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Abstract: Privacy concern has become an important issue in data mining. In this paper, a novel algorithm for privacy 

preserving in distributed environment using data clustering algorithm has been proposed. As demonstrated, the data is locally 

clustered and the encrypted aggregated information is transferred to the master site. This aggregated information consists of 

centroids of clusters along with their sizes. On the basis of this local information, global centroids are reconstructed then it is 

transferred to all sites for updating their local centroids. Additionally, the proposed algorithm is integrated with Elliptic Curve 

Cryptography (ECC) public key cryptosystem and Diffie-Hellman key exchange. The proposed distributed encrypted scheme 

can add an increase not more than 15% in performance time relative to distributed non encrypted scheme but give not less 

than 48% reduction in performance time relative to centralized scheme with the same size of dataset. Theoretical and 

experimental analysis illustrates that the proposed algorithm can effectively solve privacy preserving problem of clustering 

mining over distributed data and achieve the privacy-preserving aim. 
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1. Introduction 

Sharing of data between different parties can lead to 
mutual benefit, but due to privacy laws as in medical 
databases or privacy motivated by business interests, 
such sharing become difficult. The goal of privacy 
preserving of data mining is to get valuable 
information through mining process without disclosing 
the privacy of each party participating in mining 
scheme. Clustering analysis is one of the main tasks in 
data mining. Cluster analysis [12] is the process of 
dividing a set of data objects into groups or clusters 
that are meaningful, useful or both, such that objects 
within a given cluster are similar and dissimilar with 
other objects in different clusters. Clustering of data to 
groups is done according to some similarity measures 
of the data. Cluster analysis as one of data mining 
techniques is widely used in applications of financial 
affairs, marketing, insurance, medicine, chemistry, etc., 
clustering algorithms can be categorized into two 
classes, one class for algorithms based on point 
densities in which regions with a high density of points 
contribute to a cluster while the points in vicinity are 
arising, from the noise or distortion. DBScan is one of 
the most common of these algorithms [9]. 

The other class is based on the point distance 
approaches in which some initial points are added as 
the center of the clusters and then by defining a 
distance function like “Euclidean Distance” and 
changing the centers of the clusters they try to 
minimize the summation of the distance of the other 
points from the clusters. The final resulted points 
define the centers of the clusters. K-means clustering 
algorithm is one of the most outstanding methods of 
this class. 

 
For distributed data mining, there are two forms of 

data: Horizontally partitioned data and vertically 
partitioned data. Horizontally partitioned data means 
that each site has complete information on a distinct set 
of entities and an integrated dataset consists of the 
union of these datasets. In contrast, vertically 
partitioned data has different types of information at 
each site; each has partial information on the same set 
of entities. 

For horizontally partitioned database many 
distributed clustering algorithms are proposed recently 
such as K-Means [17] and DBDCL [15]. Miao and 
Genlin [25] proposed the distributed clustering 
algorithm, DK-Means, which improves K-DMeans 
algorithm. But the privacy concern in these clustering 
algorithms is not supported due to leakage of sensitive 
data. So, privacy preserving concern in distributed 
clustering is an important issue.   

This paper develops a solution for privacy 
preserving K-means clustering for horizontally 
partitioned data using Elliptic Curve Cryptography 
(ECC) public key cryptosystem introduced in [27]. The 
idea of the global computation algorithm is based  on 
DK-means distributed clustering [25] and applies 
Secure Multi-party Computation (SMC) protocol to 
protect real data of its own site from being transferring 
to other sites so that achieve privacy-preserving 
objective.  

The paper is organized as follows: In section 2, we 
review in brief the related work in the area of privacy-
preserving of K-means clustering algorithms. In 
section 3, privacy-preserving mechanisms used in 
proposed algorithm are presented. In section 4, we 
describe our proposed distributed clustering algorithm. 
In section 5, we present clustering validation measures 
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to determine the optimum number of clusters for the 
dataset used. In section 6, the experimental evaluation 
of the proposed distributed clustering algorithm is 
presented. In section 7, we discuss the privacy 
preservation of the proposed algorithm. We conclude 
the paper in section 8 with a short summary and a few 
remarks. 

2. Related Works 

The need for secure information confidentiality during 
knowledge extraction process in distributed data 
environment is a very current area of research in 
scientific society. The privacy preserving clustering is 
classified into two main groups according to designing 
approach: 

• One Group is the Randomization Method [1]: The 
concept of this group depends on the masking or 
perturbing the data set before applying the 
algorithm. Many algorithms are achieved by several 
researchers [19, 23, 26] using this approach. 

• The Other Group is the Encryption Method: 
Encryption method mainly resolves the problems 
that people jointly perform mining tasks based on 
the private inputs they provide. This method is 
based on SMC protocol [21]. Several algorithms 
using this approach are introduced in [6, 8, 18]. The 
advantage of this method over the perturbing 
approach is that the data transformation is exact and 
secure. 

According to how the data is organized, there are two 

different distributed privacy preserving data mining 

approaches, one on horizontally partitioned data and 

the other on vertically partitioned data.  

Many research works studied the privacy-preserving 

of K-means clustering algorithms and considered 

various data partition models: Vertically partitioned 

data [29, 31], horizontally Partitioned data [16] and 

arbitrarily partitioned data [3, 24].  

In SMC literature two basic adversarial models are 

defined: The first is semi-honest model, in which 

adversaries follow the protocol correctly, but can try to 

infer information of the other parties from the data they 

see during the execution of the protocol. The second is 

malicious model, in which malicious adversaries may 

do anything to infer secret information. They can abort 

the protocol at any time, send spurious messages, spoof 

messages, collude with other (malicious) parties, etc. 

We will introduce in the paper the notion of 

privacy-preserving multi-party K-means clustering 

problem for horizontally partitioned data based on 

symmetric public key encryption scheme with semi-

honest model as an adversarial model.  

3. Privacy-Preserving Mechanisms 

Now, a brief description of the tools used to achieve 
privacy preserving in the proposed algorithm will be 
presented.   

• Diffe-Hellman Protocol [7]: Is the basic public key 
cryptosystem proposed for secret key sharing. In 
order to implement the Diffie-Hellman protocol we 
just need scalar multiplication P. In addition, if 
party A and party B first agree to use a specific 
curve, field size and type of mathematics, they then 
share the secret key by process as follows:  

1. A and B each chose random private key ka and kb. 
2. A and B each calculate (kaP) and (kbP) and send 

them to opposite side. 
3. A and B both compute the shared secret key. 
   

( ) ( )k a b b aS k k P k k P= =  

• ECC [2, 13]: Is an approach to public key 
cryptography in which every user has a public and a 
private key. Public key is used for encryption and 
private key is used for decryption. Only the 
particular user knows the private key whereas the 
public key is distributed to all users taking part in 
the communication. The main reason for choosing 
ECC is that it offers high level of security with 
small key size, e.g., elliptical curve encryption done 
using 160bit key gives the same level of security as 
given by RSA using 1024bit key. ECC is based on 
the algebraic structure of elliptic curves over finite 
fields [14]. Elliptic curves used in cryptography are 
typically defined over two types of finite fields: 
Prime fields Fp and binary extension fields F2m. The 
ECC used in the proposed algorithm is defined over 
prime field Fp. 

4. Proposed Privacy-Preserving Clustering 

on Distributed Databases 

4.1. Proposed Model for Privacy Preserving 

In our proposed algorithm we extend ECC and Diffie-

Hellman key exchange to be multi parties 

cryptosystem for distributed environment dataset. In 

the proposed model as shown in Figure 1, master site 

and distributed slave sites on both ends of 

communication send a public key which can be seen 

by anyone. The public key is then combined with the 

private key to create a shared secret which, due to the 

underlying mathematics is the same on both sides. This 

shared secret is then used to hash a new key that can be 

used by either site (master and slave site) for 

encrypting and decrypting messages. 

 

Figure 1. Shared secret key Sks can be used by either master or 

slave sites for encrypting and decrypting messages. 
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Where p: Is a prime number on which the finite field Fp 

is defined, g: Is a base point taken from the elliptic 

group, pks, pkm: Are private keys of slave site Ss and the 

master site Sm respectively selected from the interval [1, 

p-1], 1≤ s ≤ n. Bs, A: Are public keys of slave site Ss and 

the master site Sm respectively. Then, the shared secret 

key Sks is as follows: 

( , ) ( ( , ), ) (
pk pkpks sm

ks
S =mod A p = mod mod g p p = mod mod   

           ( , )) ( ( , ) , ) ( , )
pk pk pk pk pkm s s m m

sg p = mod mod g p p = mod B p  

Algorithm 1: Encryption algorithm. 

1. Let (G, E, D, M) be an ECC cryptography scheme, where G 

is an algorithm generating keys, E and D are the encryption 

and decryption algorithms and M is the message space. 

2. Let s 1≤ s ≤ n, (n= Number of sites/ parties) and k is the 

number of clusters in each site. 

3. Each site s has k clusters; each cluster has a size s
im , 1≤i≤ k 

and centroid s
iC  of dimension space r where 

1 2{ , , ..., }
s s s s

i i i irC c c c= , (i is the cluster number at site s). 

4. At the master site and each slave site the public and private 

key pair of ECC algorithm is generated. Key pair for a slave 

site s is: (Bs, pks) 1≤ s ≤ n and for the master site is: (A, pkm).  

5. Each slave party/site s exchanges public encryption key with 

the master site. 

6. The shared secret key Sk is generated for each slave site s, 

1≤ s ≤ n and the master site. This shared secret key is then 

used by both master and slave site for encrypting and 

decrypting of messages. Each slave site s calculate its 

shared secret key as follows: 
 

,( ) ( , )s m spk pk pk

ks
S mod A p mod g p= =  

 

Where A is the public key of the master site:  
 

( , )mpk
A mod g p=  

 

While the shared secret key at the master site corresponding 

each slave site is calculated as follows:  

( , ),m

s

pk

k sS mod B p= ( , )spk
sB m od g p=  

Where Bs is the public key of sites. 

( ) , ) ( , )s m sm

s

pk pk pkpk

kS mod g p mod g p= =  

7. Given a clusters size array m
s
∈M and a cluster centroid 

s
iC ∈M, of cluster i at site s as plaintext messages where: 

 

1 2{ }, 1
s s s s

i i i irC = c ,c ,...,c i k≤ ≤    

1 2{ , , , }
s s s s

km = m m ... m  

 

8. The encrypted values are computed as:            

      ( ) ( , ), 1 1m s

s

pk pks s

S i i
k

E C mod C g p i k and  s n= ≤ ≤ ≤ ≤  

                 
( ) ( , ), 1m s

s

pk pks s

Sk
E m mod m g p s n= ≤ ≤  

Algorithm 2: Decryption Algorithm. 

To decrypt:  

( ) ( , ) ( ) ( , )m s m s

s sk k

pk pk pk pks s s s

S i i SE C mod C g p and E m mod m g p= =

 

at master site the decryption key is calculated which represents 

the inverse value of the shared key Sk, then, 

1 1
(( ) , ) ( )m s

sks

pk pk

S kD mod g p S
− −

= =  

such that:  

  
1 1

1

( ( ( ))) ( (( ) , )( ( , ))

(( ) , ) ( , )

S ks

pk pk pk pks sm s m s
k i is

pk pk pk pk s sm s m s
i i

S E C mod g p mod C g p

mod g g C p mod C p

− −

−

=

= =

 

Then, 

   ( ( )) ( , ) , 1 1
s s s

S S i i ik ks s
D E C mod C p C i k and  s n= = ≤ ≤ ≤ ≤  

Then, also: 

                         ( ( )) , 1
k ks s

s s

S SD E m m s n= ≤ ≤   

As |Fp| is the order of the finite group Fp then, x
|Fp|

=1 

for all x in Fp, as established from Lagrange’s theorem 

in group theory [10]. The order|Fp|, of the group Fp is 

known for all sites. 

• The value 1
(( ) , )m s

sk

pk pk

SD mod g p
−

=  at the master    

client will be calculated as follows: 

It is known its private key pkm and the public key Bs 

of slave site s, ( , )spk

sB mod g p=  then: 
 

| || |
(( , ) , ) ( , )s m smpk Fp pk pk pkFp pk smod g p p mod g p

−−
=  

         | |( , ) (1 , )s m s s m sFp pk pk pk pk pk pkmod g g p mod g p− −
= =  

         
1

( , ) (( ) , )m s m spk pk pk pk
mod g p mod g p

− −
= =  

• The value 1
(( ) , )

Sks

pk pkm sD mod g p
−

=  at the slave site  will be 

computed as follows: 

It is known its private key pks and the public key of 

master site ( , )mpk
A mod g p= then: 

| | | |
(( , ) , ) ( , )s m m sm Fp pk pk Fp pk pkpk

mod g p p mod g p
− −

=  

    | |
( , ) (1 , )m s m sm mpk pk pk pkFp pk pk

mod g g p mod g p
− −

= =  

           1(( ) , )m spk pk
mod g p−

=  

The result of decryption from one site s is k centroids 

of k clusters and their corresponding array sizes m
s to 

produce the global centroids components as per 

Equation 6 at the master site.  Each site learns nothing 

about other sites. Since, the K-means algorithm is 

performed locally for every site/party, this enables 

solutions where the communication cost is independent 

of the size of the database.  

4.2. Proposed Algorithm for Distributed 

Clustering 

The proposed algorithm in this paper consists of two 

levels local and global and four steps which are 

demonstrated in Figure 2 are as follows: 

1. Local clustering. 

2. Extraction of local properties (local centroids and 

corresponding local clusters size).  

3. Determining global cluster centroids based on the 

local received values. 

4. Updating of all local cluster models. 

(1) 

(2) 

(3) 

(4) 
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Figure 2. Steps of clustering at distributed databases. 

The mathematical model of distributed data sets 
over horizontal partition is as follows:  

• Suppose DBi(1≤ i≤ n) among the data sets DB1, DB2, 

…, DBn located at different sites P1, P2, …, Pn (i.e., n-
divisions) as the partial database and 

1 2 ... nDB = DB DB DB∪ ∪ ∪  as the overall situation 
database. Each database DBi has r attributes and 
different number of entities. A pre-processing work 
is done for normalization of all values of distributed 
dataset at each site before implementation the 
proposed algorithm.  

• We also assume that the adversary model is semi-
honest in which parties follow the execution 
requirement of the protocol but may use what they 
see during the execution to compute more than they 
need to know. 

• The distance function used in this work is the 
standard Euclidean distance which is defined as: 

                 2
1, ( [ ] [ ])

r
i=D(X Y ) = X i - Y i∑  

Where r is the dimension space of an instance X,   
X[i] denote the ith component value of data object X 
and D(X, Y) is the distance between two data objects 
X, Y. 

The process of proposed algorithm is shown 
below in Figure 3. 

 

Figure 3. The process of proposed algorithm. 

Algorthim 3: The integrated privacy preserving algorithm of 

distributed K- Means clustering. 

Input: DB1, DB2, ..., DBn at n sites, each of dj data  objects, 

j∈{1, ..., n}, each data object X=x1, x2, ..., xr of r space 

dimension, r >1, k clustering value.  

Output: k global centers, each of which is the centriod of 

objects belonging to the same cluster. 

1. The first site is considered as the master site and in which 

an initial k centers are randomly chosen as the  a global 

centroids of the k clusters which are broadcast to all local 

sites. The initial k centers are G={c1, c2, …,ck}. 

 In addition (e, d) key pair as the encryption and decryption 

keys of ECC algorithm is also generated at master and slave 

sites. Master and slave sites exchange their public 

encryption key to produce shared secret 
jkS  which is used 

for encryption and decryption between the master and slave 

site j. 

2. In each local site, every data object, finding its closest 

center ci and then is assigned to coressponding cluster i,  

j∈{1, ..., k}.   

3. The new set of centers at site j. Cj'= {c1', c2', …, ck'} and 

corresponding set of clusters' sizes Mj'= {m1', m2', …, mk'} 

are calculated based on the cluster assignment in step 2. 

4. All local centroids Cj' and corresponding sizes M'j are sent 

from local sites to the master site after encryption every set 

as per Equations 1, 2. 

5. At master site a decryption process is done for all received  

Cj' and  Mj', as per Equations 3, 4 then a new set of global 

centroids G' are calculated as per Equation 6.  

6. If the difference between the G' and G is less than a preset 

threshold T. 

7. Then terminate and output G and  Mj' for every site. 

8. If not go to step 2 and replace Cj' by G'. 

Generally speaking, we randomly choose the initial 

position  of  these k centers G={c1, c2, ..., ck} in step 1. 

In steps 2  to 7 we first assign each data object X to the 

cluster whose center is close to it, where we use 

Euclidean distance as a metric distance as per Equation 

5. Then, in step 3 recalculate a new set of k clusters 

centroids  Cj'= {c1', c2', …, ck'} at each site j based on the 

cluster assignment in step 2 and calculate 

corresponding set of cluster’s size  Mj'= {m1', m2', …, mk'} 

. The new centroid of each cluster is calculated by 

using the arithmetic mean method, i.e., by computing 

the arithmetic mean of the data objects in the cluster. 

Let the number of data instances belonging to a cluster 

be D. For  a  property x of  the  data  instances,  sum 

1

D

x gi
g

S
=

∑=

��� �

, mean i
i

S
M

D
=

���

,  ki ≤≤1 .   

In step 4 the new centroids and corresponding sizes 
are sent from all local sites to the master site. In step 5 
a new set G' of global centers are calculated. In step 6 
we decide if the new set of global centers is good 
enough by checking in the difference between  the new 
set of centers G

' and the old set of centers G. If it is 
small enough within a given threshold, we terminate 
the algorithm and return G as the final result as in step 
7. Otherwise, in step 8, we will use the new set of 
centers G

' and iterate the process. The computation of 

Start 
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The master site decrypts all local centroids and sizes and calculates k 

global centroids 
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The master and slave sites exchange their public keys and shared 
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generates k clustering 
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distance between two sets of centers is done using, 
Euclidean distance function as per Equation 5.  In step 
5 according to the received information, the master site 
calculates the overall clustering centroid components 
(global components) Cij, j∈{1, 2, ..., Ck} of global array 
Cg of dimension r, Cg∈{C1, C2, ..., Ck} as follows [27]: 

                  
1 1 2 2

1 2

...

...

s s

ij i ij i ij i

ij s

i i i

c m c m c m
C

m m m

× + × + + ×
=

+ + +

 

Where 
1

ijc  is the component j of the centroid of cluster 
i at site 1 and 1

im is the size of cluster i at site 1. The 
global element Cij of  global centroid Cg means that 
every j component  of local centroid for cluster i is 
multiplied by its size and then the sum of the weighed 
elements is divided by the sum of cluster size i at all 
sites. To illustrate the above formula, let us have the 
following example: 2 sites, each site has 2 clusters and 
each cluster centroid has two attributes. Then, for the 
first site cluster centroids and corresponding sizes are 
{c11= (2, 3), m11= 4}, {c12= (1, 6), m12= 5} and for the 
second site are {c21= (1, 2), m21= 2}, {c22= (2, 5), m22= 3}. 

The first global centroid elements of first global 

cluster Cg1 are calculated as follows: 

11

2 4 1 2 10

4 2 6
c

× + ×
= =

+

,  
12

3 4 2 2 16
=

4 2 6
c

× + ×
=

+

 

Then, 
10 16

=( , )
6 6

g1
C  and for the second global centroid 

elements of second global cluster Cg2: 

21

1× 5 + 2 × 3 11
= =

5 + 3 8
c , 

22

6 × 5 + 5 × 3 45
= =

5 + 3 8
c  

Then, 
2

11 45
( , )

8 8
gC =   

To check the optimum number of clustering for the 

data set used in distributed environment, four 

validation indices are applied. 

 

5. Clustering Validation Measures 

The optimum clustering number is the goal of 
clustering to make objects within the same cluster 
similar and objects in different clusters distinct, 
internal validation measures are used for that, which 
are based on the following two criteria [28, 32]: 

1. Compactness: It measures how closely related the 

objects in a cluster are.  

2. Separation: It measures how distinct or well-

separated a cluster is from other clusters. 
 

The most common used indices are: Index (I) [22], 

Calinski-Harabasz index (CH) [4], Davies-

Bouldinindex (DB) [5] and The Xie-Beniindex (XB) 

[30]. The optimum clustering number is represented as 

the maximum or minimum value as per definition 

formula of the corresponding method.  

• I index: 

,

( , )
1

( . . m a x ( , ) )
( , )

i

px D
i j i j

i

i x C

d x c

I d c c
N C d x c

∈

∈

=

∑

∑ ∑

 

• CH index: 

                   
2

2

( , )/ ( 1)

( , )/ ( )

i

i i

i

i

i X C

n d c c N C

C H
d x c n N C

∈

−

=
−

∑

∑ ∑

 

• DB index:  

,

1 1 1
max {[ ( , ) ( , )] / ( , )}

i j

j j i i j i j
i ji x C x C

DB d x c d x c d c c
N C n n

≠

∈ ∈

= +∑ ∑ ∑
 

• XB-index: 
2 2

, ,[ ( , )] / [ .min ( , )]

i

i i j i j i j

i x C

X B d x c n d c c≠

∈

= ∑ ∑  

Where D: Dataset, n: Number of objects in D. c: Center 
of D. p: Number of attributes in D. NC: Number of 
clusters. Ci: The ith cluster, ni: Number of objects in Ci. 
ci: Center of Ci. d(x, y): Distance between x and y. 

  
Validation Index Measure Optimal Value 

I Max 

CH Max 

DB Min 

XB Min 

6. Experimental Evaluation 

We evaluated our proposed approach based on 
different real-world datasets as per Table 1 [20]. The 
data objects sets were generated on each local site 
independently. For the central reference clustering we 
used the union of the local object sets. As we suppose 
that this central clustering is optimal, we measure the 
performance time of our proposed approach w.r.t. the 
central encrypted clustering. We varied both the 
number of data objects and the number of client sites. 
We compared proposed algorithm to a single run of k 
means clustering on all data objects. In order to 
evaluate the proposed algorithm, we carried out the 
local clustering sequentially. We collected all 
encrypted representatives of all local runs, and then 
applied a global clustering on these representatives 
after decryption process.  For all these steps we always 
used the same computer. The overall runtime was 
formed by adding the time needed for the global 
clustering to the maximum time needed for the local 
clustering. All experiments were developed using C# 
standard Edition 2010 on Intel® Core2 Duo, 2.0 GHz, 
4 GB RAM machine. 
 

Table 1. Data sets. 

Data Set Name 
Attribute 

Characteristics 

Number of 

Instances 

Number of 

Attributes 
Area 

Adult Categorical, Integer 6000 13 Social 

Breast Cancer Real 600 10 Life 

 

Before starting the proposed algorithm the optimum 

number of clusters K is searched with the aid of 4 

clustering validation measures, which are applied on 

datasets used, Adult and Breast Cancer respectively.   
These measure metrics are: 
     

1. I [22].   
2. CH [4]. 
3. DB [5]. 

(6) 
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4. XB [30]. 

As shown in Tables 2, 3 the optimum number of 

clusters is 2 for the used datasets, Adult and Breast 

Cancer respectively. Our proposed algorithm is 

performed with cluster number k  equal 2. We did 

distributed clustering with and without proposed 

encryption to know how the proposed encryption 

algorithm can affect the system performance. 

Table 2. Clustering validation of 4 measure metrics for adult 
dataset (normalized values). 

K 

I CH DB XB 

Optimal 

Value(Max) 

Optimal 

Value(Max) 

Optimal 

Value(Min) 

Optimal 

Value(Min) 

2 1 1 0 0.43 

3 0.6 0.6 1 0.46 

4 0.58 0.42 0.66 0.54 

5 0.48 0.41 0.38 0.59 

6 0.44 0.29 0.24 0.61 

7 0.36 0.3 0.26 0.68 

8 0.56 0.16 0.14 1 

Table 3. Clustering validation of 4 measure metrics for breast 
cancer dataset (normalized values). 

K 

I CH DB XB 

Optimal 

Value(Max) 

Optimal 

Value(Max) 

Optimal 

Value(Min) 

Optimal 

Value(Min) 

2 1 1 0.01 0.21 

3 0.33 0.65 1 0.27 

4 0.62 0.53 0.42 0.41 

5 0.84 0.59 0.33 0.46 

6 0.77 0.71 0.32 0.68 

7 0.24 0.5 0.2 0.77 

8 0.21 0.47 0.39 1 

 

In Tables 4, 5 the execution time is measured for 

distributed dataset with and without proposed 

encryption scheme and the performance time for 

centralized encrypted dataset is compared with the 

proposed distributed one. 

Table 4. Execution time for distributed/ centralized breast cancer 
dataset. 

No. 

of 

Sites 

Dataset Size in 

Thousands of 

Bytes 

Execution Time of Dataset (ms) 

Execution Time of 

Distributed Dataset 

Execution 

Time of 

Centralized 

Encrypted 

Dataset 

Without Proposed 

Encryption 

With Proposed 

Encryption 

2 19,200 502 577 1242 

3 28,800 511 584 1423 

4 38,400 541 600 1613 

5 48,000 599 647 1790 

6 57,600 612 676 2007 

 
Table 5. Execution time for distributed/centralized adult dataset. 

No. 

of 

Sites 

Dataset Size in 

Thousands of 

Bytes 

Execution time of dataset (ms) 

Execution Time of 

Distributed Dataset 

Execution Time 

of Centralized 

Encrypted 

Dataset 

Without Proposed 

Encryption 

With Proposed 

Encryption 

2 192,000 2552 2642 5144 

3 288,000 2632 2651 7548 

4 384,000 2679 2775 9677 

5 480,000 2708 2802 11852 

6 576,000 2736 2950 14090 

 

Figures 4, 5 show the execution time of encrypted 

centralized system compared to the proposed encrypted 

distributed one. Comparing the execution time for 

encrypted distributed datasets of 6 sites with 

centralized one, the reduction of execution time in the 

proposed distributed system of 6 sites of total size 600 

record of breast cancer dataset is not less than 53% the 

centralized one with the same dataset size. But, for the 

case of adult dataset proposed distributed system of 6 

sites of total size 6000 record the reduction of 

execution time is more than 48% of centralized one. 

This is shows how encrypted centralized clustering can 

affect the performance of the system comparing it with 

the proposed distributed encrypted scheme.  
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Figure 4. Comparison of execution time for proposed encrypted 

distributed Breast Cancer datasets and centralized encrypted one. 
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Figure 5. Comparison of execution time for proposed encrypted 

distributed Adult datasets and centralized encrypted one. 

 

As it is shown in Figures 6, 7 the difference in 

execution time due to the proposed encryption scheme 

on distributed databases does not exceed than 15% of 

execution time without encryption  for Breast Cancer 

dataset in 6 sites with 2 cluster of total size 100 record 

at each site, but for adult dataset the difference in 

execution time does not exceed 8% for dataset of size 

1000 record at each site, which means that the effect of 

proposed encryption scheme comparable to execution 

time of the system without encryption is acceptable. 
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Figure 6. Effect of proposed encryption scheme on execution time 

of distributed breast cancer datasets. 
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Figure 7. Effect of proposed encryption scheme on execution time 

of distributed adult datasets. 
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7. Discussion 

• Privacy Preserving Analysis: As the data objects at 
each local site are normalized and then clustered 
locally using K-means clustering algorithm, so no 
interactions between parties. Thus, there is no 
question of privacy being revealed or compromised. 
We reduce the problem to that of privately 
computing smaller sub problems and show how to 
compose them together in order to obtain a 
complete solution of privacy preserving K-means 
clustering. This composition is shown to be secure 
in [11].   

a. Each Party sP  encrypts its local clusters size 
'

1 2{ , ,..., }s s s
s kM m m m=  and corresponding clusters 

centroids '
1 2{ , ,..., }s s s

s kC c c c=  as per Equations 1, 2. 
These encrypted values ( )

s
iks

E C  and ( )
s

ks
E m  

are transmitted to the master site for global 
clustering. So, the output of each site is securely 
transmitted to the master site to compute the 
global clustering centroids without leaking any 
information about the private data of a party 
except its output. 

b. ECC is semantically secured due to the difficulty 
of the elliptic curve discrete logarithm problem. 
Also using ECC in combination with Diffie-
Hellman protocol is believed to make public key 
encryption more secure. 

Master site, which decrypts, the cluster 

centroid ( )
s

k is
E C and its size ( )

s
k is

E m  as well as 

the slave sites which decrypt the global centroids 

produce accurate results with ECC cryptosystem. 

• The Complexity Analysis of the Protocol: 

1. The communication cost. 

2. Let us use α to denote the number of bits of each 

cipher text and “n” is the total number of parties/ 

sites. “k” is the number of clusters (centroids), 

and  “r”  is the space dimension of each centroid 

cluster. The total communication cost is nα(1+k) 

from step 4 in the proposed algorithm.  

3. The computational cost is affected by:  
 

a. The generation of n cryptographic key pair. 

b. The total number of n(1+k) encryptions and  

nα(1+k) decryptions. 

c. Complexity for local k means algorithm is 

O(lrdk), where l is the number of iterations, r is 

the number features/attributes, d is the number 

of data objects in a local site and k is the 

number of clusters.  

d. Additional computations as nk(r+1) additions, 

nkr multiplication and rk division. 

Hence, the complexity of n parties is dominant for 
not only the other computational costs but also for 
communication costs too. Consequently, the overall  
Complexity of the proposed model=O(lrdkn).  

Therefore, the proposed algorithm shows rising 
in efficiency due to decrease in time complexity. 

The proposed algorithm reduces the time 
complexity mainly in two aspects. 

• First: Global centroids },...,,{ 21 gkggg cccG =  are 
quickly generated, since the K-means algorithm 
executed locally for every party Ps, this enables 
solutions where the communication cost is 
independent of the size of the database and greatly 
cut down communication costs comparing with 
centralized data mining which needs to transfer all 
data into central data warehouse to perform data 
mining algorithm, as shown in Figure 5.  

• Second: The length of encryption-decryption key 
size is shorter than other public key encryption 
methods (e.g., RSA) with the same level of security.   

8. Conclusions 

In this paper, the need of privacy preserving in 
distributed environment has been motivated. The data 
are locally clustered at each site and only encrypted 
aggregated information about the local data is 
transmitted to the master site. This aggregated 
information consists of a set of local clusters centroids 
and corresponding sizes. On the basis of this local 
information, global clustering centroids are 
reconstructed. The created global centroids are sent to 
all clients, who use this information to update their 
own local clusters. This solution depends mainly on 
integration of ECC public key cryptosystem and 
Diffie-Hellman key exchange which is semantically 
secured. The proposed distributed encrypted scheme 
can add overhead increase not more than 15% in 
performance time relative to non encrypted distributed 
scheme but give not less than 48% reduction in 
performance time relative to centralized scheme with 
the same size of dataset. Experimental results show 
that proposed algorithm has good capability of privacy 
preserving, accuracy, efficiency and relatively 
comparable to centralized approach. 
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