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Abstract: Function inlining is a widely known technique that has been adopted in compiler optimization research domain. 
Inlining functions can eliminate the overhead which is resulted from function calls, but with inlining, the code size also grows 
unpredictably; this is not suitable for embedded processors whose memory size is relatively small. In this paper, we introduce 
a novel function inlining approach using a heuristic rebate_ratio; functions to be inlined are selected according to their 
rebate_ratios in a descending way. This kind of code optimization operation works at the source code level. Compared with 
other algorithms, ours are easier to implement. Our target is to get an optimal result of function inlining which attempts to
achieve the maximum performance improvement while keeping the code size within a defined limit.
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1. Introduction
Nowadays, more and more people prefer to use C 
compiler rather than assembly one for programming 
embedded processors. In a C program, the most 
frequently accessed parts are often put together into 
functions. It makes the programs more dependent and 
more readable, but an excessive use of functions may 
degrade program performance. When calling a 
function, the system should save all the values of 
current registers, pass the parameters and allocate stack 
for local variables. In processors which support 
pipeline, the actual function call and return may result 
in a significant number of instruction pipeline stalls. 
Function inlining replaces a function call with the body 
of function; it has the effect of removing all the 
overheads mentioned above. [1, 2, 3, 4, 6] Obviously, 
the performance of the system can be improved in 
some ways, but inlining functions does not come for 
free. One of its negative effects is the unpredictable 
code size; which is intolerable for embedded 
processors whose memory space is limited. During the 
past years, lots of code optimization techniques have 
been developed. Many of them are low level 
optimizations, which are dependent on processor 
architecture. For example, code selection, register 
allocation [5, 10], and memory access optimization 
[12]. These works focus on how to get a performance 
enhancement, less attention was put on the code size. 
Leupers brought out a machine-independent source-
level code optimization algorithm, named 
OptinlineVector, which aims at embedded processors 
and employs function inlining to achieve higher 
performance [5, 7]. In OptinlineVector algorithm the 
element bi in the inline vector IV is used to indicate 

whether function fi is inlined or not, all the functions in 
program are checked. OptinlineVector algorithm can 
find the optimal solution of function inlining, but the 
time and memory space it needs are huge. The worst 
case complexity of OptinlineVector algorithm is 
exponential to N, where N is the total number of 
functions in a program. In this paper, we present a new 
approach to function inlining which works at the 
source code level as well. The time and memory space 
needed in worst case is the cube of N.
The remainder of this paper is organized as follows.

Section 2 illustrates the system model of function 
inlining. Our new algorithm is explained in detail in 
section 3. Section 4 makes a brief analysis of our 
algorithm. The last section concludes this paper and 
points out our future work.

2. System Model for Function Inlining
In normal systems, performance enhancement is the 
main target, the negative effect of code expansion 
which is brought by function inlining does not attract 
more attention, but in embedded processors, code 
expansion becomes a serious problem. An oversized 
code is intolerable. In order to control the code 
bloating problem of inlining, we should inline 
selectively. Leupers et al used branch-and-bound 
algorithm to determine which function to inline [7]. 
Although their result is an optimal one, the time and 
space their algorithm needs are huge. In our method, 
we use heuristic to do the same job. The benefit using 
heuristic depends on the execution frequency of the 
inlined function. The more it is called, the better 
improvement it will achieve. We introduce a concept, 
named rebate_ratio; it is used as an inlining heuristic 
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variable. Inlining a function with a high rebate_ratio 
will get a better performance than inlining a low 
rebate_ratio function.
The definition of rabate_ratio is:

increasedsizecode
frequencycallingfunctionratiorebate

__
___ = (1)

The function calling frequency is direct proportion 
to performance improvement while code size
expansion is the other way round. Note that, in some 
case, code_size_increased may equal to zero, which 
means when inlining that function, the code size does 
not change. We assign a maximum value to the 
rebate_ratio of this function and inline them before 
inlining other functions.
The system model of function inlining is described 

as follows. For a given C program, we use a graph G =
(V, E) to represent the function call structure inside it. 
Each node in V represents one function fi and each edge 
e = (vi, vj) ∈  E means function fi calls function fj. Each 
node vi has a two-tuple attributes vi: (Bi, Ri), Bi denotes 
the real size of function fi, Ri is the rebate_ratio of 
function fi . Attribute Ri is used as a priority indicator 
of our queue operating, the smaller Ri is the higher 
possibility it will be at the head of a queue, which 
means the higher possibility to be inlined. Each edge ei
has a weight wi which denotes the times function fi
calls fj.
The total sum of all the nodes’ weight in V is the 

estimation of total code size of the given C program. It 
can be seen, the code size calculated in this way is not 
precise since the detailed code size is only known after 
code generation. Algorithms using similar method to 
calculate code size have already shown that this 
estimation appears to be sufficiently accurate in 
practice [5, 6, 7]. The function inlining problem is now 
translated to a graph operation problem, what we will 
do is to present a method to realize the following work:

• Input: G = (V, E) and a global code size limit L.
• Output: G’ = (V’, E’) which |V'|  reaches its 
minimum value while:
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where |V'| is the number of nodes in Graph G’.

3. Minimizing Function Calls
As the number of function calls in a program 
decreases, the performance increases. Once a function 
is inlined, the corresponding operation in graph is that 
the node representing that function is deleted. When 
the code size of the inlining function increases, the 
change in graph is that the weight of deleted node’s 
parent node also increases. Since the code size has an 
upper bound and we wish to inline as many function 

calls as possible, the operation to the graph is trying to 
delete as many nodes as possible while keeping the 
total sum of all the remained nodes’ weight not larger 
than the limit value.
We inline the function calls in a rebate_ratio 

decreasing way, in another word, we inline first the 
function whose rebate_ratio is the largest and then 
inline the second largest and so on. When no more 
function call can be inlined with the total code size 
smaller than the upper bound, the work is done. 
Before we start inlining functions, there is some 

preparation work to be done. First, we  must use a 
source  code  tool to find  out the number of calls 
w (e (vi, vj)) from function  fi to fj. Next, to compile the 
source code without function inlining to determine the 
code size B (vi) of each function.
Usually there are lots of loops in a program, if an 

inlined function is in a loop, the amount of code size 
increased is equal to the code size of this inlined 
function, not n times of code size (suppose n is the 
number of loop repetition), i. e., rebate_ratio is n/
code_size   not n / (n * code_size).
The benefit of inlining a function in a loop is the 

same as inlining n times of a function whose code size 
is n times smaller. So in our algorithm, we assign an 
equal priority to the two functions, which means their 
rebate_ratios are the same.
If a function calls another one fk both in loops and 

outside loops, we derive a new node vn, where B (vn) =
B (vk), R (vn) = R (vk) / n, here n is the iteration of the 
loops, the new node is connect with all of node vk’s 
parent and child nodes. The weights of the new derived 
edges are defined as follows.
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where, the function that  the new node represents is a 
copy of the function in loops. The weight w (e (vp, vk))
is also reduced to the number of calls outside loop. 
Thus, we change the nodes for functions in loops into 
normal ones. Figure 1 is an example of node deriving 
for functions in loop.  Function f1 calls f3 w3 times, w’3
= w3 - n times are not in loops, the algorithm derives a 
new node v’3, derives also an edge e (v1, v’3), the 
edge’s weight is 1.

Figure1. Node deriving for functions in loops.

There are two different situations when function fi
inlines function fj, first,  vj is a leaf in the graph shown 
in Figure 2, we delete both the node vj and the edge
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e (vi, vj) , the weight of node vi changes to a new value 
B’(vi) = B (vi) + W (e (vi, vj)) * B (vj), if more than two 
functions call fj, the weight values of all these 
functions should also be modified and the edges be 
deleted.

Figure 2. Deleting a leaf node.

Second, function fj is not a leaf in the graph, node vj
is deleted, all its parent nodes’ weights are also 
updated, the edges connected with vj are deleted, vj’s 
parent nodes are connected with vj’s children nodes. 
The newly appeared edges also have new weights. For 
example, when root function inlines f1,, as shown in 
Figure 3, node v1 is deleted, so do all the edges 
connecting with v1, node v3, v4’s parents are changed to 
the root,  two new edges are derived, the weight values 
are w1 * w3 and w1 * w4 respectively.

 Figure 3. Deleting a non-leaf node.

Our method to inline functions consists of two steps. 
First, we process the functions in loops using algorithm 
Loop_Node_Process, shown in Figure 4. We search 
the whole program and find out the functions in loops,
and then change the corresponding nodes to new ones 
which are the same as the nodes representing outside 
loop functions, when the changing work finishes, we 
set up a queue and sort the queue.
Second, we inline the functions according to 

algorithm Mini_Func_Call, shown in Figure 5. Since 
the queue has already been sorted in a rebate_ratio 
descending way, the most suitable function to be 
inlined is the one which is represented by the node in 
the head of the queue. We inline the function and 
delete the node from the queue. After inlining, the 
rebate_ratio values of its parent nodes are also changed, 
so we sort the queue again and ensure the first node in 
the queue has the largest rebate_ratio. When all the 
nodes in the queue are deleted, the algorithm is 
terminated. 

Loop_Node_Process (V, E)

1. V’ ←Find_Nodes_in_Loop (V)
2. for (vi in V’) do
3.     create a new node vk
4. B (vk) ←B (vi) 
5.     R (vk) ←R (vi)/n  {increase the rebate_ratio 

of the new node}
6.     insert_queue (Q, vi)  {insert the new node 

into queue Q}
7.     for (  vj in child (vi)) do 
8.        E←E + e(vk, vj)   {add edge e (vk, vj) to E}
9. w (e (vk, vj)) ←w( e (vi, vj))   
10. end for
11.    for (  vj in parent (vi)) do
12. E←E + e (vj, vk) 
13.       w (e (vj, vk)) ←1
14.       w (e (vj, vi)) ←  w (e (vj, vi)) – n   
                     {update the number vj, calls vi }

15. update R (vi) 
16.       if  ( w (e (vj, vi)) = 0 ) then   
17. V←V -vi

         {delete node vi from the graph}

18. delete_queue (Q, vi)
        {get rid of  the node from queue Q}

19. for (vc in child (vi)) do
20.                E←E -  e (vi, vc)  {delete edges  

connected to the child nodes}
21.  end for
22.  end if
23.    end for
24. end for 
25. sort_queue (Q) 
26. return (V + V’, E)

Figure 4.  Algorithm loop_node_process.

4. Algorithm Analysis
Although heuristics are also used to find the optimal 
result of function inlining, unlike other ones, the value 
of the heuristic – rebate_ratio in our algorithms is not 
fixed, it keeps on changing whenever a function’s code 
size varies. 
If we inline a function, the benefit we get is that we 

eliminate the overhead which is brought by setting up 
the call stack, passing parameters etc, the side-effect is 
the expansion of code size. Heuristic – rebate_ratio is 
an indicator of the combination of the benefit and the 
side-effect. As shown in the algorithm 
Mini_Func_Call, we select the one whose rebate_ratio 
value is the largest when we inline a function, in this 
way, we can get more performance improvement than 
inlining other functions. If a function has inlined other 
functions, its code size may increases, the side-effect 
of being inlined enlarges, its rebate_ratio decreases to a 
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smaller value, which means it gives the priority of 
selection to other functions.
Inside our algorithm, n represents the number of 

functions. There are 3 level iteration, line 2, 11, 19 in 
algorithm Loop_Node_Process and line 3, 12, 14 in 
algorithm Mini_Func_Call, the worst case of the time 
and space complexity of our algorithm is 3( )nΟ , if there 
are no circles in the graph, i. e., the graph is a family 
tree, the numbers of parent and child nodes 
are (log )nΟ , the time we need reduces to 2( log )n nΟ . In 
the most ideal situation, when the graph degenerates to 
a line, the complexity is equal to ( )nΘ .
The exception of our algorithm is described as 

following:
If there exists two adjacent nodes vi and vj in queue 

Q, function fi has a larger rebate_ratio, when inlining 
function fi, the code size is over the limit, i. e.,

1 ( )

( ) ( ( ( , )) ( ))
p i

V vi

k p i i
k v parent v

B v w e v v B v L
−

= ∈

+ × >∑ ∑ (2)

So, we give up function fi and select function fj , and 
we go on running until it reaches the final, but the total 
performance enhancement gained from inlining 
function fj to end is not as good as inlining function fi
in part of its parent nodes’ calls,  this phenomena may 
occur in nest. One solution to this problem is that we 
derive as many sibling nodes as possible when the 
above situation is detected, the newly born nodes have 
the same rebate_ratio, and they join the queue Q
waiting for selection.  

5. Conclusion and Future work
The small memory space of embedded processors 
requires applications keep a sophisticated tradeoff 
between the program code size and system 
performance. Nowadays’ heuristics inlining techniques 
do not meet such a demand.  In this paper we present a 
code optimization technique which works at the source 
code level. It can minimize the number of function 
calls by inlining proper subset of functions under a 
code size constraint. 
Like other algorithms, we need profiling to get the 

exact number of functions to inline. The repetition 
times in recursive loops, repeat/until and while 
statements are uncertain, when processing these loops, 
we give a rough estimation. Sometimes inlining 
functions in these loops can give significant savings; 
one of our future works is to handle this situation 
precisely. Some functions which are small in size but 
have many local variables may have a negative effect 
on the execution time when inlined, more work will 
also need to focus on solving these problems in the 
near future.

Mini_Func_Call (V, E, L)

1. G (V, E)←  Loop_Node_Process(V, E) 
2. Q← create a queue,  {queue Q (v1, v2,…vn),   
              vi∈V, V = n}
          sort_queue (Q),   { ,vi vj∀ ∈Q, (I < j), R (vi)    
          > R (vj)}

3. while (Q is not empty) ) do
4. vi← first element in Q
5.   delete vi from Q
6.   if

(
1 ( )
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p i

V vi
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B v w e v v B v L
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= ∈

+ × ≤∑ ∑ )

                then  

 {if code size is within constraint after  
inlining function fi}

7. V←V -vi  {delete node vi from the graph}
8.     for (vc in child (vi)) do
9.        E←E -  e (vi, vc)  {delete edges connected 

to the child nodes}
10.  end for
11.     for (vp in parent (vi)) do
12.        B (vp) ←  B (vp)+ w ( e (vp, vi)) * B (vi);
                       { modify parent node’s code size}

13.        update R (vp)
14.        for  (vc in child (vc)) do
15.            E←E + e (vp, vc) { derive new edges}
16.            w (e (vp, vc)) ←w (e (vp, vi)) * w ( e (vi,

vc))
17. update R (vc)
18.        end for
19.     end for
20.     sort_queue (Q)
21.   end if
22. end while
23. return (V, E)

Figure 5. Algorithm mini_func_call.
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