
The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005 267

Comparison of the Hardware Implementation
of Stream Ciphers

Michalis Galanis, Paris Kitsos, Giorgos Kostopoulos, Nicolas Sklavos, and Costas Goutis
Electrical and Computer Engineering Department, University of Patras, Greece

Abstract: In this paper, the hardware implementations of five representative stream ciphers are compared in terms of
performance and consumed area in an FPGA device. The ciphers used for the comparison are the A5/1, W7, E0, RC4 and
Helix. The first three ones have been used for the security part of well-known standards, especially wireless communication
protocols. The Helix cipher is a recently introduced fast, word oriented, stream cipher. W7 algorithm has been recently
proposed as a more trustworthy solution for GSM, due to the security problems concerning A5/1. The designs were
implemented using VHDL language. For the hardware implementation of the designs, an FPGA device was used. The
implementation results illustrate the hardware performance of each stream cipher in terms of throughput-to-area ratio. This
ratio equals to: 5.88 for the A5/1, 1.26 for the W7, 0.21 for the E0, 2.45 for the Helix and 0.86 for the RC4.

Keywords: Cryptography, security, s tream ciphers, hardware architecture, FPGA implementation.

Received April 27, 2004; accepted July 28, 200 4

1. Introduction
Cryptography works out with problems, which are
associated with secrecy, authentication and integrity.
Cryptography is also closely related with the meaning
of protocol. A protocol consists of sequences of
actions, which concern two or more sides, and it is
designed to fulfill a goal. A protocol uses a
cryptographic algorithm that its intention is to prevent
attempts of thefts and invasions.
Cryptographic algorithms are divided between those

that are secret key or symmetric, and those that are
public key or asymmetric. With the latter one, the
sender uses publicly known information to send a
message to the receiver. Then, the receiver uses secret
information to recover the message. In secret key
cryptography, the sender and receiver have previously
agreed on some private information that they use for
both encryption and decryption.
Secret key cryptographic systems can be

categorized into either block or stream ciphers. Block
ciphers are memoryless algorithms that permute N-bit
blocks of plaintext data under the influence of the
secret key and generate N-bit blocks of encrypted data.
Stream ciphers contain internal states and typically
operate serially by generating a stream of pseudo-
random key bits, the keystream (stream ciphers are
also called keystream generators). The keystream is
then bitwise XORed with the data to encrypt/decrypt.
Stream ciphers do not suffer from the error

propagation, as in the block ones, because each bit is
independently encrypted/decrypted from any other.
They are generally much faster than block ciphers and
they have greater software efficiency. Due to these

features stream ciphers have been the choice for
several communication protocols, especially wireless
ones, like the IEEE 802.11b [10] and the Bluetooth [1].
The hardware implementation of cryptographic

algorithms plays an important role because of the
growing requirements for high-speed and high-level of
secure communications. However, these algorithms
impose tremendous processing power demands that
can be a bottleneck in high-speed networks. Modern
applied cryptography in the communication networks,
demands high data processing rate to fully utilize the
available network bandwidth. To follow the variety
and the rapid changes in algorithms and standards, a
cryptographic implementation also needs to support
different algorithms and be upgradeable in field.
Field Programmable Gate Arrays (FPGAs) are a

highly promising alternative to ASICs and general-
purpose computers for implementing cryptographic
algorithms. They are programmable devices, where the
computation is performed by the logic cells and the
connections among the cells are reconfigurable. A
logic cell usually consists of Look-Up Tables (LUTs),
carry logic, flip-flops, and programmable multiplexers.
Implementations of cryptographic algorithms in

FPGA devices usually achieve superior performance
when compared with software-based ones. The first
main reason is that the fine-granularity of FPGAs
matches extremely well the operations required by
cryptographic algorithms (e. g., bit-permutations, bit-
substitutions, Boolean functions). As a result, such
operations can be executed more efficiently in FPGAs
than in a general-purpose computer. The second reason
is that the inherent parallelism of these algorithms can
be efficiently exploited in FPGAs, as opposed to the

268 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

serial fashion of computing in a general-purpose
processor.
There is a great number of stream cipher algorithms

proposed both in academia and in industry. Five of
them have been chosen, implemented in an FPGA
device and compared in this paper. A5/1, E0 and RC4
are stream ciphers that they have been specified in
popular communication standards and protocols; the
A5/1 in GSM [4], the E0 in Bluetooth [1], and the RC4
in IEEE 802.11b. Helix is a word-oriented stream
cipher, which also provides Message Authentication
Code (MAC) function. Its functions are easily
implemented and it is faster (in software
implementations) than the best Advanced Encryption
Standard (AES) implementation [5]. The W7 algorithm
is a synchronous stream-cipher optimized for efficient
hardware implementation at very high data rates [9].
W7 has been proposed in order to replace A5/1 in
GSM security scheme, due to the security weaknesses
of the A5/1 [3].
The rest of the paper is organized as follows.

Section 2 describes the E0 cipher, while section 3 the
A5/1. Sections 4 and 5 present the W7 and the Helix
ciphers, respectively. RC4 cipher is presented in
section 6. The hardware designs of the ciphers are
presented in section 7, while the implementation
results are analyzed in section 8. Finally, section 9
draws the conclusions for this stream cipher
comparison.

2. E0 Cipher
The encryption of packet payloads in Bluetooth is
performed by the E0 stream cipher [1], which consists
of three components, as illustrated in Figure 1. The
first component is the payload key generator, which
performs the initialization (payload key generation).
The second one, the keystream generator, generates the
keystream bits, and uses for this purpose four Linear
Feedback Shift Registers (LFSRs), whose output is the
input of a 16-state finite-state machine (called the
summation combiner). The state machine output is the
keystream sequence or the randomized initial start
value during the initialization phase. The lengths Li of
the four LFSRs are 25, 31, 33, 39, and their feedback
polynomials fi (x) are: x25 + x20 + x12 + x8 + 1, x31 + x24
+ x16 + x12 + 1, x33 + x28 + x24 + x4 + 1, x39 + x36 + x28
+ x4 + 1, respectively, with i = 1, 2, 3, 4.
For the LFSRs initialization, the keystream

generator needs to be loaded with an initial value for
the four LFSRs (128 bits in total) and with 4 bits that
specify the values of registers in the summation
combiner. The 132-bit initial value is derived from
four inputs by using the keystream generator itself. The
input parameters are the encryption key Kc, a 128-bit
random number, a 48-bit Bluetooth address, and the 26
master clock bits. Within the payload key generator,
the Kc is modified into another key denoted K'c, by

using the polynomial modulo operation described in
[1]. The maximum effective size of this key is factory
preset and may be set to any multiple of eight; between
one and sixteen (8-128 bits).

master clock data

plaintext / ciphertext

ciphertext / plaintext

Payload key

XOR

LFSR 1

+ +
/2

z-1 T1

T2
z-1

XOR

 Keystream Zt

In
ia
tia

l V
al
ue

Summation Combiner Logic

Blend

LFSR 2

LFSR 3

LFSR 4

Bluetooth device address

encryption key Kc

Payload key
generator

Keystream
generator

Figure 1. The E0 stream cipher architecture.

When the encryption key has been created, all the
bits are shifted into the LFSRs, starting with the least
significant bit. Then, 200 stream cipher bits are created
by operating the generator. The last 128 of these bits
are fed back into the keystream generator as an initial
value of the four LFSRs. The values of the state
machine are preserved. From this point on (i. e., after
239 cipher bits), the generator produces the encryption
(decryption) sequence, when it is clocked. The
produced sequence is bitwise XORed with the
transmitted (received) payload data, in the third
component of the cipher.

3. A5/1 Cipher
A5/1 is a stream cipher used for encrypting over the air
transmissions in the GSM standard [4]. A GSM
conversation is transmitted as a sequence of 228-bit
frames (114 bits in each direction) every 4.6
millisecond. Each frame is XORed with a 228-bit
sequence produced by the A5/1 keystream generator.
The initial state of this generator depends on a 64-bit
secret key Kc, which is fixed during the conversation,
and on a 22-bit public frame number Fn.
The A5/1 cipher is composed by three LFSRs; R1,

R2, and R3 of lengths 19, 22, and 23 bits, respectively.
Each LFSR is shifted, using clock cycles that are
determined by a majority function m. The majority
function uses three bits C1, C2, and C3. Among these
bits, if two or more of them are 0, then m = 0.
Similarly, if two or more of these bits are 1, then m =
1. If Ck = m then Rk is shifted, where k = 1, 2, 3. The
feedback polynomials for R1, R2, R3 are: x19 + x5 + x2 +
x + 1, x22 + x + 1 and x23 + x15 + x2 + x + 1,

Comparison of the Hardware Implementation of Stream Ciphers 269

respectively. At each cycle, after the initialization
phase, the last bits of each LFSR are XORed to
produce one output bit. The proposed architecture for
the hardware implementation of the A5/1 cipher is
shown in Figure 2.

0 22

210
Majority
Function

180

K
ey
st
re
am

10

C1

C2

8

10

C3

Figure 2. A5/1 stream cipher proposed architecture.

The process of generating the keystream bits from
the key Kc and the frame number Fn is performed in
four steps. In step 1, all the LFSRs are initialized to
zero. Then the bits of Kc, starting from the least
significant bit, are shifted into the three LFSRs in
parallel, ignoring the majority function. During each
cycle, the current bit from Kc is fed in and XORed with
bit 0 of each LFSR.
In step 2, the 22 bits of Fn are fed in using the same

process as in step 1. In step 3, 100 additional cycles are
performed using the majority function, but without any
output. Finally in step 4, another 228 cycles are
required to get the 228 pseudo-random keystream bits.

4. W7 Cipher
The W7 algorithm is a symmetric key stream-cipher
that supports key lengths of 128 bits. W7 cipher
contains eight similar models, C1, C2, …, C8. Each
model consists of three LFSR’s and one majority
function.
W7 architecture is composed by a control and a

function unit. The function unit is responsible for the
keystream generation. This unit contains eight similar
cells. The proposed architecture for the hardware
implementation of one cell is presented in Figure 3.
Each cell has two inputs and one output. The one input
is the key and it is the same for all the cells. The other
input consists of control signals. Finally, the output is
1-bit long. The outputs of each cell compose the
keystream byte.
Each cell consists of three LFSRs, 38-, 43- and 47-

bit long, and a majority function. The initial state of the
LFSRs, which is the same for all cells, is the
symmetric encryption key. The 128 bits of the key map
to the LFSRs’ initial state as:

LFSRa (38-bit): LFSR0 = K0, LFSR1 = K1, ... , LFSR36 =
K36, LFSR37 = K37

LFSRb (43-bit): LFSR0 = K38, LFSR1 = K39, ...,
LFSR41 = K79, LFSR42 = K80

LFSRc (47-bit): LFSR0 = K81, LFSR1 = K82,…,
LFSR45 = K126, LFSR46 = K127

The three LFSRs together determine when each
shift register is clocked. One bit in each register is
designated as the clock tap for that register, as it is
shown in Figure 3. At each clock cycle the majority
value for these taps determines which LFSRs advance.
Only the LFSRs, whose clock taps agree with the
majority, advance. The output bit arises after a non-
linear function in the register which is a combination
of several bits in the LFSR, as presented in Figure 3.
The non-linear function is a combination of logical-
AND functions. The actual keystream output is taken
as the exclusive-OR (XOR) of the three LFSRs. The
keystream byte is the aggregation of each cell output.

37
K37

36
K36 ...35

K35
32
K32

31
K31 ... 28

K28
27
K27 ... 24

K24
23
K23

22
K22

21
K21 ... 18

K18
17
K17

16
K16

15
K15

14
K14 ... 10

K10
9
K9

7
K7

4
K4 ... 0

K0

⊕
⊗⊗ ⊗

40
K78

38
K76

37
K75

35
K73

34
K72

32
K70

31
K69

30
K68

29
K67 ... 24

K62
16
K54

4
K42

3
K41

2
K40

42
K80

⊕

41
K79

39
K77

36
K74

33
K71

5
K43

1
K39

0
K38...

⊕

44
K125

38
K119

33
K114

32
K113 ... 22

K103
18
K99

4
K85

39
K12046

K127
45

K126 0
K81...

⊕

27
K109

26
K108...

Majority
Function

⊕
⊗ ⊗ ⊗

⊗ ⊗ ⊗
⊕

⊕

Output

Figure 3. Proposed architecture for a W7 cell.

5. Helix Cipher
Helix [5] is a combined stream cipher and MAC
function that directly provides the authenticated
encryption functionality. By incorporating the plaintext
into the stream cipher state, Helix can provide the
authentication functionality without extra costs.
Helix uses a 256-bit key and a 128-bit parameter

(called nonce). The key is secret, and the nonce is
typically public knowledge. All operations in Helix are
on 32-bit words. These operations are addition modulo
232 (denoted), XOR (denoted⊕), and left rotation by
fixed numbers of bits (denoted <<<). The design
philosophy of Helix can be summarized as “many
simple rounds”. Helix has a state that is composed by 5
words (Z0 to Z4) of 32 bits each. A single round of
Helix consists of adding (or XORing) one state word
into the next, and rotating the first word.
Multiple rounds are applied in a cyclical pattern to

the state. The horizontal lines of the rounds wind
themselves in helical fashion through the five state
words. Twenty rounds make up one block. Helix
actually uses two interleaved helices; a single block
contains two full turns of each of the helices. The
critical path through the block function consists of six
modulo 232 additions and five XORs. In Figure 4, the

270 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

half of the block of the Helix cipher is illustrated. The
other half of the block is the same as the part shown in
Figure 4.

<<<25

<<<15

<<<9
<<<10

<<<17

<<<30

<<<13

<<<20

<<<11

<<<5

key
Xi,0

Plaintext
Pi

To other half of the Helix block

keystream
Si

()
0
ιΖ ()

1
ιΖ ()

2
ιΖ ()

3
ιΖ ()

4
ιΖ

Figure 4. The half of the block of the Helix cipher.

6. RC4 Cipher
RC4 is a variable key-size stream cipher developed by
Ron Rivest for RSA Data Security, Incorporation. The
RC4 stream cipher has two phases, the key set-up and
the keystream generation. Both phases must be
performed for every new key. During an n-bit key set-
up, the encryption key is used to generate an
encrypting variable using two arrays - the state and the
key array - and n-number of mixing operations [2].
RC4 works in Output Feedback (OFB) mode [2] of

operation. In RC4 there are two 256-byte arrays, the
State (S)-box and the Key (K)-box. The S-box is
linearly filled, such as S0 = 0, S1 = 1, S2 = 2, ..., S255 =
255. The K-box consists of the key repeated as many
times in order to fill the array.
RC4 cipher uses two counters, i and j, which are

initialized to zero. In the key set-up phase, the S-box is
being modified according to the following pseudo-
code:

Key set-up phase:
for i = 0 to 255
 j = (j + Si + Ki) mod256
 swap Si and Sj

Once the key set-up phase is completed, the second
phase encrypts or decrypts a message. The keystream
generation phase is described by the following pseudo
code:

Keystream generation phase:
i = (i + 1) mod256
j = (j + Si) mod256
swap Si and Sj
t = (Si + Sj) mod256
K = St

For producing the ciphertext/plaintext, the generated
keystream is XORed with the plaintext/ciphertext.
Figure 5 shows the block diagram of the

aforementioned RC4 phases.

Start

j=i=0

j = j + Si + Ki
swap Si , Sj

i< 256 ?

End

Yes

i = i + 1

No

Start

j=i=0

i = i + 1
j = j + Si

swap Si , Sj
t = Si + Sj

K = St
Generate?

End

No

Yes
Stream

Figure 5. Block diagram of two RC4 phases.

7. Implementation Issues
The hardware implementations of A5/1, W7, Helix and
E0 stream ciphers are quite straightforward, since their
hardware architectures are well defined in this paper.
For the implementation of the E0 cipher, the
implementation of [7] is adopted.
For the RC4 cipher, an efficient implementation

which is parameterized in order to support variable key
lengths, is proposed. The key length could be 8 up to
128-bit, opposed to the previous designs [6, 8] that
support only fixed key lengths.
The proposed architecture of the RC4 stream cipher

consists of a control and a storage unit and it is shown
in Figure 6. The storage unit is responsible for the key
set-up and keystream generation phases. The operation
of the storage unit is synchronized by the control unit.
The control unit generates the appropriate clock and
control signals.

Comparison of the Hardware Implementation of Stream Ciphers 271

Control
Unit

Storage
Unit

Key

Plaintext/
Ciphertext

Ciphertext/
Plaintext

Figure 6. General architecture for the RC4 cipher.

The implementation of the storage unit is shown in
Figure 7. The storage unit contains memory elements
for the S-box and K-box, along with 8-bit registers,
adders and one multiplexer.

 S-Box
 RAM block

Si[7:0]

Sj[7:0]

i[7:0]
Sj[7:0]

j[7:0]
Si[7:0] St[7:0]

t[7:0]

Si_read

Si_write

St_write

reset

Sj_read
St_read

Sj_write

Sj_register

Si_register

K-box

key_input[127:0]

reset

read_enable_key
write_enable_key

clk

mux
2 in 1

key_out [7:0]

key_sel

adder8 adder8 j_register

clk

reset

enable

adder8 t_register

clk

reset

enable(counter) i [7:0]

clk

clk

 Keystream

Figure 7. Storage unit implementation for the RC4 stream cipher.

The block diagram of the S-box RAM is shown
Figure 8. It consists of three 256 bytes RAM blocks.
Each RAM block has four inputs and one output. The
two inputs are the read and write signals, while the
other two ones are the address and data signals. Also,
all the three RAM boxes have the same signals for
clock and reset.
The operation of the RAM blocks is quite simple. If

the reset signal is activated, the blocks are linearly
initialized. For each block, if the write signal is
activated, new data are stored in the address position.
On the other hand, if the read signal is activated, the
data in the address position are available on the output
of the block. The two first blocks i, j of Figure 7 are
used for the swapping of the values of the third block t.
The final values (i. e., the keystream) that are used for
the algorithm are produced by the t block.
The key set-up is divided in two steps. In the first

step, the S-box is filled. The S-box is linearly
initialized, such as S0 = 0, S1 = 1, S2 = 2, …, S255 = 255
when the reset state occurs.
In the second step of the key set-up, the S-box is

randomly filled. For the S-box, a 3x256-bytes RAM
memory is used as it is shown in Figure 8. The Si_ and

Sj_ registers in Figure 7 are used for the swappings
imposed by the algorithm. The j_ and t_ registers in
Figure 7 are used in order to temporarily store all the
intermediate variables that are produced.

(i block)
256 bytes
RAM

Si

Sj

St

reset

Si_read

Si_write
data

address

clock

Sj_read

Sj_write
data

address

St_read

St_write
data

address

(j block)
256 bytes
RAM

(t block)
256 bytes
RAM

Figure 8. The S-box RAM of the RC4 cipher.

At the first clock cycle, the value of counter i
(Figure 7) is used as address in the first RAM block.
The value of Si (stored in the Si_register) is used for
the computation of the new value of j as it is shown in
Figure 7. The two adders are used for the computation
of the new value of j. They accept as input the values
of Ki and Si. At the second clock cycle, the new
produced value j is used as an address for the second
RAM block. The stored value in this address is
temporarily stored in the Sj_register. At the third
cycle, the contents of the Si_register and Sj_register
are written at the j and i addresses, respectively. With
this procedure, the swapping is achieved.
The first phase needs three clock cycles per

iteration. So, the total time that is required in the key
set-up phase is 256.3 = 768 clock cycles.
The second phase (keystream generation) is quite

similar to the first one. So, the same hardware is being
re-used. The difference in this phase is that the values
of the K-box are not used. After the completion of the
first phase, the multiplexer in Figure 7 selects the zero
value input. Also, the j_register is initialized to zero so
as to be ready for the second phase. After the two
aforementioned actions, the procedure of keystream
generation can begin.
The operations at the first three steps are similar to

those of the key set-up phase except that the S-box is
already initialized. At the first step, the value of i is
used as address in the first RAM block and the value of
Si is stored in the Si_register. Also, the new value of j
is computed. At the second step, the new value of j is

272 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

used as address of the second RAM block and the
value of Sj is stored in the Sj_register. In this step, the
values of Si and Sj are being added and the result of the
addition is stored in the St_register. At the third step,
the contents of the Si_register and Sj_register are
written at the j and i addresses, respectively, and the
value of the t_register is being used as address for the
third RAM block. So, the value of St is also produced
in the third step. This value of St is the generated
keystream byte.
After the completion of this phase, each byte in the

keystream can be generated and used for
encryption/decryption. The encryption/decryption is
achieved by the bitwise XORing of the keystream with
the plaintext/ciphertext.
The time needed for the keystream generation phase

is 3.n cycles, where n is the number of bytes of the
plaintext or ciphertext. So, the total time for both RC4
phases is 768 + 3.n clock cycles.

8. Implementation Results
The results of performance (in terms of throughput)
and of consumed area (in terms of FPGA CLB slices),
for the implemented stream ciphers, are presented in
Table 1. All the designs were synthesized in a Xilinx
Virtex-IITM 2V250FG256 FPGA [11], for having a
common hardware device for the comparison. The
selected FPGA has 18K-bit selectRAMΤΜ blocks. Each
block is synchronous and it can be easily configured in
256-byte RAM blocks. The proposed RC4
implementation utilizes a 3.256-byte RAM block.

Table 1. Performance and area comparison.

Cipher Area
(slices)

Frequency
(MHz)

Throughput
(Mbps)

Throughput /
Area

A5/1 32 188.3 188.3 5.88
W7 608 96.0 768.0 1.26
E0 895 189.0 189.0 0.21

Helix 418 32.0 1024.0 2.45
RC4 140 60.8 120.8 0.86

As illustrated in Table 1, the Helix stream cipher
achieves the largest throughput that it is measured in
Mega bits per second (Mbps). Also, it has the second
best throughput-to-area ratio. This ratio is a measure of
the hardware performance of the ciphers. The A5/1
cipher has the best throughput-to-area ratio. This is a
rather expected outcome since A5/1 has a quite simple
architecture that consumes the least FPGA area.
The results for the throughput-to-area ratio for all

ciphers are graphically shown in Figure 9. The E0
cipher has the smallest ratio, while the A5/1 has the
largest one. So, A5/1 achieves the best hardware
performance. The throughput of W7 implementation is
much better compared with the one that the A5/1
implementation achieves. However, this comes with an
area cost.

The time required for the key set-up phases
(initialization phases) of the presented stream ciphers
are: 12.6 µs, 1.26 µs, 0.99 µs, 0.25 µs and 0.01 µs for
the RC4, E0, A5/1, Helix and W7, respectively. So,
RC4 has the largest start-up time and W7 the smallest
one. The respective clock cycles for the key set-up
phases are: 768, 239, 188, 8 and 1 cycles for RC4, E0,
A5/1, Helix and W7, respectively.

0.86

2.45

0.21

1.26

5.88

0

1

2

3

4

5

6

7

Stream ciphers
Th
ro
ug
hp
ut
 /
Ar
ea

(M
bp
s
/ s
lic
es
)

A5/1 W7 E0 Helix RC4

Figure 9. Throughput to area ratio results.

To the best of our knowledge there are no published
hardware implementations results for the Helix, A5/1
and W7 ciphers, which can be compared with our
respective implementations. The implementation
results for RC4 are comparable with the ones in [6].
Our implementation is faster and consumes less area,
since in [6] the area was 255 CLB slices and the
throughput was 17.76 Mbps. So, our design
outperforms their RC4 implementation.

9. Conclusions
In this paper, five representative stream ciphers are
implemented in hardware and compared in terms of
performance and consumed FPGA area. These ciphers
were coded in VHDL language and synthesized in an
FPGA device. The largest throughput-to-area ratio has
been achieved by the A5/1 cipher and is equal to 5.88
Mbps/slice. The Helix cipher achieves the largest
throughput (1024 Mbps). The throughput of the
hardware implementation of the Helix cipher proves
that this cipher is indeed fast, as it was shown in the
comparison of its software implementation with other
ciphers [5]. The W7 has the smallest key set-up time
(0.01 µs). Also, the performance of the W7 cipher is
greater than the one of the A5/1. Finally, our
developed RC4 architecture outperforms previous
published designs both in terms of performance and of
consumed area.

Acknowledgements
Michalis D. Galanis would like to thank the Alexander
S. Onassis Public Benefit Foundation for financially
supporting his PhD thesis.

Comparison of the Hardware Implementation of Stream Ciphers 273

References
[1] Bluetooth SIG, “Specification of the Bluetooth

System,” vol. 1.1, February 2001,
http://www.bluetooth.org/spec/, 2004.

[2] Dworkin M., Recommendation for Block Cipher
Modes of Operation. Methods and Techniques,
National Institute of Standards and Technology
(NIST), Technology Administration, U.S.
Department of Commerce, Special Publication,
http://csrc.nist.gov/publications/nistp ubs/800-
38a /sp800-38a.pdf, 2004.

[3] Ekdahl P. and Johansson T., “Another attack on
A5/1,” IEEE Transactions on Information
Theory, vol. 49, no. 1, pp. 284-289, January
2003.

[4] European Telecommunications Standards
Institute (ETSI), “Recommendation GSM 02.09,”
Security Aspects.

[5] Ferguson N., Whiting D., Schneier B., Kelsey
J., Lucks S., and Kohno T., “Helix: Fast
Encryption and Authentication in a Single
Cryptographic Primitive,” Lecture Notes in
Computer Science (LNCS), Springer-Verlag,
Berlin, Germany, vol. 2887, pp. 330-346, 2003.

[6] Hamalainen P., Hännikäinen M., Hamalainen T.,
and Saar J., “Hardware Implementation of the
Improved WEP and RC4 Encryption Algorithms
for Wireless Terminals,” in Proceedings
European Signal Processing Conference
(EUSIPCO), Tampere, Finland, pp. 2289-2292,
September 2000.

[7] Kitsos P., Sklavos N., Papadomanolakis K., and
Koufopavlou O., “Hardware Implementation of
Bluetooth Security,” IEEE Pervasive Computing,
vol. 2, no.1, pp. 21-29, January-March 2003.

[8] Kundarewich P. D., Wilton S. J. E., and Hu A. J,
“A CPLD-Based RC4 Cracking System,” in
Proceedings of the Canadian Conference on
Electrical and Computer Engineering, May
1999.

[9] Thomas S., Anthony D., Berson T., and Gong G.,
“The W7 Stream Cipher Algorithm,” Internet
Draft, April 2002.

[10] Weatherspoon S., “Overview of IEEE 802.11b
Security”, Intel Technology Journal Q2, Network
Communications Group, Intel Corporation 2000.

[11] Xilinx Inc., San Jose, California, Virtex-II 2.5V
FPGAs, http://www.xilinx.com, 2004.

Michalis Galanis received his BSc
in physics and MSc in electronics
from the Department of Physics,
University of Patras in 2000 and
2002, respectively. Since October
2002, he has been working towards
his PhD degree in the domain of

reconfigurable computing at the VLSI Design

Laboratory of the Department of Electrical and
Computer Engineering. In 2003, he received a
scholarship for his PhD studies from the Alexander S.
Onassis Public Benefit Foundation for his excellent
academic studies in past years. He has authored or co-
authored 18 research papers, presented (or to appear)
in international conferences and journals.

Paris Kitsos obtained a BSc degree
in physics from University of Patras,
Greece, in 1999. In March 2004, he
received his PhD degree from the
Department of Electrical and
Computer Engineering of the
University of Patras. His research

interests include efficient implementation of public-
key algorithms, symmetric algorithms, security
protocols for wireless systems, efficient polynomial
basis Galois field arithmetic, VLSI design, and
computer arithmetic. He has authored or co-authored
27 research articles.

Giorgos Kostopoulos received his
Diploma in electrical & computer
engineering from the Electrical &
Computer Engineering Department,
University of Patras, Greece, in
2003. Since then, he has been
working towards his PhD degree in

the Department of Electrical and Computer
Engineering of the University of Patras. He has been a
member the Technical Chamber of Greece since
October of 2003. He has authored or co-authored 5
research papers, presented (or to be appeared) in
international conferences.

Nicolas Sklavos received the
Diploma in electrical & computer
engineering and the PhD degree in
electrical & computer engineering in
2000 and 2004, respectively, both
from the Electrical & Computer
Engineering Deptartment,

University of Patras, Greece. His research interests
include cryptography, wireless communications
security, VLSI design, and reconfigurable computing
architectures. He holds an award for his PhD thesis on
“VLSI Designs of Wireless Communications Security
Systems”, from IFIP VLSI SOC 2003. Dr. Sklavos is a
member of the IEEE, the Technical Chamber of
Greece, and the Greek Electrical Engineering Society.
He has authored or co-authored more than 60 scientific
articles, book chapters, tutorials and reports, in the
areas of his research.

274 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

Costas Goutis was a research
assistant and research fellow in the
Department of Electrical and
Electronic Engineering, University
of Strathclyde, Strathclyde, UK,
from 1976 to 1979, and lecturer in
the Department of Electrical and

Electronic Engineering, University of Newcastle upon
Tyne, UK, from 1979 to 1985. Since 1985, he has been
an associate professor and full professor in the
Department of Electrical and Computer Engineering,
University of Patras, Patras, Greece. His recent
research interests focus on VLSI circuit design, low-
power VLSI design, systems design, analysis and
design of systems for signal processing,
telecommunications, memory management, and
reconfigurable computing. He has been awarded a
large number of research contracts from ESPRIT,
RACE, and National Programs. Professor Goutis has
authored or co-authored more than 200 scientific
articles, book chapters, tutorials and reports, in the
areas of his research.

