
16 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Incremental Learning of Auto-Association
Multilayer Perceptrons Network

Essam Al-Daoud
Faculty of Science and Information Technology, Zarqa Private University, Jordan

Abstract: This paper introduces a new algorithm to reduce the time of updating the weights of auto-association multilayer
perceptrons network. The basic idea is to modify the singular value decomposition which has been used in the batch algorithm
to update the weights whenever a new row is added to the input matrix. The computation analysis and the experiments show
that the new algorithm speeds up the implementation about 5-8 times.

Keywords: Neural networks, auto-association multilayer perceptrons, singular value decomposition.

Received October 10, 2004; accepted December 16, 2004

1. Introduction
Neural Networks (NN) adapt to changing
environments and afford the possibility of relatively
easy hardware implementation. They can even
overcome the drawbacks of classical algorithms or
enhance the performance of the classification [5]. The
Multilayer Perceptrons (MLP) and the Auto-
Association Multilayer Perceptrons (AAMLP)
respectively embed supervised and unsupervised
mappings of the input space in their hidden layers. An
NN implementation of Sammon’s mapping which has
been suggested by Mao and Jain, and Kohonen’s Self-
Organizing Map (SOM) are other examples of neural
networks [1, 6, 9].

AAMLP is used to provide pattern completion to
produce a pattern whenever a portion of it or a
distorted pattern is presented. In the second case, the
network actually stores pairs of patterns building an
association between two sets of patterns. AAMLP is
forced to perform an identity mapping through a small
hidden layer; in other words the target output pattern is
identical to the input pattern. Hence, an AAMLP has a
configuration of M:P:M with M units in both the input
and output layers and P < M hidden units in the hidden
layer [3].

The remainder of this paper is organized as follows.
Section 2 presents the basic equations of auto-
association multilayer perceptrons. Section 3
introduces the AAMLP Batch Algorithm. Section 4
updates the components of the singular value
decomposition. In section 5 we introduce a new
algorithm to update the weights whenever a new row
in the input matrix is added. Section 6 discusses the
improvement of using the suggested algorithm
numerically and analytically.

2. Auto-Association Multilayer Perceptrons
The AAMLP consists of an input layer with M input
units, a hidden layer with P units and M output unites.
Let X be an M × N real input matrix formed by N input
vectors and let H and Y be the P × N and M × N
matrices formed by the hidden and the output vectors
respectively. Subsequently the output matrix Y of the
AAMLP is obtained as the result of the following
operations:

 B = W1X + w1ut (1)
H = F (B) (2)
Y = W2H + w2ut (3)

Where W1 is the input-to-hidden P × M weight matrix,
W2 is the hidden-to-output M × P weight matrix, w1
and w2 are P-vectors of biases and u is N-vector of
ones. AAMLP training problem is to find optimal
weight matrices W1, W2 and bias vectors w1, w2
minimizing the mean square error:

J = || X-Y || 2

Where ||.|| is Euclidean matrix norm. This problem
can be solved by the usual Error Back-Propagation
(EBP) algorithm as described by Rumelhart et al. [1].
However Bourlard and Kamp propose a new fast
algorithm based on standard linear algebra and the
Singular Value Decomposition (SVD). Moreover, they
show that the nonlinear functions at the hidden layer
completely unnecessary [3, 4]. Therefore; we will
restrict our study on the linear function F (B) = B.

3. AAMLP Batch Algorithm
Bourlard and Kamp derive a new algorithm using the
SVD. The following discussion summarizes their work
[3]:

Incremental Learning of Auto-Association Multilayer Perceptrons Network 17

• Using (3) the mean square error can be rewritten as:

J = || X - W2H + w2ut || 2 (4)

• Minimization of J with respect to w2 yields

w2 = (X - W2H)u / N (5)

• Substituting (5) in (4) we get:

 J =||X (I - uut / N) - W2H (I - uut / N)||2

Let X' = X (I - uut / N) and H' = H (I - uu t / N), then

 J = || X ' - W2 H' ||2

J can be minimized if we found the best rank P
approximation of X', this is a standard problem can be
solved by SVD as follows:

SVD (X') = Up ∑p Vp
t (6)

Where Up and Vp are M × P matrix associated with
the eigenvectors of X' X' t and X' t X' respectively, and
∑p is a diagonal matrix formed by the roots of the
largest P eigenvalues, for more information see [8].
Thus:

W2 H' = Up ∑p Vp
t

this implies to:

W2= UpT -1 (7)
 and

 H' = T ∑p Vp
t

Where T is an arbitrary non singular P × P matrix (to
reduce the calculations we will use sparse or diagonal
matrix), Since B = H then we have

T ∑p Vp
t = W1X' + w1ut (I - uut / N)

But utu= N, therefore w1 is arbitrary and

T ∑p Vp
t = W1X'

This implies to

W1 = TUp
t (8)

Finally by replacing H and W2 in (3) we get

w2 = (I - Up Up
t)Xu / N - Up T-1 w1 (9)

Algorithm 1. AAMLP Batch Algorithm

Input: The number of input units M, the number of
input vectors N, the number of the hidden units
P, The input matrix X, an arbitrary non
singular matrix T, a unit victor u, and an
arbitrary vector w1.

Ouput: The optimal Weights W1, W2 , and w2.

1. Xp = X - ((X * u) * u') / N
2. [U, S, V] = svd (Xp);

3. Up = U (:,1:P)
4. W1 = T * Up'
5. W2 = Up * inv (T)
6. Mx = (1 / N) * X * u
7. w2 = (Mx – Up * (Up' * Mx)) - (W2 * w1))

4. Updating the SVD
Let X be an M × N real matrix, SVD of X = VU Σ
and let C be a new column, then we can update SVD as
follows [2, 7]:

SVD ([X C]) = VU ′′Σ ′′′′ t

But the previous components can be computed as
follows:

U ′′ = [U J] U ′

Σ ′′ = Σ′

V ′′ =

I

V
0

0 V ′

 where

F = C - U * U t * C
 J = F / ||F||
L = U t * C

 Q =

Σ
||||0 F

L

SVD (Q) = tVU ′Σ′′ .

5. Updating the Weights of AAMLP
Network

Suppose that after we have found the weights of
AAMLP network; we like to add a new element at the
end of each input vector, this means a new row must be
added to the end of the input matrix X. hence the
previous weights must be updated. Let ppU Σ, and
Vp be the singular value decomposition of the input
matrix X, and let R be the new row, thus the new input
matrix is:

R
X

Let

′
′

R
X

=

R
X

* (I - uut / N) and p′ = p + 1 be

the number of hidden units in the new network, this
implies to

X ' = X (I - uut / N)
R′ = R (I – uut / N)

and

 SVD (

′
′

R
X) = SVD ([X' R'] t)

18 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

= SVD ([X' R'])t

= tt
ppp VU)(′′′ ′′Σ ′′′′

= t
ppp UV ′′′ ′′Σ ′′′′

But, the first component of SVD (

′
′

R
X) can be

computed as follows:

pV ′′′ =

I

Vp

0
0

pV ′′

 =Vp* pV ′+ V ′ (p + 1, p + 1) (10)
Where

F = R’ - pU * t
pU * R’ (11)

L = t
pU * R’ (12)

Q =

Σ
||||0 F

Lp

SVD (Q) = p
t

pp VU ′′′ ′Σ′′ (13)

So the new weights are

W1 = T
t

pV ′′′ (14)

W2= pV ′′′ T -1 (15)

w2 = (I - pV ′′′
t

pV ′′′) Xu / N) - pV ′′′ T-1 w1 (16)

Algorithm 2. Increment AAMLP algorithm

Input: The number of input units M, the number of
input vectors N, the number of the hidden units
P’ = P + 1, the component of the input matrix X
(Up, ∑p, and Vp), an arbitrary non singular
matrix T, a unit victor u, an arbitrary vector w1,
and a new row R.

Ouput: The optimal Weights W1, W2 , and w2.

1. Xp = X - ((X * u) * u') / N;
2. Rp = R - ((R * u) * u') / N;
3. F = norm(Rp - Up * (Up' * Rp));
4. L = Up' * Rp;
5. Z (1:1, 1:P) = 0;
6. Q = [S L; Z F];
7. [U2, S2, V2] = svds (Q);
8. V3=Vp * V2 (1:P, 1:P)+V2 (P + 1, P + 1);
9. W1 = T * V3'
10. W2 = V3 * inv (T)
11. Mx = (1 / N) * X * u
12. w2 = (Mx - V3 * (V3' * Mx)) - (W2 * w1))

In algorithm 2 we have used the sparse matrices
procedure svds () which is considered much faster than
the procedure svd ().

6. Complexity Analysis and Experiments
The complexity of the batch algorithm equals to the
total complexity of the equations (6-9), it is clear that:
The most expensive equation is (6) which takes
O (M * N * C) operations where C = min (M, N), and
since the matrix T can be diagonal or sparse the other
equations takes O (M * P) or O (N * P) operations. On
other hand; the complexity of the new algorithm equals
the total complexity of the equations (10-16).
Equation (10) is the most expensive equation and takes
O (M * P2) operations, but equation (13) takes O (P2)
operations because Q is bordered diagonal (remember
that: To reduce the number of multiplications in the
other equations we have to multiply matrix_vector
before matrix_matrix). Subsequence the new algorithm
is faster than the batch algorithm because P ≤ min (M,
N), furthermore; matrices multiplications can be done
faster by using Winograd method.

For our experiments, we use random input matrices
for training and testing. The machine had 1.2 GH Intel
Pentium 4 CPU with 256 MB and the code
implemented by using MATLAB 6.5. Table 1 and
Figure 1 show the advantage of using the new
algorithm over the batch algorithm if a new row is
added to the input matrix X.

Table 1. Comparison between the Batch algorithm and the new
algorithm.

M+1 N
Batch

Algorithm
(Seconds)

The New
Algorithm
(Seconds)

Error
J = ||X - Y||2

301 300 3.02 0.67 0.1*10-10

401 450 9.04 1.21 0.1*10-10

501 550 17.34 3.64 0.4*10-11

601 500 30.33 6.12 0.4*10-11

701 700 49.50 8.5 0.3*10-11

801 900 85.96 13.94 0.1*10-11
1201 1100 258.41 43.18 0.2*10-12

1601 1600 873.91 143.68 0.2*10-12

2001 2100 3665.4 513.08 0.1*10-12

0

500

1000

1500

2000

2500

3000

3500

4000

301 501 701 1201 2001 M

Batch
The New Algorithm

Figure 1. Comparison between the batch algorithm and the new
algorithm.

Incremental Learning of Auto-Association Multilayer Perceptrons Network 19

7. Conclusion
We have shown that the implementation of the new
algorithm reduces the time of updating the weights of
auto-association multilayer perceptrons whenever a
new row is added to the input matrix. The comparison
shows that the new algorithm speeds up the
computation about 5-8 times. This work can be
extended easily if a new input vector (or column) is
added to the input matrix.

References
[1] Bishop C. M., Neural Networks for Pattern

Recognition, Oxford Press, 1995.
[2] Brand M., “Fast Online SVD Revisions for

Lightweight Recommender Systems,” in
Proceedings of the SIAM International
Conference on Data Mining (SDM), TR2003-
014, May 2003.

[3] Bourland H. and Kamp Y., “Auto-Association by
Multilayer Perceptrons and Singular Value
Decomposition,” Biological Cybernetics, vol. 59,
pp. 291-294, 1988.

[4] Japkowicz N., Hanson S. J., and Gluck M. A.,
“Nonlinear Autoassociation is not Equivalent to
PCA,” Neural Computation, vol. 12, no.3, pp.
531-545, March 2000.

[5] Lerner B. H., Guterman M., Aladjem I., Dinstein,
and Y. Romem, “On Pattern Classification with
Sammon’s Nonlinear Mapping: An Experimental
Study,” Pattern Recognition, vol. 31, pp. 371-
381, 1998.

[6] Mao J. and Jain A. K., “Artificial Neural
Networks for Feature Extraction and Multivariate
Data Projection,” IEEE Transactions on Neural
Networks, vol. 6, pp. 296-317, 1995.

[7] Matthew B., “Incremental Singular Value
Decomposition of Uncertain Data with Missing
Values,” in Proceedings of the 7th European
Conference on Computer Vision-Part I, pp. 707-
720, 2002.

[8] Strang G., Introduction to Linear Algebra,
Wellesley, MA, Wellesley-Cambridge Press,
1998.

[9] Valentin N. and Denoeux T., “Neural Network-
Based Software Sensor for Coagulation Control
in a Water Treatment Plant,” Intelligent Data
Analysis, vol. 5, pp. 23-39, 2001.

Essam Al-Daoud is an assistant
professor at the Department of
Computer Science, Zarqa Private
University, Jordan. He received his
PhD from University Putra Malaysia,
Malaysia, in 2001. His research
interests include cryptography, data

mining, quantum computing, neural networks, and
Singular Value Decomposition (SVD).

