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Abstract: Many fault detection techniques/algorithms for detecting faults in rule bases have appeared in the literature. These 
techniques assume that the rule base is static. This paper presents a new approach/algorithm for detecting faults in dynamic 
rule bases, where rules may be added/deleted in response to certain events happening in the system being controlled by the 
rule base. This is performed by maintaining a set of structures, where new rules can be added to the dynamic rule base 
without the need to rebuild the structures that represent the rule base. The approach makes use of spanning trees and disjoint 
sets to check a dynamic rule base for different kinds of faults. The algorithm devises a tree/forest of the underlying directed 
graph by treating the directed graph as an undirected graph, and then checks for various faults and properties. The algorithm 
devises a new rule base (which is a subset of the current rule base) that is equivalent, in terms of its reasoning capabilities, to 
the current rule base, with the properties that the new rule base is fault free. This is performed as rules are being added to the 
dynamic rule base one at a time. 
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1. Introduction
Developing efficient algorithms to verify rule-based 
systems against different kinds of faults within the 
context of large rule–based systems have attracted a 
large amount of research efforts due to the important 
role of rule-based systems in various application 
domains, including Expert Systems (ESs), active 
database systems, and Information Distribution 
Systems (IDSs) to name a few [1-11]. Verification is 
important to ensure the high quality of rule-based 
systems and to achieve an acceptable level of 
performance of these systems. The effects of faults 
may appear in the performance of rule-based systems. 
Such faults may cause incorrect or undesired actions. 
Sometimes, these effects may be harmless, such as 
redundancy that may cause the system’s performance 
to be inefficient. On the other hand, contradiction 
faults may lead to incorrect conclusions. It is worth 
mentioning that some redundancy faults may be 
included intentionally to gain some performance, 
instead of going into a long chain process to reach 
some conclusion/goal. However, in such cases the 
designer must be knowledgeable of the presence of 
such faults and their consequences from the practical 
point of view.
Many approaches and algorithms for fault detection 

have been presented and proposed in the literature. The 
Expert System Validation Associate (EVA) program 
was developed at Lockheed [11]. EVA program was 
used to check for rule redundancy, inconsistency and 
contradiction. A decision-table-based processor for 

checking completeness and consistency in rule-based 
systems was presented in [3]. The COVER tool was 
presented in [9]. The tool was designed to build upon 
the best features of earlier systems. It is used to check 
rules based on a subset of first-order logic. A Petri-Net 
based approach for verifying rule bases was presented 
in [1]. A Transition Directed Graph (TDG), which 
represents rule sets, was presented in [5, 6, 11]. TDG 
was used in the development of a set of algorithms to 
detect inconsistency, contradiction, circularity, 
unreachability, and redundancy in chained inference 
rules. These programs employed different approaches 
for detecting some faults. Based on these approaches 
many automated tools have been developed and used 
to inspect a rule-based system for known potential 
faults. 
The automated tools and approaches didn’t consider 

the issue of dynamic rule bases, which are 
characterized by the capability of being updated during 
the operation of the system, i. e., some rules may be 
added at a certain point in time and other rules may be 
deleted at other points in time. Adding/deleting rules 
affect the rule chains in rule bases. Such rule bases are 
common in active database systems and information 
distribution systems, where rules are added as new 
events occur in the system. If a dynamic rule base is 
fault free at a certain time, then deleting rules may 
generate unreachability faults only, by making some 
output vertices unreachable. Other types of faults, 
namely, inconsistency, redundancy/subsumption, 
circularity, and redundancy, can occur by adding new 
rules to a dynamic rule base. Adding rules may affect 
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reachability if the rule being added involves an input 
vertex. Generally, this doesn’t happen since we always 
assume that the set of input and output vertices are 
always known beforehand. Therefore, the focus here is 
on adding new rules to the dynamic rule base.

2. Rule-Based Systems Faults
A set of well-known faults that may appear in a rule 
base are presented in [7, 8, 9]:

• Redundancy/Subsumption: Two rules conclude the 
same outcome from the same input data. A special 
case of redundancy is subsumption, where, two 
rules conclude the same outcome, but one has 
additional constraints, which may or may not be 
necessary.

•  Contradiction/Conflict: Two rules conclude 
different outcomes from the same input data.

• Inconsistency: An antecedent of one rule is mutually 
exclusive to the consequent of such rule (or a chain 
of rules).

• Circularity: The rule base contains a cycle inference 
chain, which may cause a backward-chaining 
inference engine to enter an endless loop.

• Unreachability: Unreachability occurs if there is no 
path between any two given vertices. 

3. Structures Used in the Algorithm
Many transformation techniques for rule bases have 

been suggested in the literature. Petri Nets were 
described in [1]. In this approach, a rule base is 
modeled as a Petri Net where parameter-value pairs 
corresponding to places and rules are analogous to 
transitions. Then the transition/place relationship 
modeled in a Petri-Net can be summarized in the form 
of an incident matrix. Decision-table-based processors 
were presented in [3]. In this approach, a decision table 
is created from the rules in the rule base. A directed-
graph-based approach was presented in [6], where the 
rule base is modeled as a directed graph and the 
process of anomaly detection is reduced to reachability 
among nodes. A transition-directed-graph-based 
approach, which is similar to [6] is presented in [4, 5]. 
In this paper, we use the transformation technique 

where the dynamic rule base is modeled as a directed 
graph as new rules are being added to the dynamic rule 
base. In this directed graph, nodes correspond to 
propositions and rule identifiers (in case a rule 
antecedent is a conjunction of propositions) and edges 
correspond to the rules. Each rule has a rule identifier. 
A spanning tree/forest will be devised using Kruskal’s 
like algorithm. During the operation of the algorithm, 
disjoint sets will be generated. These sets will be used 
for detecting various kinds of faults while the dynamic 
rule base is being updated.

4. Fault Detection Algorithm for Dynamic 
Rule Bases

A spanning tree of an undirected graph G is a tree 
formed from graph edges that connects all the vertices 
of G. Formally, let G = (V, E) be an undirected 
connected graph. A subgraph T = (V, E´) of G is a 
spanning tree of G iff T is a tree. An interesting 
property of a spanning tree is that it represents the 
minimal subgraph G´ of G such that V (G´) = V (G). 
By minimal, we mean the one with the fewest number 
of edges.
Representing a dynamic rule base as a directed 

graph, a spanning tree/forest of such a graph will be 
devised. Although spanning trees are generally 
obtained for undirected graphs, they still make sense 
for directed graphs. In our case, despite the fact that the 
underlying graph is directed, we treat that as an 
undirected graph with some kind of interpretation of 
the edges that create cycles. A variation of Kruskal’s 
algorithm is used, which is a greedy algorithm that 
builds a spanning tree by maintaining a forest (a 
collection of trees) as new rules are being added to the 
dynamic rule base. Initially, there are |V| single-node 
trees. Adding an edge merges two trees into one. It 
turns out to be simple to decide whether edge (u, v) 
should be accepted or rejected. The appropriate data 
structure or approach is the union/find algorithm. This 
approach, as presented in DRB_Fault_Detection
algorithm in Figure 1 is of great importance to devise 
an equivalent rule base RB´, of m rules where m ≤ n, to 
the current dynamic rule base RB, which has n rules, 
such that RB´ has the same reasoning capabilities as 
RB. Due to the fact that spanning trees are not unique, 
such a devised rule base may not be unique.
The pseudocode of the algorithms uses a set of 

conventions. Block structures are indicated using 
statement indentation. An “end if” matches every “if”, 
an “end while” matches every “while”, and an “end 
for” matches every “for”. The looping and conditional 
constructs have the same interpretation as in C. The 
algorithms can be translated to working C or Java 
programs in a straightforward manner.

DRB_Fault_Detection algorithm checks the current 
rule base when a new rule is added to the dynamic rule 
base as follows:

1. It calls Check_for_Redundancy_ and_Circularity (r, 
RB´, C, R, S) procedure to check if it causes a 
redundancy or circularity fault pattern. In this call, r
is the new rule, RB’ is the current fault-free dynamic 
rule base, C is the set of circularity fault patterns, R
is the set of redundancy fault pattern, and S is the 
disjoint sets.

2. It checks if the new rule r contains exclusive 
vertices. If r contains exclusive vertices, it calls 
Check_for_Inconsistency_and_Contradiction (r, S) 
procedure to perform this check.
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3. The algorithm calls Check_for_Unreachability (r, S)
procedure to check for potential unreachability 
faults.

The set_union (S, r1, r2) procedure implemented by 
(S[r2] = r1) maintains the direction of the edges in the 
original directed graph, by using the straightforward 
implementation of the algorithm. The find procedure, 
as presented in Figure 2, determines the root of the set 
to which a vertex (e. g., x) belongs. To determine 
whether an edge <x, y> creates a cycle in the directed 
graph or undirected graph, the procedure find_path, as 
presented in Figure 3, can be used to check if two 
nodes  x and y are on the same path in a certain disjoint 
set S. If x is reachable from y, then x and y are on the 
same path and adding an edge <x, y> does not create a 
cycle. However, it indicates that there is another path 
that connects x to y. Thus there is a redundancy fault 
pattern. On the other hand, if x is not reachable from y, 
then x and y are not on the same path and adding an 
edge <x, y> creates a real cycle. Thus, this is a 
circularity fault pattern.

(a) DRB_Fault_Detection algorithm.

(b) Check_for_Redundancy_and_Circularity procedure.

Check_for_Inconsistency_and_Contradtion(r, S) 
   /* RB’ is not affected by this procedure. */
For each vertex v in r do

      If v is an exclusive vertex then 
         root_of_v = Find (v, S)
         /* vp is the exclusive vertex of v */
         root_of_vp = find (vp, S) 
         If (root_of_v == root_of_vp) then
           While (S[root_of_v]!=0 && S[root_of_v]!=root_of_vp) 
                root_of_v = S[root_of_v]
           End While

         End If
         If (S[root_of_v] == root_of_vp) then

Display “r causes Inconsistency Fault Pattern”
         Else

Display “r causes Contradiction Fault Pattern”
         End if
      End if
   End for
End Check_for_Inconsistency_and_Contradiction

(c) Check_for_Incosistency_and_Contradiction procedure.

(d) Check_for_Unreachability procedure.

Figure 1. Fault detection algorithm for dynamic rule bases. 

 

Figure 2. Find procedure.

Figure 3. Find_path Procedure.

The process of detecting various kinds of faults by 
formulating faults as reachability problems in the
graph-based representation should be 
augmented/followed by a check of the in-degree of the 
rule identifier vertices that comprise a certain path in 
the fault patterns. Although the formulation gives a 
necessary condition for the existence of various kinds
of faults in a rule base, the condition is not sufficient as 
long as rules with multiple antecedents are considered. 
To deal with this additional issue, we can compute the 
in-degree of the rule identifier vertices in the path(s) of 
the fault pattern to determine whether a certain fault 
satisfies the necessary or the sufficient conditions of 

DRB_Fault_Detection (r, RB´, C, R, S)
Check_for_Redundancy_and_Circularity(r, RB´, C, R, S) 
If r contains exclusive vertices then
Check_for_Inconsistency_and_Contradiction(r, S)

End If 
Check_for_Unreachability(r, S)

End DRB_Fault_Detection

Check_for_Redundancy_and_Circularity (r, RB’, C, R, S) 
   For all edges comprising rule r do

Choose the next edge <u, v>
Delete <u, v> from r

      u_set = find (u, S) 
      v_set = find (v, S)
      If <u,v> does not create a cycle in RB’  then
         /* (i. e., u_set <> v_set)*/

Add <u, v> to RB’
         set_union(S, u, v) 
      Else

If  find_path(u, v, S) == ’C’ then
              /*<u, v> creates a cycle in the directed graph*/

Add r to C
         Else /*<u, v> creates a cycle in the undirected graph*/

Add r to R
         End If 
      End If 
   End For
End Check_for_Redundancy_and_Circularity

Check_for_Unreachability(r, S) 
   /* RB’ is not affected by this procedure. */
   For each pair of vertices (x, y) in r do
      root_of_x = find (x, S)
      root_of_y = find (y, S)

If (root_of_x == root_of_y) then
        While (S[root_of_x]!= 0 && S[root_of_x]!=root_of_y) 
           root_of_x = S [root_of_x]

End While
If (S [root_of_x] == root_of_y) then
Display “r causes Unreachability Fault Pattern”
End If 

End If 
End For

End Check_for_Unreachability

find (x, S) 
  If (S[x] <= 0) then

Return x
  Else

Return (find(S[x], S))
  End If 
End find

find_path(x,y,S) 
  While (S[x] != 0 & S[x] !=y) 
     x = S[x]
  End While
If (S[x] == y) then

Return ‘R’  /* A redundancy fault pattern */
Else

Return ‘C’  /* A circularity fault pattern */
End If 

End find_path
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representing a real fault. This information can be 
collected during the generation of the spanning 
tree/forest and thus does not represent an expensive 
computational step. In addition, in real-world rule 
bases, the number of redundant and circularity fault 
patterns is relatively small and is assumed to be a 
constant number.  In generating the new rule base, the 
assumption is that linear-edge-rule-relationship holds 
for the graph representing the rule base. This property 
says that if the graph has m edges and the rule base has 
n rules, then O(m) = O(n).
   When a change happens to the dynamic rule base, the 
new approach, as presented, checks for potential 
redundancy faults. It also checks for potential 
circularity faults in the current dynamic rule base. 
Once these sets of faults have been considered, it 
would be relatively simple to check for the rest of the 
well-known faults in a straightforward manner. An 
inconsistency fault occurs when an antecedent of one 
rule is mutually exclusive to the consequent of such a 
rule (or a chain of rules). This means that starting from 
a vertex (e. g., A), we can reach to its exclusive vertex 
¬A. To check for this kind of anomaly, we first
determine the set of exclusive vertices, and then we 
need only to check whether the exclusive vertices are 
in the same disjoint set and there is a path between 
them (using the procedure find_path). A 
contradiction/conflict fault pattern occurs when two 
rules conclude different outcomes from the same input 
data. This means that starting from one 
vertex/proposition (e. g. A) we can reach to two 
exclusive vertices (e. g., C and ¬C). To check for this 
kind of fault, we first determine the set of exclusive 
vertices, and then we only need to check whether the 
exclusive vertices are in the same disjoint set and none 
of them is the root of the set. If they are in the same set 
and none of them is a root, then there is a contradiction 
anomaly, otherwise there is no contradiction anomaly. 
Unreachability faults occur if there is no path between 
any two given vertices. To check for that, we first 
determine whether the two vertices are in the same 
disjoint set or not. If they are in the same set, we 
determine whether there is a path between them, and in 
this case there is no unreachability anomaly, otherwise 
there is an unreachability anomaly. On the other hand, 
if two vertices are not in the same disjoint set, then we 
conclude that there is an unreachability anomaly. The 
benefit of our approach is its ability to detect faults as 
the dynamic rule base is being updated. If a rule r is 
added to the dynamic rule base, then the new dynamic 
rule base can be verified against various faults without 
having to rebuild any structures from scratch.

Example: Assume we started with an empty dynamic 
rule base. The following actions happen during the 
operation of a system controlled by a dynamic rule 
base. A, B, C, …etc. are propositions:

A     

B

                                      A                  C        

    B

                                      A                C    

                                      B     

A                   C  

B                   D

            A              C            ¬A  

                                      B                   D       

                     A          C            ¬A  

                                      B                   D       

(a) Rule A→B is added                                            

A digraph representing 
the rule base after 
accepting A→ B.

(b) Rule B→ C is added

A digraph representing the 
rule base after accepting 
A→ B and B→ C.

(c) Rule C→¬A is added

A digraph representing the 
rule base after accepting
A→ B and B→ C. C→¬A is 
rejected since it creates an 
inconsistency fault pattern, 
i. e., a path from A to ¬A.

(d) Rule B→D is added

A digraph representing 
the rule base after 
accepting A→ B,  B→ C, 
and B→D.

(e) Rule ¬A→C is added

A digraph representing 
the rule base after 
accepting A→B, B→C, 
B→D, and ¬A→C.

(f) Rule A→C is added

A digraph representing 
the rule base after 
accepting A→ B, B→ C, 
B→ D, and ¬A → C. 
A→C is rejected since it 
creates a redundancy 
fault, i. e., there exists a 
path from A to C through 
B.
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                                      A                C            ¬A  

                                      B                   D  

5. DRB_Fault_Detection Algorithm 
Computational Complexity

DRB_Fault_Detection algorithm is a variation of 
Kruskal’s spanning tree algorithm, with no need to sort
preprocessing step. Therefore, it has a worst-case 
complexity of O(nlogn), where n is the number of rules 
being considered for addition to the dynamic rule base. 
DRB_Fault_Detection algorithm calls 
Check_for_Inconsistency_and_Contradtion procedure 
n times (once for each rule added to the dynamic rule 
base). The for loop for the edge components of each 
rule is assumed to be constant with a complexity of 
O(1). The complexity of find is O(logn), using smart 
union algorithms (union-by-size approach). Thus, the 
worst-case complexity of checking for all redundancy 
and circularity faults is O(nlogn). 
DRB_Fault_Detection algorithm calls 
Check_for_Inconsistency_and_Contradtion procedure
to check for inconsistency and contradiction fault 
patterns. Once the spanning tree and the data structures 
are obtained, the worst-case complexity of checking 
for inconsistency faults is O(logn), since this can be 
determined by using the find_path procedure, which 
has a complexity of O(logn) using smart union 
algorithms. The worst-case complexity of checking for 
contradiction faults is O(1), since a path compression 
technique can be used to obtain the disjoint sets. 
Finally, the worst-case complexity of checking for 
unreachability faults is O(n), which is dominated by 
the find_path procedure. Our approach represents a 
major improvement over Petri-Nets approach, which 
has a complexity of )( 2nO for detecting inconsistency 
and redundancy [1]. 

6. Experimental Results of the Fault 
Detection Algorithms

Generally, an empirical study is an integral part of the 
analysis of algorithms. To study the experimental 
complexity of our algorithms, the fault detection 
algorithms were implemented in C and executed on 
different kinds of dynamic rule sets represented by the 
graph representation. A number of added rules 
generate a set of faults, and the algorithms detected all 
these faults. A performance profile, which represents 

the amount of time the algorithms consume, was also 
generated. This has been compared with the Petri Nets 
algorithm profile. The performance measurements 
have shown that our approach outperforms the Petri 
Nets approach. A set of four test cases, consisting of 
100, 200, 300, and 400 rules were considered. Each 
test case uses a randomly-generated set of rules with a 
number of faults resulting from the random generation 
of the rule sets. The result of each case is plotted for 
our approach and the Petri Nets approach as shown in 
Figure 4. The performance measurement confirms the 
earlier theoretical analysis of the various algorithms. 
Using the timing data, the shapes of the curves are 
determined.

7. Conclusion
A new approach, based on spanning trees and disjoint 
sets, for verifying dynamic rule bases is presented. The 
approach uses an algorithm that checks for various 
fault patterns in a dynamic rule base and generates a 
new rule base, from the rules considered so far, that is 
fault free and has the same reasoning capabilities as the 
original rule base. Once the spanning tree(s) and the 
associated disjoint sets are built, checking for different 
faults as new rules are being added to the dynamic rule 
base can be performed in a straightforward manner. In 
addition, an empirical study, which confirms the 
theoretical analysis, is also presented. 
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(g) Rule C→A is added

A digraph representing 
the rule base after 
accepting A→ B, B→
C, B → D, and ¬A→
C. C → A is rejected 
since it creates a 
circularity fault pattern, 
i. e., a cycle A → B →
C→ A would occur.
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