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Abstract: This paper introduces a new algorithm to reduce the time of updating the weights of auto-association multilayer 
perceptrons network. The basic idea is to modify the singular value decomposition which has been used in the batch algorithm 
to update the weights whenever a new row is added to the input matrix. The computation analysis and the experiments show 
that the new algorithm speeds up the implementation about 5-8 times.  
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1. Introduction
Neural Networks (NN) adapt to changing 
environments and afford the possibility of relatively 
easy hardware implementation. They can even 
overcome the drawbacks of classical algorithms or 
enhance the performance of the classification [5]. The 
Multilayer Perceptrons (MLP) and the Auto-
Association Multilayer Perceptrons (AAMLP) 
respectively embed supervised and unsupervised 
mappings of the input space in their hidden layers. An 
NN implementation of Sammon’s mapping which has 
been suggested by Mao and Jain, and Kohonen’s Self-
Organizing Map (SOM) are other examples of neural 
networks [1, 6, 9].

AAMLP is used to provide pattern completion to 
produce a pattern whenever a portion of it or a 
distorted pattern is presented. In the second case, the 
network actually stores pairs of patterns building an 
association between two sets of patterns. AAMLP is 
forced to perform an identity mapping through a small 
hidden layer; in other words the target output pattern is 
identical to the input pattern. Hence, an AAMLP has a 
configuration of M:P:M with M units in both the input 
and output layers and P < M hidden units in the hidden 
layer [3].

The remainder of this paper is organized as follows. 
Section 2 presents the basic equations of auto-
association multilayer perceptrons. Section 3 
introduces the AAMLP Batch Algorithm. Section 4 
updates the components of the singular value 
decomposition. In section 5 we introduce a new 
algorithm to update the weights whenever a new row 
in the input matrix is added. Section 6 discusses the 
improvement of using the suggested algorithm 
numerically and analytically.

2. Auto-Association Multilayer Perceptrons
The AAMLP consists of an input layer with M input 
units, a hidden layer with P units and M output unites. 
Let X be an M × N real input matrix formed by N input 
vectors and let H and Y be the P × N and M × N
matrices formed by the hidden and the output vectors 
respectively. Subsequently the output matrix Y of the 
AAMLP is obtained as the result of the following 
operations:

 B = W1X + w1ut   (1)
H = F (B)           (2)
Y = W2H + w2ut (3)

Where W1 is the input-to-hidden P × M weight matrix, 
W2 is the hidden-to-output M × P weight matrix, w1
and w2 are P-vectors of biases and u is N-vector of 
ones. AAMLP training problem is to find optimal 
weight matrices W1, W2 and bias vectors w1, w2 
minimizing the mean square error: 

J = || X-Y || 2

Where ||.|| is Euclidean matrix norm. This problem 
can be solved by the usual Error Back-Propagation 
(EBP) algorithm as described by Rumelhart et al. [1]. 
However Bourlard and Kamp propose a new fast 
algorithm based on standard linear algebra and the 
Singular Value Decomposition (SVD). Moreover, they 
show that the nonlinear functions at the hidden layer 
completely unnecessary [3, 4]. Therefore; we will 
restrict our study on the linear function F (B) = B.

3. AAMLP Batch Algorithm 
Bourlard and Kamp derive a new algorithm using the 
SVD. The following discussion summarizes their work 
[3]:
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• Using (3) the mean square error can be rewritten as: 

J = || X - W2H + w2ut || 2         (4)

• Minimization of J with respect to w2  yields  

w2 = (X - W2H)u / N            (5)

• Substituting (5) in (4) we get:

          J =||X (I - uut / N) - W2H (I - uut / N)||2

Let X' = X (I - uut / N) and H' = H (I - uu t / N), then

            J = || X ' - W2 H' ||2

J can be minimized if we found the best rank P
approximation of X', this is a standard problem can be 
solved by SVD as follows:

SVD (X') = Up ∑p Vp
t (6)

Where Up and Vp are   M × P matrix associated with 
the eigenvectors of X' X' t  and X' t X' respectively,  and 
∑p is a diagonal matrix formed by the roots of the 
largest P eigenvalues,  for more information see [8]. 
Thus:

W2 H' = Up ∑p Vp
t

this implies to:

W2=  UpT -1 (7)
 and

    H' = T ∑p Vp
t

Where T is an arbitrary non singular P × P matrix (to 
reduce the calculations we will use sparse or diagonal 
matrix), Since B = H then we have

T ∑p Vp
t  = W1X' + w1ut (I - uut / N)

But   utu= N, therefore w1 is arbitrary and

T ∑p Vp
t  = W1X'

This implies to 

W1 = TUp
t                           (8)

Finally by replacing H and W2  in (3) we get

w2 = (I - Up Up
t)Xu / N - Up T-1 w1       (9)

Algorithm 1. AAMLP Batch Algorithm

Input: The number of input units M, the number of 
input vectors N, the number of the hidden units 
P, The input matrix X, an arbitrary non 
singular matrix T, a unit victor u, and an 
arbitrary vector w1.

Ouput: The optimal Weights W1, W2 , and w2.

1. Xp = X - ((X * u) * u') / N
2. [U, S, V] = svd (Xp);

3. Up = U (:,1:P)
4. W1 = T * Up'
5. W2 = Up * inv (T) 
6. Mx = (1 / N) * X * u
7. w2 = (Mx – Up * (Up' * Mx)) - ( W2 * w1))

4. Updating the SVD
Let X be an M × N real matrix, SVD of   X = VU Σ
and let C be a new column, then we can update SVD as 
follows [2, 7]:

SVD ([X C]) = VU ′′Σ ′′′′ t

But the previous components can be computed as 
follows:

U ′′ = [U J] U ′

Σ ′′ = Σ′

V ′′ = 







I

V
0

0 V ′

 where

F = C - U * U t * C
 J = F / ||F||
L = U t * C

 Q = 






Σ
||||0 F

L

SVD (Q) = tVU ′Σ′′ .

5. Updating the Weights of AAMLP 
Network 

Suppose that after we have found the weights of 
AAMLP network; we like to add a new element at the 
end of each input vector, this means a new row must be 
added to the end of the input matrix X. hence the 
previous weights must be updated. Let ppU Σ, and 
Vp be the singular value decomposition of the input 
matrix X, and let R be the new row, thus the new input 
matrix is:
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* (I - uut / N) and  p′ = p + 1 be 

the number of hidden units in the new network, this 
implies to 

X ' =  X (I - uut / N)
R′ = R (I – uut / N)

and 
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=  SVD ([X'  R'])t

= tt
ppp VU )( ′′′ ′′Σ ′′′′

=   t
ppp UV ′′′ ′′Σ ′′′′

But, the first component of SVD (








′
′

R
X ) can be 

computed as follows:

pV ′′′  =   







I

Vp

0
0

pV ′′

    =Vp* pV ′+ V ′  (p + 1, p + 1)    (10)
Where 

F = R’ - pU * t
pU * R’                (11)          

L = t
pU * R’ (12)

Q = 






Σ
||||0 F

Lp

SVD (Q) = p
t

pp VU ′′′ ′Σ′′ (13)

So the new weights are

W1 = T 
t

pV ′′′ (14)

W2= pV ′′′ T -1                                                     (15)

w2 = (I - pV ′′′
t

pV ′′′ ) Xu / N) - pV ′′′ T-1 w1  (16)

Algorithm 2. Increment AAMLP algorithm 

Input: The number of input units M, the number of 
input vectors N, the number of the hidden units 
P’ = P + 1, the component of the input matrix X 
(Up, ∑p, and Vp), an arbitrary non singular 
matrix T, a unit victor u, an arbitrary vector w1, 
and a new row R.

Ouput: The optimal Weights W1, W2 , and w2.

1. Xp = X - ((X * u) * u') / N;
2. Rp = R - ((R * u) * u') / N;
3. F = norm(Rp - Up * (Up' * Rp));
4. L = Up' * Rp;
5. Z (1:1, 1:P) = 0;
6. Q = [S L; Z F];
7. [U2, S2, V2] = svds (Q);
8. V3=Vp * V2 (1:P, 1:P)+V2 (P + 1, P + 1); 
9. W1 = T * V3'
10. W2 = V3 * inv (T) 
11. Mx = (1 / N) * X * u
12. w2 = (Mx - V3 * (V3' * Mx)) - (W2 * w1))

In algorithm 2 we have used the sparse matrices 
procedure svds () which is considered much faster than 
the procedure svd ().

6. Complexity Analysis and Experiments
The complexity of the batch algorithm equals to the 
total complexity of the equations (6-9), it is clear that: 
The most expensive  equation  is (6) which takes
O (M * N * C) operations where C = min (M, N), and 
since the matrix T can be diagonal or sparse the other 
equations takes O (M * P) or O (N * P) operations.  On 
other hand; the complexity of the new algorithm equals 
the total complexity of the equations (10-16).
Equation (10) is the most expensive equation and takes 
O (M * P2) operations, but equation (13) takes O (P2)
operations because Q is bordered diagonal (remember 
that: To reduce the number of multiplications in the 
other equations we have to multiply matrix_vector 
before matrix_matrix). Subsequence the new algorithm 
is faster than the batch algorithm because P ≤  min (M,
N), furthermore; matrices multiplications can be done 
faster by using Winograd method.

For our experiments, we use random input matrices 
for training and testing. The machine had 1.2 GH Intel 
Pentium 4 CPU with 256 MB and the code 
implemented by using MATLAB 6.5. Table 1 and 
Figure 1 show the advantage of using the new 
algorithm over the batch algorithm if a new row is 
added to the input matrix X.

Table 1. Comparison between the Batch algorithm and the new 
algorithm.

M+1 N
Batch

Algorithm
(Seconds)

The New
Algorithm
(Seconds)

Error
J = ||X - Y||2

301 300 3.02 0.67 0.1*10-10

401 450 9.04 1.21 0.1*10-10

501 550 17.34 3.64 0.4*10-11

601 500 30.33 6.12 0.4*10-11

701 700 49.50 8.5 0.3*10-11

801 900 85.96 13.94 0.1*10-11
1201 1100 258.41 43.18 0.2*10-12

1601 1600 873.91 143.68 0.2*10-12

2001 2100 3665.4 513.08 0.1*10-12
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Figure 1. Comparison between the batch algorithm and the new 
algorithm.
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7. Conclusion 
We have shown that the implementation of the new 
algorithm reduces the time of updating the weights of 
auto-association multilayer perceptrons whenever a 
new row is added to the input matrix. The comparison 
shows that the new algorithm speeds up the 
computation about 5-8 times. This work can be 
extended easily if a new input vector (or column) is 
added to the input matrix.
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