time

Days

86 The International Arab Journal of Information Technology, Vol. 5, No. 1, January 2008

[14] Husseini S., Malkawi M., and Vairavan K.,
“Analysis of a Graph Coloring Based Distributed
Load Balancing Algorithm,” Journal of Parallel
& Distributed Systems, vol. 10, no. 2, pp. 160-
166, 1990.

[15] Husseini S., Malkawi M., and Vairavan K.,
“Distributed Algorithms for Edge Coloring of
Graphs,” in the 5th ISMM International
Conference on Parallel and Distributed
Computing Systems, 1992.

[16] Husseini S., Malkawi M., and Vairavan K.,
“Graph Coloring Based Distributed Load
Balancing Algorithm and Its Performance
Evaluation,” in the 4th Annual Symposium on
Parallel Processing, 1990.

[17] Jensen T. and Toft B., Graph Coloring Problems,
Wiley-Interscience, 1995.

Mohammad Malkawi received his
PhD degree from the University of
Illinois at Urbana-Champaign in
computer engineering in 1986. He
received his MSc in electrical and
computer engineering from
Yarmouk University in 1983 and his

BSc degree in computer engineering from Tashkent
Polytechnic Institute in 1980. Currently, Malkawi is a
senior staff engineer at SUN Microsystems, USA. He
is working on the DARPA sponsored project on “High
Productivity Computing Systems”. His research
interests include reliable and high availability
computing systems, distributed and parallel high
performance systems, memory architecture, wireless
communication, and graph theory.

Mohammad Al-Haj Hassan
obtained his BSc and MSc from The
University of Jordan in 1973 and
1977, respectively, and his PhD
degree in computer science from
Clarkson University at NY, USA.
His main field of specialization is
computer algorithms with specific

concentration on graph algorithms & their applications.
Other fields of research are: machine learning, parallel
computations and algorithms, distance learning and
web-based courses design. He taught many computer
courses in both undergraduate and postgraduate levels.
In addition, he was the dean of several faculties in
several universities for 11 years. He has enrolled in lot
of other activities such as: software evaluation,
chairing and/or member of a variety of university
committees, implementing many university and social
services, computer lab construction. He also
supervised 3 master thesis, an examiner of 4 master
thesis, attended more than 15 conferences, most of
them as speaker, published 16 papers, an author of 4
books, and involved in accreditation issues for more

than 14 years and has been involved in quality
assurance issues through some activities of the Quality
Assurance Agency (QAA) of United Kingdom. He is a
member in the editorial board and/or referee of several
journals. He has been the secretary general of the
International Arab Conference on Information
Technology (ACIT) for 4 years. Since September
2005, he is a professor in computer science and the
vice president at the University of Graduate Studies
(UGS), Jordan.

Osama Al-Haj Hassan obtained his
BSc degree in computer science
from Princess Summaya University
of Technology in 2002, his MSc
from New York Institute of
Technology, and he is currently a
PhD student at the University of

Georgia, USA. His research interests include peer-to-
peer networks, and applications of graph algorithms.
He taught introduction to computer science and java
courses. He developed websites and applications for
the universities in which he was working.

A New Exam Scheduling Algorithm Using Graph Coloring 87

