
10 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

LiSER: A Software Experience Management Tool
to Support Organisational Learning in Software

Development Organisations
Abdulmajid Mohamed, Sai Peck Lee, and Siti Salwah Salim

Faculty of Computer Science and Information Technology, University of Malaya, Malaysia

Abstract: The efficient management of experience knowledge is vital in today’s knowledge-based economy. This paper is
concerned with developing a software experience management tool as an organisational memory subsystem. The tool aims to
support Knowledge Management (KM) and Organisational Learning (OL) activities in a typical software organisation. It is
specifically targeted to capture the pearls of tacit knowledge in the form of Knowledge Asset (K-Asset), which only surface as
the outcome of collaborative analysis and refinement of the captured knowledge. The prototype tool is based on the framework
for collaborative organisational learning we developed in previous research.

Keywords: Knowledge management, organisational memory systems, tacit knowledge, organisational learning, ontologies.

Received July 27, 2003; accepted February 9, 2004

1. Introduction
This paper describes LiSER (Living Software
Experience Repository) as an Organisational Memory
(OM) subsystem. It aims at supporting knowledge
management activities in a typical software
organisation. LiSER can be described variously as an
“experience rationale capture tool”, a “knowledge
management tool for software development
knowledge” or a “software experience repository tool”.
It is intended to provide means to capture both tacit
and explicit knowledge in a way they act as correlated
information sources. However, LiSER is not meant to
be a tool for software project management or a
Document Management System (DMS) for software
development projects. While these two systems form
an essential part of the organisational memory
approach, they mainly focus on explicit knowledge and
they pay less attention to tacit knowledge. LiSER on
the other hand put more emphasis on tacit knowledge
management where the research contributions are less.

By explicit knowledge we mean “knowledge that
has been captured and codified into manuals,
procedures, and rules, and is easy to disseminate” [13].
While tacit knowledge represents the undocumented
information that usually reside in workers’ minds.
Tacit knowledge is usually embedded as insights,
views, know-how, etc. This type of knowledge is
usually an organisation-based (i. e. cross projects)
knowledge while explicit knowledge is largely project-
based knowledge.

According to the KM literature, more attention has
to be paid to managing tacit knowledge as it has more
influence on upcoming practices. For the case of

software development, non functional requirements are
largely realised in a tacit form, and it forms the greater
percentage of reusable software knowledge, while
project-based knowledge in the form of functional
requirements is project specific and is less reusable in
subsequent projects. Thus LiSER does not put the
same emphasis on both types of knowledge. LiSER
only makes reference to explicit or documentary
knowledge that supports any tacit knowledge captured
as a wisdom or best practice or a lesson learned or any
K-Asset type.

As the word ‘living’ in the name of the tool
indicated, an Organisational Memory System (OMS)
should not act as a passive repository of organisational
historical knowledge. It has to be a ‘living’ technical
organism, because captured knowledge losses its
relevance as time passes. Therefore, unless
organisational decisions are made based on
continuously updated knowledge, organisations cannot
escape repeating similar previous mistakes and/or
caught in the act of “reinventing the wheel”. This issue
raises two questions: What is the level of “knowledge
up-to-datedness” of a particular OMS? And what
mechanisms it offers to maximise the group awareness
in the host organisation? The integrity and consistency
of LiSER’s knowledge repository is maintained by
series of learning cycles and feedback mechanisms
defined by the framework of collaborative
organisational learning presented in [10]. The issue of
group awareness is tackled through the competence-
based collaborative knowledge filtering groups set up
in this framework. This paper is organised as follows.
In section 3 we present a description of the software

LiSER: A Software Experience Management Tool to Support Organisational Learning in Software… 11

knowledge management. In section 4 we describe our
ontology-based knowledge model which defines the
basic ontologies representing the characterised
knowledge fragments. The underlying system
architecture is described in section 5. Features of the
prototype tool are presented in section 6. A short
discussion of implementation issues is presented in
section 7. Finally, in section 8 we give some
concluding remarks in section 8 end up the paper.

2. Related Research
The work described in this paper has roots in a number
of research topics, including Case-Based Reasoning
(CBR), organisational learning and organisational
memory, Software reuse, Computer Supported
Collaborative Work (CSCW), Artificial Intelligence,
decision theory and design rationale. There are many
KM systems which are available either as commercial
tools or as research prototypes. These approaches vary
in the types of information, implementation
technologies, and the application domains. From the
viewpoint of information types, some systems only
support textual data [3], while others are also capable
of processing hypermedia data [1, 14]. From the
perspective of the implementation technologies,
several techniques were used either individually or as a
combination of different technologies. Among these
technologies are: Hypertext [3], Ontologies [9, 15],
Email [3] and Case-Based Reasoning (CBR) [6, 7].

From the point of view of the targeting domain,
some systems are generic while others targeted specific
domains. Some of the systems reviewed were not
exclusively developed to facilitate KM practices in
software development domain, but they still can be
used to play the same role. Systems like Answer
Garden [1] and Know-Net [9] exemplify the generic
OM systems. Approaches such as BORE [6, 7],
Designer Assistant [14], TeamInfo [3] are primarily
meant to support knowledge management in software
development domain. However, due to the complexity
of the software development process, some systems
only target at certain phases of the software life cycle.
These systems addressed either the software design
phase [2, 8, 14, 16] or the requirements specification
phase [11], or they just focus on capturing expertise
and competencies available at an organisation [15].

3. Software Knowledge Management: A

Review
Traditionally, knowledge creation and exchange in
software organisations is communicated through
natural language either verbally or vocally. Verbal
knowledge is usually presented in plain text augmented
with diagrams and software engineering notations.
Some of this knowledge is stored electronically and
others may be kept as hard-coded documents (for

example, personal notes). The knowledge documented
electronically is stored in various formats processed by
different tools (i. e. word processors, drawing software,
project management tools, and CASE tools).

It is believed that good software documentation
would help software developers make good decisions
in upcoming projects. However, in spite of strict
documentation policies imposed by some software
organisations, there is one type of knowledge that is
hardly captured. For instance, a huge part of meeting
details are unrecorded and only resided in the
developers’ minds. This limitation deprives the
organisation of very important information. This
includes assumptions, alternatives and views behind
software decisions taken. The Rationale Management
is introduced as one of the software engineering topics
that tackle this issue. It aims to ‘improve’ the quality of
decisions by making decision elements, such as
criteria , priorities, and arguments explicit [4]. There
are many models proposed to represent rationale
knowledge, but since the rationale management
systems was not meant to represent a corporate
memory, the captured rationale is not structured in a
way to cater for this capability.

4. LiSER’s Knowledge Model
LiSER’s knowledge model represents the different data
structures and relationships that govern the generation
and sharing of organisational knowledge. It is used to
guide knowledge generation and sharing in software
organisations Figure 1 represents the Meta model
describing the knowledge skeleton of LiSER’s
repository. This model represents the domain ontology
that describes different constituent ontologies used to
symbolise basic ingredients of the experience drawn
from the software production line.

4.1. Characterisation of LiSER’s Knowledge

Assets
Unlike information management systems where all
aspects of organisational data are considered, in
knowledge management systems, the focus should be
on knowledge fragments rather than information
fragments. Knowledge fragments can be defined as the
knowledge pieces that were proved useful through
experience. These fragments are created as a result of
intensive and critical communications between
respective knowledge workers. In other words,
organisational knowledge is the organisational
information enriched with different criteria and
assumptions that represent context within which that
knowledge was created. Much of the effort in the
investigation and design of OM systems has been
lacking such a comprehensive view, which we hope to
offer in this paper.

12 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

Figure 1. LiSER’s knowledge model (higher level domain
ontology).

In regard to explicit (documentary) knowledge, and
as we stated earlier, LiSER is not meant to act as a
DMS; it does only make links to documentary
information as references to what is being seeded as a
knowledge asset. LiSER users can make a hyperlink
reference to the URL of any document, but it does not
make any conversion or importation to such documents
as the DMS does. LiSER can make reference to
documents/ files of any format:- office documents,
scanned images, technical drawings (i. e. UML
diagrams), video clips, and sound files.

Basically, LiSER’s repository is built on the notion
of Knowledge Asset (K-Asset) as the basic building
block. K-Assets represent the smallest level of
granularity in LiSER’s knowledge base. As such, the
K-Asset can be any useful proven fragment of software
development knowledge. Any lesson learned or
knowledge-embedded software artefact can be
considered as candidate K-Asset.

4.2. Realisation of LiSER’s Knowledge Assets

As it is cited by Conklin, the biggest barrier to
knowledge sharing is the “lack of shared
understanding, especially about key concepts and
terms” [5]. Research about ontologies aims to
overcome this limitation. By definition, ontology is a
“formal and explicit specification of a shared
conceptualisation” [15]. It symbolises the entities and
relationships that define any particular domain. In
LiSER, all stored K-Assets are linked to the defined
ontologies, which will be used later to search through
the mass of K-Assets held in the resultant OMS.

Based on LiSER’s knowledge model, an individual
K-Asset is described by four types of ontologies:

1. Competence ontology.
2. Information ontology.

3. Type ontology.
4. History ontology.
Firstly, the information ontology illustrates the
attributes used to describe any K-Asset contents.
Different attributes are used to characterise different
K-Assets based on the K-Asset types represented by
the type ontology. Attributes are filled in by the author
of any K-Asset before being submitted to the
repository. Figure 2 represents the information
ontology of a K-Asset characterised as a lesson
learned. Secondly, the competence ontology (see
Figure 3) is mainly used as an indexing schema for all
K-Asset types. Instances of this ontology are arranged
as taxonomy of software competences in the form of
is-a and part-of hierarchy similar to the object-oriented
structuring of elements.

Figure 2. An information ontology for a lesson learned k-Asset
type.

Figure 3. Competence ontology .

Thirdly, the type ontology represents the K-Asset
types based on the defined types of the knowledge-
embedded software artefacts. In this era of COT-based
software development which is basically code-based
reuse, reusing functional diagrams, data models and
other know-how information has become a necessity.
Figure 4 depict candidate K-Assets as represented by
the K-Assets’ type ontology. They include process
models, software artefacts, and lessons learned from
the software development process. Software artefacts
represent any potential reusable software artefact. They
include data models, test suites, screen shots, tables,
tool recommendations, database, code and functional
diagrams. Process models also represent a major
source for learning the skills and know-how. They
include any process description or installation
procedures or bug workarounds. Lessons learned as K-
Asset type represent descriptions of what could be
considered by developers as lessons learned. Each
lesson can be thought of as an avoidable negative
practice. Each K-Asset characterised as a lesson
learned includes descriptions like the causes of the

Competence

Is-a || part-of

Used-in

Produces

Development
skill

Process model

Knowledge-
embedded software

artefact

K-Asset

Is linked
with

N M

N

1
M

N

Applies-to

K-Worker

 Proposes

1

1

Has

M

N

Posts N
M

1

N

Argument
Extended by Deliberation
ontology

Extended by competence ontology

Extended by K-Asset
type ontology and
information ontology

K-Asset’s information ontology:
Instance type: Lesson learned

Author: …………………
Cause:…………………….
Alternative action: ……….
Competence index: ………

LiSER: A Software Experience Management Tool to Support Organisational Learning in Software… 13

problem, its symptoms and alternative actions that
could be taken to avoid the lesson reoccurrences.

Figure 4. K-Asset’s type ontology .

Fourthly, the history ontology is used to capture the

history of argumentations about the validity of any
particular K-Asset. Since K-Assets are usually created
or modified in a collaborative manner, any knowledge
generated as the outcome of such collaborative
knowledge filtering has to be captured as well.
Capturing this type of knowledge shall be the
responsibility of the history ontology. This ontology
includes information related to rationale behind
individual K-Assets. This part is the most important
part as it plays the main role of weighing the relevance
of particular K-Assets. Details of this ontology are
represented by an IBIS-based deliberation model that
we proposed in [12]. Components of this model are
shown in Figure 5.

Figure 5. The proposed IBIS-based argumentation model
(deliberation ontology).

5. LiSER’s Architecture
A three-layered architecture is followed in the
implementation of LiSER software. All these layers
function in an integrated fashion to enable the learning
cycles and feedback mechanisms set by the KM
framework [10]. The layers are: the presentation layer,

the logic layer and the information layer as shown in
Figure 6.

Figure 6. A layered architecture of LiSER.

The presentation layer comprises the user interface
components for users to interact with LiSER. This
layer provides knowledge workers and the knowledge
manager with means of viewing, manipulating, and
interacting with the information provided by the other
two layers. The logic layer represents the business
logic of the tool. It describes both the flow of the
business logic (i. e. access rights, interaction rules,
reasoning) and the conceptual knowledge taxonomy of
business domain. The purpose of this layer is to
provide a definition of the ontologies and the related
semantics for the identification and classification of
different types of K-Assets. These ontologies are
integrated to form a semantic net through which
conceptual search can be guided. KM dedicated agents
are also defined at this layer; they are used to qualify
candidate K-Assets based on qualitative assessment of
the argumentation elements related to respective K-
Assets. The qualitative assessment can be done based
on many proof standards of decision theory. We
adopted Scintilla of Evidence (SoE) as a standard to
qualify active K-Assets.

Basically, LiSER regards K-Assets submitted by
Knowledge Worker (K-Workers) as knowledge seeds
as an analogy to growing plants. Seeds can only grow
up and rise as trees based on the existence of certain
success factors such as the climate, soil fertility, and of
course, the smart farmer. We also consider newly
added K-Assets as a K-Asset seed. It is initially
considered inactive and it has no value until it is
collaboratively scrutinised by members of respective
community competence. Community members can
either support or oppose or raise further issues before
K-Asset candidates (seeds) are activated and grown up
as knowledge pearls.

According to the SoE, any K-Asset ika is active, if at
least one position argues in favour of it. I. e. the
activation or qualification of candidate K-Assets is
formally represented as:

))ka,p(inFavorp()ka(active ijji ∧∃⇔
Where p = knowledge workers’ positions

Application services

Application logic

Business ontologies

Knowledge repository

Presentation layer

Logic layer

Information layer

Tier -1

Tier -2

Tier -3

1

N 1

1

1 Posts K-Worker

Argument

Justifies

Related to

Claim
Reference (competence
ontology)

Position

K-Asset

Replies to

N

1

1

K-Asset Type
Ontology

Lesson
learned

Software artefact Process model

Process
description

Installation
procedures

Bug
workaround

Screenshot

Denotes to knowledge-
embedded software artefacts

Code Test
suite

Data
model

Table Functional
diagrams

Development
tool

14 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

Ka = candidate Knowledge Asset
While inactive (i. e. dead) knowledge assets are
reasoned about as follows:

In)),(()(ijji kapinFavorpkaactive ∧¬∃⇔

All active knowledge assets considered fit yet the
degree of fitness vary between different knowledge
assets. The degree of fitness (i. e. relevance weight) is
calculated based on the percentage of the believers of
any particular K-Asset. Basically we regard the
captured knowledge as a set of beliefs. In other words
the captured knowledge represents what knowledge
workers believe to be true or otherwise. The values of
beliefs held in the OMS changes as a result of the
continuous collaborative knowledge filtering. The
fitness of the captured knowledge assets changes as
well. Arguments in favour of a particular knowledge
asset represent the believers, while objection
arguments put more weight on the disbelievers’ side.
According to this standard, any knowledge asset is
regarded as relevant when believers outweigh the
disbelievers of that particular knowledge asset.
However, the degree of relevance varies based on the
overall percentage of the relevance score. The
relevance score is calculated as follows:

=)ika(score_relevance

))jp(aganist)ika(active())ika,jp(favour_in)jp(active(

100))ika,jp(favour_in)jp(active(

∑ ∧+∑ ∧

×∑ ∧

Based on the calculated value of relevance score of
each knowledge asset, any particular knowledge asset
is assigned one of the degrees of fitness shown in
Table 1. Notice that we also used visual symbols to
provide visual assessment of the degree of relevance of
retrieved knowledge assets. Mathematical or textual
descriptions alone sometimes hinder the users’ ability
to value the relevance of retrieved K-Assets. This
knowledge filtering strategy shall help the knowledge
manager or any competence community leader, to
review and discard less qualified or inactive K-Assets
(i. e. dead seeds).

Finally, the information layer represents the
knowledge repository of LiSER. This layer collects
different types of organisational K-Assets including the
activation history of each particular K-Asset.

6. Tool Features
LiSER provides four customised knowledge
navigators. Based on the types of stakeholders defined
in our framework for collaborative organisational
learning [10], users can interact with the tool through
the following navigators:

• Knowledge manager’s navigator.
• Navigator of competence group leader.
• Knowledge worker’s navigator.

• Customer navigator.
The Knowledge Manager’s view helps the knowledge
manager to authorise the tool access and to establish
competence communities. He/ She will be able to
navigate brows and maintain the competence ontology.
Based on the established competence groups, each
Group leaders are responsible for authorising the
access to knowledge related respective communities.
Only members of respective competence communities
can participate in the collaborative knowledge filtering
of particular communities

The knowledge Worker’s navigator helps K-
workers to populate or retrieve previously captured K-
Assets. This navigator also provides knowledge
workers a discussion area for sharing or maintaining
arguments related to candidate K-Assets. This view is
specifically meant to support asynchronous
collaborative argumentations among members of
respective competence communities. Based on the
competence ontology and the K-workers profiles,
LiSER can be used as a competence management
system. Users can easily figure out who knows what
among the available software experts. Currently, the
customer navigator only enables customers to brows
the captured K-Assets. However they are not allowed
to participate in knowledge filtering sessions. In fact
this view is only developed to provide customer with
insights that might influence the non functional
requirements of upcoming software projects.

In regard to KM strategies, LiSER adopts a
combination of ‘push’ and ‘pull’ strategies. K-Workers
can pull the knowledge fragments based on any criteria
chosen, while any knowledge fragment which is
related to K-Assets seeded or arguments posted earlier,
shall be pushed to them through the internal E-mail
system. To provide for the optimum search results,
LiSER employs two different search mechanisms
namely keyword based and ontology based. The
keyword-based search allows implementing CBR
searching strategy. On the other hand, domain
ontology is used for implementing the conceptual
search. This searching strategy enables a more precise
searching, because information can be induced through
the mapping between different types of ontologies. As
a result, the retrieved knowledge shall include
knowledge fragments that it would be difficult to
retrieve in keyword-based search, unless precise
keywords are provided.

7. Tool Implementation
Several goals influenced our choice of the technical
architecture to be used when implementing LiSER.
First, LiSER must be a web based system to allow the
tool access anytime and everywhere. This also
contributes to fulfilling the portability feature, as the
tool become platform independent. Secondly, the
consistent growth of knowledge has to be ensured.

LiSER: A Software Experience Management Tool to Support Organisational Learning in Software… 15

Thirdly, users must be able to seek and access K-
Assets in an intuitive way. They also must be able to
retrieve partial or similar information in addition to
exact match search.

Table 1. Relevance degree of knowledge assets.

To accomplish the first goal, a combination of web

programming tools was used in implementing LiSER.
To accomplish the second goal, we restricted
administration rights to the Knowledge manager only.
To achieve the third goal, in addition to keyword-based
search, an ontology-based search is provided to
generate fuzzy and non-zero hit queries. Since the
instances of the competence ontology is structured in
OO-like hierarchy, inheritance rules can be used to
include generic nodes to retrieve K-Assets similar to
the target ones. For example, based on the instance of
the competence ontology shown in Figure 7, instead of
limiting the search through K-Assets annotated as PHP
scripts, the node web programming is selected, and
then all K-Assets annotated as web programming tools
shall be considered among which is PHP scripts.
Finally, the information layer is implemented through
MySQL server which is an open source Relational
Database Management System. HTML is used for
Information rendering at the presentation layer, while
we used PHP as a middleware server to connect the
presentation layer with the information layer though
the TCP/IP protocol.

8. Conclusion and Future Work
The prototype tool presented in this paper is an
organisational memory subsystem aimed at facilitating
knowledge management activities in software
development organisations. The knowledge generation
and sharing at LiSER are governed by a KM
framework we proposed in a previous research. In
regard to the structure of LiSER’s knowledge
repository, we proposed an ontology-based knowledge
model. This model defines basic ontologies that
represent salient software development knowledge.

As for further research, LiSER’s functionalities can
be augmented by synchronous argumentation through

threaded discussions in the course of collaborative
knowledge filtering. Secondly, our approach only
relies on making references to explicit knowledge
without any concern to the internal representation of
these knowledge artefacts. The domain ontology can
also be extended to include the modelling of explicit
knowledge using XML annotations. Lastly, the
integration between our approach and any DMS that
has an Application Program Interface (API) shall
extend the benefits further.

Figure 7. An instance of the competence ontology .

References
[1] Ackerman M. S. and Malone T. W., “Answer

Garden: A Tool for Growing Organisational
Memory,” in Proceedings of the Conference on
Office Information Systems , ACM, New York,
pp. 31-39, 1990.

[2] Arango G., Shoen E., Pettengill R., and Hoskins
J., “The Graft-Host Method for Design
Evolution,” in Proceedings of the 15th
International Conference on Software
Engineering, IEEE Computer Society Press,
1993.

[3] Berlin L. M., Jeffries R., O'Day V. L., Paepcke
A., and Wharton C., “Where did you put it?
Issues in the Design and Use of a Group
Memory,” in Proceedings of the INTERCHI’93
Conference on Human Factors in Computer
Systems, ACM, New York, pp. 23-30, 1993.

[4] Brügge B. and Dutoit A. H., Object-Oriented
Software Engineering: Conquering Complex and
Changing Systems , Prentice Hall, USA, 2000.

[5] Conklin E. J., Designing Organisational Memory:
Preserving Intellectual Assets in a Knowledge
Economy, Group Decision Support Systems,
URL: http://cognexus.org/dom.pdf, 1996.

[6] Henninger S., “Accelerating the Successful reuse
of Problem Solving Knowledge Through the
Domain Lifecycle ,” in Proceedings of the 4th
International Conference on Software reuse,
IEEE Computer Society Press FL, Orlando, pp.
124-133, 1996.

[7] Henninger S., “An Environment for Reusing
Software Process,” in Proceedings of the 5th

Relevance Score Description Visual Symbol

rs = 0 Inactive

rs < 25 Sprouting

rs = 25 Sprouting

(rs > 25) AND (rs < 50) Sprouting

rs = 50 Borderline

(rs > 50) AND (rs < 75) Influential

rs = 75 Influential

(rs > 75) AND (rs < 100) Influential

rs = 100 Gem

Programming

Web prog. AI prog. Real time Prog.

Server-side
scripting

Client-side
scripting

Software eng. competencies

……

Perl PHP isSubFieldof

16 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

IEEE International Conference on Software
Reuse (ICSR'5), Victoria , BC, Canada, 1998.

[8] Henninger S., Haynes K., and Reith M. W., “A
Framework for Developing Experience-Based
Usability Guidelines,” Symposium on Designing
Interactive Systems (DIS'95), ACM Press, pp. 43-
53, 1995.

[9] Mentaz G., Apostolou D., Young R., and
Abecker A., “Knowledge Networking: A Holistic
Solution for Leveraging Corporate Knowledge,”
Journal of Knowledge Management, vol. 5, no. 1,
2001.

[10] Mohamed A. H., Peck L. S., and Salim S. S., “A
Framework for Collaborative Organisational
Learning: A Catalyst for Continuous Software
Process Improvement,” in Proceedings of the 1st
International Conference on Information and
Management Sciences, Xi’an, China, pp. 1-10,
2002.

[11] Ramesh B. and Dhar V., “Supporting Systems
Development by Capturing Deliberations during
Requirements Engineering,” IEEE Transactions
on Software Engineering, vol. 18, no. 6, pp. 498-
510, June 1992.

[12] Sai P. L., Mohamed A. H., and Salim S. S.,
“Towards an Intelligent Organisational Memory
System,” in Proceedings of the Knowledge
Management International Conference and
Exhibition (KMICE'2001), Lankawi, Malaysia,
2001.

[13] Stenmark D., “Turning Tacit Knowledge
Tangible,” in Proceedings of the 33rd Hawaii
International Conference on System Sciences
(HICSS'33), Maui, Hawaii, January 4-7, 2000.

[14] Terveen L. G., Selfridge P. G., and Long M. D.,
“Living Design Memory: Framework, System,
Memory: Framework, System, and Lessons
Learned,” Human-Computer Interaction, vol. 10,
no.1, pp. 1-37, 1999.

[15] Vasconcelos J., Kimble C., and Gouveia F. R.,
“A Design for a Group Memory System using
Ontologies,” in Proceedings of the 5th UKAIS
Conference, University of Wales Institute,
Cardiff, McGraw Hill, April 2000,

[16] Vescoukis V., “A Data Model for Software
Design Decisions Representation and
Management,” in proceedings of the 5th Hellenic
Conference on Informatics, Athens, 1995.

Abdulmajid Mohamed is currently
a PhD student at the Faculty of
Computer Science and Information
Technology, University of Malaya.
He obtained his MSc degree in
office automation and information
systems from Leeds University in

1993. He worked as a lecturer in the Department of
Computer Science, Sebha University, Libya in the

period from 1994 to 1999. His current research
interests include knowledge management,
organisational memory systems, and ontology-based
modelling.

Sai Peck Lee is currently an
associate professor at the Faculty of
Computer Science and Information
Technology, University of Malaya.
She obtained her MSc of computer
science from University of Malaya
in August 1990, her Diplôme

d’Études Approfondies (DEA) in computer science
from Université Pierre et Marie Curie (Paris VI) in
July 1991 and her PhD degree in computer science
from Université Panthéon-Sorbonne (Paris I) in July
1994. Her current research interests include software
engineering, object-oriented methodology, software
reuse and application framework, knowledge
management, information systems and database
engineering, object-oriented analysis and design for e-
commerce applications and auction protocols. She has
published an academic book and more than 70 papers
in various local and international conferences and
journals. She is a member of IEEE Computer Society,
a founding member of Informing Science Institute, a
member of the editorial board of a research bulle tin,
and she had served as the executive editor of a journal
for 2 years, as well as an active member in the review
committees and programme committees of several
local and international conferences.

Siti Salwa Salim is currently an
associate professor at the Faculty of
Computer Science and Information
Technology, University of Malaya.
She obtained her PhD in computer
science from the University of
Manchester in 1998. Her current

research interests include computer supported
collaborative work/ learning, human computer
interaction, web-agents, software requirements
engineering, and usability engineering.

