
The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005 87

Automark++ a Case Tool to Automatically

Mark Student Java Programs
Jubair Al-Ja'afer and Khair Eddin Sabri

King Abdullah II School for Information Technology, The University of Jordan, Jordan

Abstract: The quality assessment of a computer program is a critical process for ensuring its effectiveness. In this paper, an
easy to apply tool, AUTOMARK++, is introduced to automatically evaluate the Java programs. The marking of a program
under evaluation is based on its style. AUTOMARK++ is based on Redish and Smyth tool called AUTOMARK [12]. Two
modifications were made to the AUTOMARK: First, new factors have been introduced to give the new tool flexibility in
evaluating object-oriented languages such as Java. Second, the new tool automatically generates a model template for
program evaluation instead of writing a specific model for each program under evaluation. AUTOMARK++ has been tested
on simple and complex programs and the obtained results showed that the tool is considerably useful.

Keywords: Software engineering, style metric, software quality, Java programming language.

Received November 2, 2003; accepted January 22, 2004

1. Introduction
 Software quality assessment tools are important
especially in two areas, education and industry. In
education, these tools can help instructors evaluate
students’ programs, and give them feedback on the
strengths and weaknesses of their programs. In
addition, students may use these tools to test their
programs prior to submission to the instructor.

Another area of application is industry, where both
programmers and managers can utilize such tools. The
programmer can use an assessment tool to evaluate the
quality of his/ her programs. Whereas the manager can
use this tool to maintain the quality controls and
uniform standards for a project team [7].

Many quality assessment tools have been
developed. For example, Redish and Smyth developed
a tool called AUTOMARK to evaluate student style -
based Pascal programs [12]. Also, Berry and Meekings
have developed another tool to assess student programs
written in C language depending on style [3, 6]. Jones
used the concept of testing to automate the evaluation
of student programs [9]. Also, Jackson and Usher
developed a tool called ASSYST to automate student
programs depending on their correctness, efficiency,
complexity and style [8]. Jumaa developed a tool to
evaluate structural languages such as Pascal,
FORTRAN, C, and Basic based on Halstead, McCabe,
Style, and Lipow and Thayler models [10].

2. The AUTOMARK++ Tool
The AUTOMARK tool is proposed by Redish and
Smyth to evaluate student programs based on style
[12]. This tool requires a model program created by the

instructor to evaluate the student programs against it.
The tool proved to be suitable for intermediate courses.
As for advanced courses with big projects, it is
impractical for the instructor to write a model program
for each assignment. Also in the industry, it is difficult
to write a model program in order to assess an
industrial program.

Two modifications have been introduced to the
AUTOMARK model:

1. Some factors are added in order to evaluate object-
oriented languages such as the depth of inheritance
tree, total number of children, cohesion between
methods, coupling between classes, total number of
inherited methods, total number of methods and
attributes in a class, and the total number of
attributes used inside methods.

2. The values of factors used in the evaluation can be
computed automatically by the AUTOMARK++
tool based on the statistical information obtained
from a random set of programs. Hence, there is no
need to write a model template for every program
under evaluation.

The Following are the factors used in the
AUTOMARK++ tool to assess program quality:

• Factor1: Depth of Inheritance Tree (DIT), DIT is
defined as the maximum number of steps from the
class node to the root of the inheritance tree. Well-
engineered object-oriented software systems are
those structured as forests of classes, rather than one
very large inheritance lattice. The deeper a class
within the hierarchy is, the greater the number of
methods is likely to inherit making it more complex
to predict its behavior, and more difficult to test and

88 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

maintain. Hence, software with classes of very large
DIT tends to be of a lower quality and is
consequently awarded fewer marks [2, 4, 11].

• Factor 2: Total Number of Children (TNC),
children are defined as the number of immediate
descendants of a class in the hierarchy. It is an
indicator of potential influence of a class on the
design of the system. The greater the number of
children is, the greater the likelihood of improper
abstraction of the parent. Classes with large number
of children require more testing of the methods in
that class. Software with a large TNC tends to be of
lower quality [2, 4]. Therefore, the less number of
children in a program, the higher mark it will get.

• Factor 3: Total Number of Methods (TNM), TNM
is a useful indication of the class size. If the number
of methods per class grows up significantly, the
class objects tend to have many more functions.
This implies that the class is more difficult to
understand, reuse, test and maintain, and the system
design is less modular. Software with significantly
larger TNM is likely to be of lower quality and
deserves fewer marks [2, 11].

• Factor 4: Total Number of Attributes (TNA), TNA
is also a useful indication of a class size. If TNA
grows too large, the class needs to provide much
more information to other classes or within the same
class. Therefore, it is likely to be more difficult to
test and maintain. Also, it will reduce the reusability
of the class. Software with significantly large TNA
is likely to be of lower quality. If the program is not
well designed, and the class becomes larger with
more attributes, then it deserves lower mark [2, 11].

• Factor 5: Total Number of Inherited Methods
(TNIM), using inheritance makes a program simpler
and reduces defect density. So, it is expected that as
the number of inherited methods increases, the
quality of program increases and, therefore, it
deserves higher mark [11].

• Factor 6: Total Size of Methods (TSM).
• Factor 7: Total Number of Attributes used inside

Methods (TNAM).
The above two factors are used to measure the size and
complexity of a method. A large size method which
uses a large number of attributes is complex, difficult
to understand, test, and maintain. When a method is
simple, it is usually of a high quality and deserves high
mark [1].
• Factor 8: Total Coupling of Classes (TCC), a large

number of coupling increases complexity, reduces
encapsulation and potential reuse, and limits
understandability and maintainability [2, 4].
Coupling between classes is essential for every
program. However, increasing coupling is
unfavorable as it means that the program is not
designed properly, and needs to be reviewed and

redesigned. If the coupling is overused, the program
will deserve a lower mark.

• Factor 9: Cohesion Between Methods (CBM),
CBM measures the similarity of methods in a class
which is calculated by computing the number of
method pairs that accesses the same attributes. Low
cohesion increases complexity, thereby increases
the likelihood of errors during the development
process. Whereas high cohesion indicates good class
subdivision and implies simplicity, high reusability,
and deserves high mark [2, 4].

• Factor 10: Total Number of Unique Operators.
• Factor 11: Total Number of Unique Operands.
• Factor 12: Total number of Operators.
• Factor 13: Total number of Operands.
The above four factors are the basis of Halstead theory
[5]; the best known for measuring software
complexity. It proposed the first analytical laws for
computer software supported by several empirical
studies. Halstead measure is also considered as one of
the most widely accepted measures in industry and
academia. Software science defines additional metrics
such as: Program vocabulary, program length, program
level, program size, and program and data difficulty.
As these factors increase, the complexity of the
program increases, and the mark decreases [5, 10].
• Factor 14: Total Number of Decision Nodes

(TNDN), TNDN is a count of the number of test
cases needed for testing a program. A program with
low number of decision nodes decreases testing
effort and increases understandability and, therefore,
it gets higher mark. Decision nodes are essential for
every program. Although loops and other decision
nodes are needed in most programs, the programmer
should limit their use [5, 10].

• Factor 15: Total Number of Assignment Statements
(TNAS).

• Factor 16: Total Number of Function Calls (TNFC).
• Factor 17: Total Number of Comment Statements

(TNCS).
The above three factors were used by Lipow and
Thayler model to measure the complexity of a
program. A large number of assignment statements or
function calls and a low number of comment
statements would increase the complexity of a
program, and make it difficult to understand, test and
maintain. Using assignment statements and function
calls is important in every program, but its overuse
may increase the complexity of the program and
decrease its quality as well as its mark. Also, a
program with a low number of comment statements
would be difficult to understand and maintain, and
therefore it gets low mark [10].

As a result of this research, there is no need to write
a “model” program template for every program under
evaluation. The tool uses some statistical information,
collected from a set of programs having different

Automark++ a Case Tool to Automatically Mark Student Java Programs 89

size 1
size 2
size 3
size 4

goals, complexity and quality, to generate a model
program automatically. The model program is then
compared with the program under evaluation. This
model represents an acceptable frequency range of
each evaluation factor by extracting from it the Weight
Factor (WF) and the Tolerance Factor (TF) depending
on the size of the evaluated program.

The size of the program being evaluated is essential
for generating a “model” program. The above
mentioned 17 factors are classified into four
categories; each category uses an appropriate size.

• Size 1: Since the DIT, TNC, TNM, TNA, and TCC
depend on the number of classes in a program, the
size of the program is computed as its total number
of classes.

• Size 2: As the three factors (TNIM, TSM, and
TNAM) are related to the methods, it is expected
that they depend on the total number of methods in
the program.

• Size 3: Although CBM depends on the number of
methods per class, it has been experimentally shown
that it correlates better with the square of the
number of methods per class.

• Size 4: The other factors depend on the total number
of tokens in the program which can be computed as
the sum of the total number of operators and
operands.

2.1. The Algorithm of AUTOMARK++ Tool

Input: Program to be evaluated.
Output: Evaluated program.
• Step 1: Find the size of the program (PS) to be

 evaluated.
Size 1 = Total number of Classes.
Size 2 = Total number of methods.
Size 3 = (Size2)2 / Size1.
Size 4 = Total No. of Operators + Total No.
 of Operands.

• Step 2: For each of the 17 evaluation factors, follow
 the steps (3-7).

• Step 3: Calculate the average factor as follows:
 AF = FW* PS
 where:

AF: Average of Factors.
 WF: Factor Weight “experimentally

 calculated”.
PS: Program size computed in step 1; each

factor uses an appropriate size.
Factors (1, 2, 3, 4, 8) use
Factors (5, 6, 7) use
Factor (9) uses
Factors (10-17) use

• Step 4: Calculate the upper and lower boundaries of
 factors using the following formula:

 UPPER BOUNDRAY = AF + AF * FT
 LOWER BOUNDRAY = AF - AF * FT

 where:
 FT: Factor Tolerance “experimentally

calculated”.
• Step 5: Count the frequency of the evaluation factor

 in program (F).
• Step 6: Calculate a numerical mark (MARK) for the

 above factor using linear interpolation
 formula. The LOWER BOUNDRAY is
 assigned a score of 60 and the UPPER
 BOUNDRAY is assigned a score of 80 or the
 opposite depending on the factor.

)LBF(
LBUB
6080

80MARK −
−
−

−=

 for the Factors: 1, 2, 3, 4, 6, 7, 8, 10, 11,
 12, 13, 14, 15, and 16.

 or:

)FUB(
LBUB
6080

80MARK −
−
−

−=

 for the Factors (5, 9, and 17).
 where:
 UB: UPPER BOUNDRAY (Step: 4)

 LB: LOWER BOUNDARY (Step: 4)
 F: Frequency of the evaluation Factor
 (Step 5)

• Step 7: TOTAL MARK = MARK * W
 where:

 MARK: The mark computed from step 6
 W: Non-negative weight assigned to the

 mark for each factor. The weight
 value depends on the importance of
 the factor.

• Step 8: FINAL MARK =
TW

TOTALMARK
n

i
∑

=1

 where:
 FINAL MARK: Final mark of the evaluated

 program [0: 100]
 n: The number of factors. [n = 17]
 TW: Total Weight which can be calculated

 as follow:

∑
=

=
n

i

FiWTW
1

)(

 where:
 n: The total number of factors, n = 17
W(Fi): The Weight of Factor i

It is assumed that the “model” program is adequately
but not perfectly engineered. Factors in an evaluated
program, located in the range of the upper and lower
boundaries, may have a mark between 60% and 80%.

3. Experimental Results and Analysis
The AUTOMARK++ tool has been tested on two
different types of programs: Simple programs which

90 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

usually contain one class and complex programs which
may have many classes. The tested programs are
collected from different courses given in the KASIT
School at the University of Jordan. More than one
hundred simple programs are taken from students in
introductory courses and approximately forty complex
programs are taken from students in senior courses.
 The diagram of Figure 1 is obtained after evaluating
approximately forty programs taken from one section
of an introductory course in Java programming
language. As shown in the diagram, a normal
distribution with a mean of 76% is obtained from the
marked programs. However, object-oriented factors
such as DIT, TNC, TNIM, and TCC are not useful for
simple programs.

Figure 1. Distribution of student marks generated by the
AUTOMARK++ tool.

In Appendix A, Figures (1, 2, 3), show three simple
programs. The output of their evaluation produced by
the AUTOMARK++ is shown in Tables (1, 2, 3). The
score of Program 1 is (62%), Program 2 (64%) and
Program 3 (82%).

The low mark of Program 1 is due to the weakness
of factors such as: TNA, TSM, TNAM, TNDN, and
TNCS. The tool indicates that there is a large number
of attributes defined in the class which increases its
complexity. Also, there is a problem with the high
number of decision points which makes the program
more complex and more difficult to test and maintain.
Therefore, this number needs to be decreased. The tool
also indicates that there is an excessive usage of the
attributes inside the methods of the evaluated program
and the total size of methods is large. This means that
the methods do too much work which increases their
complexity and, therefore, need to be decomposed for
simplification. Additionally, the number of comment
statements should be increased to make the program
easier to understand.

Regarding Program 2, the tool shows that the
number of assignment statements and the number of
decision points are higher than the numbers expected
from the model program. This makes the evaluated
program more complex and relatively difficult to test.
Also, as in Program 1, there is a problem with the
number of comment statements and attributes. In
addition, the tool indicates that the cohesion between
the methods is not strong enough and, therefore, class
decomposition or restructuring is recommended.

Program 3 scored a high mark (82%), and all scores
were within or better than the model program template
generated by the tool. This means that the evaluated
program is well engineered. Based on the evaluation of
student programs, it is clear that the marks are varied
and the distribution curve is normal. Evaluated
programs may be well engineered with no need for
further modifications, or they suffer some weaknesses
and recommendations to improve their quality are
given by the tool.

AUTOMARK++ is also tested on larger and more
complex programs. Several large programs, taken from
senior courses, are evaluated by AUTOMARK++. In
all cases, AUTOMARK++ confirms its capability of
identifying the deficiencies of each program. To show
how AUTOMARK++ can detect the deficiencies of
large programs, three example programs, having the
same functions and different designs, were evaluated
as shown in Appendix B. Each program gives
information about employee’s first and last name as
well as ID number. Also, it provides information about
the hourly rate of both the temporary and permanent
hourly employees. All permanent employees have a
benefit deduction attribute. Permanent piece-worked
employees have information regarding the product
quality and the cost per piece. Also, there are
permanent employees who have a fixed salary
including those who receive a commission sale.

The design of Program 1 is shown in Appendix B,
Figure 1 and the evaluation results in Table 1. The
results show that there is a large number of methods
defined in one class and the cohesion between them is
small. Also, there is a large number of attributes and
operators defined. This means that the class does an
excessive work which makes the program more
complex and more difficult to reuse. Therefore, the
tool recommends that the class should be subdivided
for simplification. Another deficiency area of the
evaluated program is the absence of inherited methods.
As the number of inheritance methods increases, the
defect density and its fixing effort decrease
accordingly. This is why using inheritance in the
program is also recommended.

The design of Program 2 is shown in Appendix B
Figure 2, and the evaluation results in Table 2. The
results show that this design is better than the previous
one and its mark is higher. This is due to the
decomposition of the class and the use of inheritance.
However, there are still many deficiencies in the
program such as the high number of methods in the
classes and the low cohesion between them. Therefore,
more class decomposition is need.

In Appendix B, Figure 3 shows a well-designed
program and Table 3 shows its evaluation results. It is
obvious that this program does not need any
modification

60 - 69 70 - 79 80 - 89
mark

No. of
Students

Automark++ a Case Tool to Automatically Mark Student Java Programs 91

4. Conclusions
The following conclusions have been reached:

1. AUTOMARK++ can be used not only to evaluate
the programs but also to enhance them. This can be
achieved by eliminating the deficiencies of the
evaluated program as suggested by the tool and,
therefore, increasing the quality of its design.

2. Any program that gets a high mark should be well-
engineered, which means that there is a compromise
between all the factors. Also, all the factors should
be in an acceptable range or better to get a high
mark.

3. The distribution of the marks of student programs
taken from the same course fits the normal
distribution curve. Therefore it can be used in
universities to mark student programs.

5. Summary
In this research, a CASE tool, AUTOMARK++, is
developed to evaluate object-oriented languages by
introducing new factors. These factors are used to
assess the design of a program. Normally, a well-
designed program gets a high mark. This can be
achieved by compromising the use of these factors. For
example, the class size should not be too large and
should not have too much functionality. This can be
obtained by computing the TNM and TNA. However,
some classes may have only a few but huge methods,
while others may have many but very simple methods.
So the former classes may be more complex than the
latter ones. Therefore, two factors are introduced to
measure the size and complexity of the methods (TSM
and TNAM). The larger the method size is, the less
mark the program will get. In order to decrease the size
of a class, it should be decomposed into subclasses.
But the decomposition should be done correctly so that
it can get a high mark in the coupling and cohesion
factors. Also, the TNIM is applied to assess the use of
inheritance. However, frequent use of inheritance
increases the TNC or the DIT which results in
lowering the mark.

Well-known factors in structural languages are also
used by the tool to compute the complexity of a
program. Such factors are the basic elements of
Halstead which include the Total Number of
Operators, Total Number of Operands, Total Number
of Unique Operators and the Total Number of Unique
Operands. In addition, other factors are considered by
the tool for computing the program complexity such as
TNDN and the factors taken from Lipow & Thayler
model: TNAS and TNFC. Also, the TNCS is used to
measure the readability of the program.

In general, the AUTOMARK++ tool is used to
evaluate the style of the whole program (system level).
However, there are some cases where the quality of the

whole program is high, but it may contain a complex
method which can’t be detected by the tool.

A suggestion for future development is to evaluate
programs at the class and method levels in addition to
the system level. The tool may be further developed to
evaluate different object-orient languages such as C++,
C# and Smalltalk. Additional work can be generated
by introducing other new factors to the tool.

Appendix A
Simple Java programs and their evaluation using
AUTOMARK++

Program 1

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class program1 extends JApplet implements ActionListener{
JButton gradeButton;
JTextField g radeField;
JLabel gradeLabel;
Color color;
int value;
char grade;
Container container = getContentPane();
public void init() {

container.setLayout (new FlowLayout());
gradeLabel = new JLabel (" enter the numeric
grade:");
container.add (gradeLabel);
gradeField = new JTextField (10);
gradeField.setEditable (true);
container.add (gradeField);
gradeButton = new JButton ("Click here!");
gradeButton.addActionListener (this);
container.add (gradeButton);

}

public void actionPerformed (ActionEvent actionEvent) {
value = Integer.parseInt (gradeField.getText());
if (value > 100 || value < 0)

showStatus ("Wrong mark");
if (value >= 90 && value <= 100)
{

grade = 'A';
showStatus ("This student got a A..");
color = Color.red;
container.setBackground (color);

}
if (value >= 80 && value <= 89)
{

grade = 'B';
showStatus ("This student got a B..");
color = Color.blue;
container.setBackground (color);

}
if (value >= 70 && value <= 79)
{

grade = 'C';
showStatus ("This student got a C..");
color = Color.green;
container.setBackground (color);

92 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

}
if (value >= 60 && value <= 69)
{

grade = 'D';
showStatus ("This student got a D..");
color = Color.yellow;
container.setBackground (color);

}
if (value<60)
{

grade = 'F' ;
showStatus ("This student got F so he didnt
pass the exam..");
color = Color.lightGray ;
container.setBackground (color);

}
}
}

Figure 1. Program 1.

Table 1. The output after evaluating Program 1

Comments

• Since the total number decision nodes is large,
decrease it.

• Since there are no comment statements, write them.
• Since the number of attributes used inside methods

is large, simplify the methods.
• Since the size of the methods is large, simply the

methods.
• Since the number of attributes is large, decrease it.

Program 2

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
class Program2 extends JApplet implements ActionListener
{
 Color bgcolor;
 double grade;

 String letter;
 JTextField gfield;
 Container container;
public void init()
{
 container = getContentPane();
 container.setLayout (new FlowLayout());
 gfield = new JTextField (10);
 gfield.addActionListener (this);
 container.add (gfield);
}
public void actionPerformed (ActionEvent action)
{

grade = Double.parseDouble (gfield.getText());
 letter = letterg (grade);
 bgcolor = bg (bgcolor);

container.setBackground (bgcolor);
showStatus (letter);

}
public String letterg (double grade)
{
 String var;
 var = "";
 if (grade >= 90 && grade <= 100)
 var = "A";
 if (grade >= 80 && grade < 90)
 var = "B";
 if (grade >= 70 && grade < 80)
 var = "C";
 if (grade >= 50 && grade < 70)
 var = "D";
 if (grade < 50 && grade >= 0)
 var = "F";
 return var;
}
Color bg (Color color)
{
 int rand;
 rand = 1 + (int) (Math.random() * 5);
 switch (rand)

{
 case 1: color = Color.orange;
 break;
 case 2: color = Color.yellow;
 break;
 case 3: color = Color.blue;
 break;
 case 4: color = Color.green;
 break;
 case 5: color = Color.black;
 break;
 }
 return color;
}
}

Figure 2. Program 2.

Model
Program

Evaluated
Program Factors

Lower
Bound

Upper
Bound

Score Mark
(%)

Depth of inheritance tree 0 0 0 100
Total number of children 0 0 0 100
Total number of methods 4 7 2 90
Total number of attributes 2 3 7 0
Total number of inherited Methods 0 0 0 80
Total size of methods (LOC) 24 27 31 40
Total number of attributes used inside
methods 3 4 9 0

Total number of coupling 0 1 0 100
Cohesion between methods 0 1 1 80
Total number of operators 198 209 188 90
Total number of unique operators 39 46 38 80
Total number of operand 107 114 106 80
Total number of unique operands 57 64 52 90
Total number of decision nodes 9 10 11 40
Total number of assignment statements 15 16 15 80
Total number of function call 22 25 23 80
Total number of comment statements 5 6 0 0

Final Mark is 62 %

Automark++ a Case Tool to Automatically Mark Student Java Programs 93

Table 2. The output after evaluating Program 2.

Model
Program

Evaluated
Program Factors

Lower
Bound

Upper
Bound Score Mark

(%)
Depth of inheritance tree 0 0 0 100
Total number of children 0 1 0 100
Total number of methods 4 7 4 80
Total number of attributes 2 3 5 20
Total number of inherited methods 0 1 0 60
Total size of methods (LOC) 48 55 31 100
Total number of attributes used
inside methods 6 9 8 70

Total number of coupling 0 1 0 100
Cohesion between methods 3 4 2 40
Total number of operators 195 206 184 100
Total number of unique operators 39 46 42 80
Total number of operand 105 112 105 80
Total number of unique operands 56 63 49 100
Total number of decision nodes 9 10 15 0
Total number of assignment
statements

14 15 17 20

Total number of function call 21 24 15 100
Total number of comment statements 5 6 0 0

Final Mark is 64%

Comments

• Since the number of assignment statement is high,
decrease it.

• Since the number of decision nodes is high,
decrease it.

• Since there is no comment statements, write them.
• Since the cohesion between the methods is low,

divide the class.
• Since the number of attributes is high, decrease it.

Program 3

/* This program reads a mark from a user and then converts
it to a letter from A to F. A message appears in the status
bar and the color of the background changes. If the
entered mark is more than 100 or less that 0, an error
message appears. */

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class program1 extends JApplet implements ActionListener
{

Container container = getContentPane ();
JTextField textfield ; // TextField to read the mark
int mark ; // Contains the entered mark.
// The initialisation of the user interface

public void init () {
 container.setLayout (new FlowLayout());
 JLabel label = new JLabel ("Enter the mark..");
 container.add (label);
 textfield = new JTextField (10);
 textfield.addActionListener(this);
 container.add (textfield);
}
// Automatically invoked when the use press Enter.
public void actionPerformed (ActionEvent e) {
 mark = Integer.parseInt (textfield.getText ()) ;
 // Read the mark from the textfield
 display() ;
}

// Display of results depends on read mark.
void display() {
 String msg = "" ;
 if (mark > 100 || mark < 0)

{
 showStatus("Mark is out of range");
 container.setBackground(Color.blue);

 }
 else if (mark >= 90){
 msg = "A" ;
 container.setBackground(Color.green);
 }
 else if (mark >= 80) {
 msg = "B" ;
 container.setBackground(Color.cyan);
 }
 else if (mark >= 70){
 msg = "C" ;
 container.setBackground(Color.black);
 }
 else if (mark >= 60) {
 msg = "D" ;
 container.setBackground(Color.red);
 }
 else {
 msg = "F" ;
 container.setBackground(Color.gray);

}
 showStatus(“ Your Grade is “ + msg); // print the
 message in status bar
 }
}

Figure 3. Program 3

Table 3. The output after evaluating Program 3.

Model
Program

Evaluated
Program Factors

Lower
Bound

Upper
Bound Score Mark

(%)
Depth of inheritance tree 0 0 0 100
Total number of children 0 0 0 100
Total number of methods 4 7 3 80
Total number of attributes 2 3 3 60
Total number of inherited methods 0 1 0 60
Total size of methods (LOC) 36 41 22 100
Total number of Attributes used inside
methods

4 7 6 70

Total number of coupling 0 1 0 100
Cohesion between methods 1 2 3 100
Total number of operators 161 170 162 80
Total number of unique operators 31 38 33 70
Total number of operand 87 92 124 80
Total number of unique operands 46 53 47 80
Total number of decision nodes 7 8 6 100
Total number of assignment statements 12 13 10 100
Total number of function call 17 20 18 80
Total number of comment statements 4 5 7 100

Final Mark is 82 %

Comment

This program is well-engineered. No modification is
recommended.

94 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

Appendix B
Different designs and their evaluation using
AUTOMARK++.

Figure 1. The design of Program 1.

Table 1. The output after evaluating Program 1.

Model
Program

Evaluated
Program Factor

Lower
Bound

Upper
Bound Score Mark

(%)
 Depth of inheritance tree 0 0 0 100
 Total number of children 0 0 0 100
 Total number of methods 4 7 26 0
 Total number of attributes 2 3 11 0
 Total number of inherited methods 8 13 0 30
 Total size of methods (LOC) 321 362 28 100
 Total number of attributes used inside
 methods 44 67 37 80

 Total number of coupling 0 1 0 100
 Cohesion between methods 243 300 44 10
 Total number of operators 222 233 239 50
 Total number of unique operators 44 53 42 80
 Total number of operands 119 128 89 100
 Total number of unique operands 63 72 26 100
 Total number of decision nodes 10 11 0 100
 Total number of assignment statements 17 18 14 100
 Total number of function call 24 27 0 100
 Total number of comment statements 5 6 23 100

Final Mark is 66%

Comments

• Since the total number of methods defined in the
classes is large, decompose some of classes.

• Since the total number of attributes defined in the
classes is large, decompose some of classes.

• Since the total number of inherited methods is
small, use more inheritance

• Since there is a lack of cohesion between the
methods, subdivide the class.

• Since the total number of operator is large, simplify
the program.

Figure 2. The design of Program 2.

Table 2. The output after evaluating Program 2.

Model
Program

Evaluated
Program Factor

Lower
Bound

Upper
Bound Score Mark

(%)
Depth of inheritance tree 0 1 1 60

 Total number of children 1 2 2 60
 Total number of methods 14 23 39 30
 Total number of attributes 8 13 13 60
 Total number of inherited methods 12 19 18 80
 Total size of methods (LOC) 482 543 54 100
 Total number of attributes used inside
 methods 67 102 56 80

 Total number of coupling 3 4 0 100
 Cohesion between methods 115 142 87 40
 Total number of operators 420 443 432 70
 Total number of unique operators 84 101 49 100
 Total number of operands 227 242 190 100
 Total number of unique operands 121 138 32 100
 Total number of decision nodes 21 22 0 100
 Total number of assign statements 33 34 30 100
 Total number of function call 47 54 2 100
 Total number of comment statements 12 13 22 100

Final Mark is 76%

PermanentEmployee

 Benefitdeduction
 Number
 cost
 salary
 commission
 sales
 hours
 rate

 PermanentEmployee
 PermanentEmployee
 PermanentEmployee
 PermanentEmployee
 setBenifitDeduction
 setNumberProduced
 getNumberProduced
 setCostPerPiece
 getCostPerPiece
 setHours
 getHours
 setRate
 getRate
 setSalary
 getSalary
 getCommission
 getSales
 setCommission
 setSales
 earn1
 earn2
 earn3
 toString

TemporaryEmployee

 Hours
 Rate

 TemporaryEmployee
 setHours
 getHours
 setRate
 getRate
 earn
 toString

Employee

 firstName
 lastName
 IDNumber

 Employee
 setFirstName
 getFirstName
 setLastName
 getLastName
 setId
 getId
 earn
 toString

Design 2

 Employee

 firstName
 lastName
 IDNumber
 Hours
 Rate
 Benefitdeduction
 Number
 Cost
 Salary
 Commission
 Sales

 Employee
 setFirstName
 getFirstName
 setLastName
 getLastName
 setId
 getId
 setHours
 getHours
 setRate
 getRate
 setBenifitDeduction
 setNumberProduced
 getNumberProduced
 setCostPerPiece
 getCostPerPiece
 setSalary
 getSalary
 getCommission
 setCommission
 setSales
 getSales
 earn1
 earn2
 earn3
 toString

Design 1

Automark++ a Case Tool to Automatically Mark Student Java Programs 95

Comments

• Since the total number of methods defined in the
classes is large, decompose some of these classes.

• Since there is a lack of cohesion between the
methods, subdivide the class.

Figure 3. The design of Program 3.

Table 3. The output after evaluating Program 3.

Model
Program

Evaluated
Program Factor

Lower
Bound

Upper
Bound Score Mark

(%)
Depth of inheritance tree 2 3 3 60
Total number of children 3 6 6 60
Total number of methods 34 53 45 70
Total number of attributes 21 32 13 90
Total number of inherited methods 15 22 65 100
Total size of methods(LOC) 557 626 56 100
Total number of attributes used inside
methods 78 117 50 90

Total number of coupling 7 10 0 100
Cohesion between methods 65 80 67 7
Total number of operators 490 517 510 70
Total number of unique operators 98 117 50 100
Total number of operands 264 283 215 100
Total number of unique operands 141 160 37 100
Total number of decision nodes 25 26 0 100
Total number of assignment
statements

38 39 26 100

Total number of function call 55 62 6 100
Total number of comment statements 14 15 28 100

Final Mark is 86%

Comments

This program is well-engineered. No modification is
recommended.

References
[1] Abreu B. and Carapuca R., “Candidate Metrics

for Object-Oriented Software within a Taxonomy
Framework,” Journal of Systems and Software,
vol. 26, no. 1, 1994.

[2] Alhadithi J. and Taka A., “Application of Object-
Oriented Software Quality Metrics to Measure
the TPS System,” in Proceedings of the ACIT
Conference, Qater, 2002.

[3] Berry R. and Meekings B., “A Style Analysis of
C Programs,” Communication of the ACM, vol.
28, no.1, pp. 80-88, 1985.

[4] Chidamber S. and Kemerer C., “A Metrics Suite
for Object-Oriented Design,” IEEE Transactions
on Software Engineering, vol. 20, pp. 476-493,
1994.

[5] Conte S. D., Dunsmore H. E., and Shen V.
Y., Software Engineering Metrics and Models,
The Benjamin/ Cummings Publishing Company
Inc., 1986.

[6] Harrison W. and Cook C., “A Note on the Berry-
Meekings Style Metric,” Communication of the
ACM, vol. 29, pp. 123-125, 1986.

[7] Hung S., Kwok L., and Chan R., “Automatic
Programming Assessment Metrics,” Computers
and Education, vol. 20, no.2, pp.183-190, 1993.

[8] Jackson D. and Usher M., “Grading Student
Programs Using ASSYST,” in Proceedings of the
28th ACM SIGCSE Technical Symposium on
Computer Science Education, San Jose,
California, USA, pp. 335-339, 1997.

Employee

 firstName
 lastName
 IDNumber

 Employee
 setFirstName
 getFirstName
 setLastName
 getLastName
 setId
 getId
 earn
 toString

TemporaryEmployee

 Hours
 Rate

 TemporaryEmployee
 setHours
 getHours
 setRate
 getRate
 earn
 toString

PermanentEmployee

 Benefit deduction

 PermanentEmployee
 setBenifitDeduction
 earn
 toString

HourlyEmployee

 hours
 rate

HourlyEmployee
 setHours
 getHours
 setRate
 getRate
 earn
 toString

PieceWorkEmployee

 number
 cost
 salary
 commission

 PieceWorkEmployee
 setNumberProduced
 getNumberProduced
 setCostPerPiece
 getCostPerPiece
 earn
 toString

SalariedEmployee

 salary

 setSalary
 getSalary
 SalariedEmployee
 earn
 toString

CommissionEmployee

 Commission
 sales

 CommissionEmployee
 setcommission
 getcommission
 setSales
 getSales
 earn
 toString

Design 3

96 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

[9] Jones E., “Grading Student Programs: A
Software Testing Approach,” ACM Journal of
Computing in Small Colleges, vol. 16, no.2,
pp.187-194, 2001.

[10] Jumaa D. “A Computer Model for Evaluation of
Programs,” MSc Thesis, University of
Engineering and Science, 1992.

[11] Pressman R. and Ince D., Software Engineering:
A Practitioner's Approach: European
Adaptation, Schaum, 2000.

[12] Redish K. and Smyth W., “Program Style
Analysis: A Natural By-product of Program
Compilation,” Communication of the ACM, vol.
29, no. 2, pp.126-133, 1986.

Jubair Al-Ja'afer is a professor of
computer science at the King
Abdullah II School for Information
Technology, the University of
Jordan. His main interests are
software engineering, biocomputing,
wisdom and ontology. He obtained

his BSc in physics from the University of Baghdad
1968, BSc, MSc, and PhD in computer science from
the United Kingdom.

Khair Eddin Sabri is currently
working as a lecturer in the
Computer Science Department at the
University of Jordan. He obtained
his BSc degree in computer science
from the Applied Science
University, Jordan in June 2001, and

MSc degree in computer science from the University
of Jordan in January 2004. His main interest is
software engineering, especially software metrics and
reverse software engineering. He has also published
some papers in the area of data hiding.

