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Abstract: In the Multiple Data Streams (MDS) environment, data sources generate data with no end in sight. Because of the 

difference of data sources, transaction numbers of MDS are not always equal to each other during a same period. 

Preprocessing MDS to obtain same number of samples for each stream is an essential step for lots of mining tasks. All existing 

preprocessing methods assume that data arrive simultaneously. However, this assumption may not be true in many real 

environments due to multiple data sources and different ways of data generating. This asynchronous issue is explored in this 

paper, by introducing the differential geometry as a trick. First, we establish a novel stream model called POLAR. The POLAR 

is an intrinsic surface spanned by time, probability and value. And then, we propose a preprocessing approach, called 

COPOLAR, to obtain same number of samples for each stream of MDS. COPOLAR first projects original observations onto 

POLAR; and then merges points with shortest geodesic distances along a geodesic on surface into mid-point on the same 

geodesic iteratively and incrementally until the number of points which we hope to obtain is met. Experimental results on 

synthetic and real data show that COPOLAR is effective in terms of maintaining characteristics of both statistics and vector. 
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1. Introduction 

The processing and mining of data streams have 
received considerable attention in various communities 
due to several important applications, for instance 
network analysis [22], moving object tracking [14], 
wireless sensor networks [15], financial data analysis 
[19], etc., In all of the applications cited above, data 
sources generate data with no end in sight. How to add 
the highly dynamic nature of data streams to previous 
data mining technologies is highly concerned. 

In the fields of data stream mining, Multiple Data 
Streams (MDS) have attracted more and more 
researcher’s interests recently. Lots of works have been 
done about it, such as classification [24], correlation 
analysis [21, 23], clustering [3, 6, 17], etc., it is 
undeniable that many mining tasks require that the 
length of each stream from MDS is equal to each other. 
Consequently, mostly all methods above are based on 
an assumption that sampling frequency is consistent 
for each stream. However, the scholars in MDS fields 
have long-standing neglected a fact that the transaction 
numbers of all streams from MDS are not always equal 
to each other, and they display much differences 
generally during a same period in many time-varying 
circumstances. If samples are extracted from such 
streams with a consistent sampling frequency as usual, 
the distribution of samples is bound to distort the 
distribution of collection in most cases. 

We illustrate dominating motivation with a 
significant  instance  coming from fields of commercial  

data analysis. Imagining in a supermarket, lots of cash 
registers are deployed. Nevertheless, plenty of 
difficulties are emerging from this scenario. The 
problems that we are focusing on are as follows: 

• Inconsistency of transaction numbers. It is obvious 
that the number of transactions for each cash 
register is mostly impossible to be equal during a 
same period. 

• In many cases, the transaction numbers among some 
registers vary enormously in different periods. 

• Time-varying characteristics. The difference of 
transaction numbers between two given registers is 
evolving persistently over time. 

In many cases, these issues bring difficulties to mining 
tasks. A pregnant task is clustering on MDS, for 
instance SPE-cluster [6]. In SPE-cluster, many 
definitions, such as the spectral component based e-
lag-correlated similarity and the distance between two 
streams, require same length for each stream of MDS. 

In order to overcome these problems above, a 
preprocessing method is proposed to extract same 
number samples for each stream from MDS in this 
paper. To do so, we establish a novel data stream 
model. Even with a widespread adoption, existing data 
stream models, such as the sliding window model, 
landmark model and time decaying model and so on, 
share following two drawbacks: 

• They fail to touch upon the probability distribution 
of stream. 



A Differential Geometry Perspective about Multiple Data Streams Preprocessing                                                                   557 

 

 

• The time property is mentioned qualitatively only, 
but couldn’t be represented quantificationally 
among them. 

We introduce Probability wOrld modeL for datA 
stReams (POLAR), a novel representation model of 
data stream. The basic idea of POLAR is that stream 
is restrained on (or mapped onto) a surface spanned 
by time, probability and stream value. Because of 
the introduction of time and probability, POLAR 
could overcome aforementioned shortcomings of 
traditional stream models. The unique 
characteristics of POLAR are described as follows: 

• Association of the probability distributions. The 
probabilistic consideration plays a significant role in 
time-varying environment. Yet, as an element of 
stream model, the probability distribution of stream 
has not been carried into living stream models. 
Thus, we draw probability into the novel model 
POLAR and regard it as an inherent component of 
the model. In POLAR, the probability shall be 
involved in the solution of mining. 

• Calculability of the time. There is a common view 
that the importance of stream might vary from time 
to time. So the time, as a basic component of 
stream, has irreplaceable position in data mining. 
Unfortunately, time property has been researched by 
a qualitative fashion rather than by a quantitative 
way in existing models. Thus, we introduce time 
into POLAR. In POLAR, time shall also be 
involved in calculation. 

Based on POLAR, we further propose a 
preprocessing approach, called COllapsed 
Probability wOrld modeL for datA stReams 
(COPOLAR), to extract same number samples for 
each stream from MDS. To extract same number 
samples, COPOLAR merges the nearest points 
along a geodesic on the surface of POLAR into a 
point on the same geodesic iteratively and 
incrementally. COPOLAR satisfies following 
requirements: 

• During a same period, it is acceptable for 
COPOLAR to hold remarkable difference of 
numbers of arriving points from different streams. 

• The data preprocessing is an incremental updating 
procedure with arriving of stream points. It can 
merge points on a geodesic in one pass with a small 
amount of memory and processing time per time 
tick. 

• The probability distribution of stream is introduced. 
The preprocessing of points within one probability 
interval may differ from within another. 

• The time is introduced and viewed as a basic 
component of stream. The preprocessing of points 
within one time interval may differ from within 
another. 

The outline of this paper is as follows. In section 2, we 
discuss related works. After explaining fundamentals 
of POLAR in section 3, we propose COPOLAR in 
section 4. To evaluate the effectiveness of proposed 
preprocessing approach, section 5 illustrates 
experimental results and discusses important issues 
that we have realized from the experiments. Finally, 
we conclude this paper in section 6. 

2. Related Works 

Data preprocessing is required in almost all knowledge 
discovery tasks such as data stream mining which has 
been attracting great interests. Different preprocessing 
techniques have different influences on some mining 
tasks. In fact, early research results have shown that 
data preprocessing has a significant impact on 
predictive accuracy of many classifiers such as 
decision trees, neural networks and support vector 
machines, etc. [8]. Although, there are plenty of 
publications in these research topics, we have not seen 
any method for that could specially draw-out same 
number samples from MDS. We sketch out related 
literatures. 

Although, standard data preprocessing includes lots 
of steps, i.e., dataset creation, data cleaning, 
integration, feature construction, feature selection, 
reduction, discretization, etc., [9] summarization is the 
principal concern in streaming settings because huge 
volume of original data is infeasible to be stored [7]. 
Summarization, instead of original raw data, has 
played a significant role in data stream mining. 
Summarization methods mainly include wavelet, 
sketch, histogram and sampling. In the field of data 
stream mining, sampling is significant, which is even 
regarded as the only appropriate methods to 
applications of MDS [22]. Therefore, we mainly 
overview sampling methods about data streams. 

Sampling techniques about data streams are 
reflected in fields of data stream management and 
mining [2, 12]. Byung-Hoon et al. [5] proposed a fast 
sampling scheme for maintaining a sample with 
replacement from an ever-growing data stream. 
Braverman et al. [4] researched on optimal sampling 
with or without replacement from fixed or timestamp-
based windows based on random sampling under the 
sliding windows model. Granmo and Oommen [13] 
considered the problem of allocating limited sampling 
resources in a “real-time” manner, with explicit 
purpose of estimating multiple binomial proportions. 
Palmer and Faloutsos [16] proposed a biased sampling 
technique which can maintain original data density. 
Although, this method is suitable for outlier analysis, 
the sampling quality may be reduced due to existence 
of hash conflict of hashing function which is used to 
map bins in space to a linear ordering. Demaine et al. 
[10] introduced a biased sampling algorithm to mining 
frequent elements of data streams. Although, the error 
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is controlled, it does not support deleting operation. 
Aggarwal [1] proposed a biased sampling solution with 
the use of temporal bias functions based on reservoir 
sampling. It could be applied to query evaluation and 
classification. Moreover, biased sampling technique 
has also been put into use in online correlation analysis 
for data streams [21]. Perhaps most interesting, 
however is the combination of uniform sampling and 
biased sampling. Recently, Zhang et al. [22] proposed 
a novel method, called Polynomially Biased Reservoir 
Sampling (PBRS), to summarize unordered traffic data 
streams. This method reduces relative speed bias in 
certain extent. 

3. Data Stream Model: POLAR 

The novel data stream model POLAR is described in 
this section. POLAR is an intrinsic surface spanned by 
time, probability and value. Before discussing its 
structure, it is necessary to describe the stream. A data 
stream is denoted as x1, x2, ..., xi, ..., where the subscript 
i represents arrival order of point xi. If point xi is real 
type, it is also called value of the point. Without loss of 
generality, this paper discusses real type chiefly. 

The timeliness is an elementary and significant 
characteristic of streaming data. That said, the 
importance of content within which data arrives varies 
among different times. A striking example is the slide 
window model whose valid data for mining tasks 
covers only the nearest time horizons. It is therefore 
significant to draw into the time tϵR as a component of 
POLAR, where R represents real field. 

In like manner, it is also important to introduce the 
probability as a component of POLAR. Common sense 
indicates that different values play different roles in 
probability space. Therefore, preprocessing of point xi 
with probability pi should be different from other point 
xj with probability pj. 

We establish a surface S in 3
E  to structure POLAR, 

where 3
E represents the three-dimensional Euclid 

space. Specially needed reminders are adoption of 
differential geometry denotations in description 
hereinafter. More details of differential geometry 
language can be referred from [20] or other text-books 
about it. 

The function of parametric surface S corresponding 
to POLAR is defined by the form of vector function as 
follow: 

                     : ( , ) ( , ( , ), )S r v t v f v t t=                  

Where v and t are stream value and time respectively, 
f(●, t) is Probability Density Function (PDF) of stream 
at time t. As a note, we just focus on continuous 
distribution in this paper. 

Generally speaking, the PDF of stream changes at 
some particular times only. Thereby, we can always 
find a time interval (a, b) such that f(v, t) is constant at 
any time tϵ (a, b). One of its implications is that surface 

r(v, t) can be divided by time t into many small surfaces 

r(v, t1), r(v, t2), ..., r(v, tk). In each small surface r(v, tk), 
f(●, t) is constant for any time. Without loss of 
generality, this research focuses only on the 
assumption that the PDF of stream is invariant. 

Accounting for the hypothesis above, Equation 1 
can be rewritten by the form of ruled surface as follow: 

: ( , ) ( ) ( )S r v t a v t1 v= +                     

Where a(v)= r(v, t0)= (v, f(v, t0), t0) and Ɩ(v) are directrix 
and generatrix of the ruled surface respectively. 

Since, each generatrix of the ruled surface is 
parallel, generatrix can be normalized to 

0( 0.) =l v l ≠ So, 0(v) = 0.l l ′′ =  We thereby obtain the 
regular condition of surface S from Equation 2 as 
follow: 

    × [ ( ) l ( )]×l( ) ( )×l( ) (1 , 0)×1( ) 0v t

f
r r = a v +t v v = a v v = , v

v

∂
′ ′ ′ ≠

∂
 

Where 
v

r
r

v

∂
=

∂
 and 

t

r
r

t

∂
=

∂
. Equation 3 demonstrates that 

surface s corresponding to POLAR described in 
Equation 2 is a regular parametric surface. Its 
regularity will be the foundation of follow-up to study 
about the preprocessing approach to streams, i.e., 
COPOLAR. 

As an example, Figure 1 illustrates a surface, in that 
the PDF is Gaussian mixture distribution, i.e. 

    2 2
1 2

2 2
1 21 2

( ) ( )1
( , ) ( ) ( ) ( )

2 22 2

v vp p
f v t f v exp exp

µ µ
σ σπσ πσ

− −−
= = − + −  

Where 1 1 2 20.2, 1, 9, 2.1,p µ σ µ σ= = = = =  
 

  
a) The PDF. b) Data stream model: POLAR. 

Figure 1. Illustration of POLAR about gaussian mixture 
distribution. 

When a new stream point xi arrives, it will be 
mapped onto surface s described in Equation 2. To this 
end, we establish a mapping rule: 

    
2 2:

( , ) ( , ) ( ( ), ( ))v t

P

x i v t M x M i

→

=֏

E E           

Where x and i are value and arrival order of point xi 
Functions Mv(x) and Mt(i)  map original value x and 
arrival order i onto coordinate axis v and t of the 
parameter plane of surface s respectively. For instance, 
their straightforward forms are illustrated in Figure 1, 
where v=Mv(x)=x and t=Mt(i)=i. 

Undoubtedly, selection of concrete forms of 
functions Mv(x) and Mt(i) relies on special mining tasks. 
In many cases, stream value is generally required to be 
normalized into [0, 1]. Thereby function Mv(x) could be 
selected from given normalized functions. Generally 
speaking, the gaussian normalization is a typical 

(1) 

(2) 

(3) 

(4) 

(5) 
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representative thanks to its insensitiveness to the 
outlier, in which the form of function Mv(x) is: 

                          ( ) ( ) / 3vv M x x µ σ= = −                  

Where µ and σ represent stream mean and variance 
respectively. 

Nevertheless, unlike mapping function Mv(x), 
selection of concrete forms of function Mt(i)  is usually 
difficult due to its dependence on concrete stream 
models. If it is expressed as follow: 

      ( )
( 1)

i

t

t

n if   x   is  the  nearest   one
M i

M i otherwise


= 

−
  

It can meet demands of the fixed-size sliding windows 
model [4] in which item arrives only one at a time and 
just only the most recent n items remain active, where 
n is the length of window. Analogously, there is 
another example which can meet demands of the 
timestamp-based sliding windows model [4] in which 
more than one item arrive at a single step and just only 
the last t steps remain active. The mapping values can 
be obtained as following procedure: Firstly set Mt(i)← 

Mt(i-1)+1; secondly if xi is the first point of the nearest 
step, then for each k≤ i set Mt(k)←Mt(k-1)- n0, where n0 

is the number of the oldest one step which expires just 
now. 

Apparently, the point on surface s corresponding to 
point xi of stream can be determined by Equation 2 in 
line with the map described in Equation 5. 

So far, we establish a geometry in 3,E  which 
consists of a surface described in Equation 2 (even in 
Equation 1) and the points mapped from stream onto 
the surface in the light of map showed in Equation 5 
We call the geometry POLAR. Stream preprocessing 
operations corresponding to COPOLAR, discussed 
immediately in next section, will be carried out on this 
geometry. 

4. Preprocessing Data Streams 

In this section, we will discuss the data stream 
preprocessing method COPOLAR. The primary 
mission of COPOLAR lies in obtaining same number 
samples from MDS to meet demands of some mining 
tasks. More precisely, we hope to seek a map 

1 1: { } { }ini i n

k k = k k =F x a xɶ֏ for each stream xi of MDS x, i=1, 
2, ..., p, where p is the number of streams in x, ni  is the 
number of points coming from xi and n is the common 
number of points which we hope to obtain from all 
streams. Broadly speaking, n is a parameter given by 
users, but it is set to n={n1, n2, ..., np} below unless 
otherwise stated. Hereinafter, we denote pk as the point 
on POLAR corresponding to i

kx . 
In the process of data stream preprocessing, two 

points pk and pl with shortest geodesic distance will be 
replaced by their mid-point along the geodesic passing 
through pk and pl on surface of POLAR. Such merger 
will be carried out iteratively until obtaining n points. 

Three questions emerging in here are: What is the 
geodesic passing through any two points pk and pl; 
where is the position of their mid-point; how do we 
find out the shortest geodesic distance connecting 
given point pk and other points? We will answer them 
in sections 4.1, 4.2 and 4.3 respectively and then we 
will propose an algorithm to portray the preprocessing 
steps in section 4.4. 

4.1. Determination of Geodesic 

As mentioned above, to merger two points pk and pl 
with shortest geodesic distance into their mid-point on 
the geodesic connecting pk and pl is the basic strategy 
of COPOLAR. Truly the top priority rests with the 
determination of the geodesic. In this subsection, we 
shall derive equation of the geodesic passing through 
any two points pk and pl. 

As assumption that the PDF f(v, t)= f(v, t0) does not 
change with time, f(v, t0) is denoted as f(v) and its 
derivative with respect to v as f

'(v) for simplicity. We 
further set r(v, t)=a(v)+tƖ(v)=(v, f(v), 0)+t(0, 0, 1). By 
Equation 2, we get following results: 

                      2

(1, ( ), 0)
(0,0,1)

1 ( ( ))
0
1

v

t

v v

v t

t t

r f v
r

E r r f v

F r r

G r r

′=
=

′= • = +
= • =
= • =  

 

Therefore, the first fundamental form of the surface 
described in Equation 2 is: 

   2 2 2 2 2 22 (1 ( ( )) )I ds Edv Fdvdt Gdt f v dv dt′= = + + = + +  

Thanks to F=rv●rt=0, the coordinate system (v, t) is 
orthogonal. So, differential equation of the geodesic 
could be expressed by the Liouville formula as follow: 

            
2

1 1

2 2 1 ( ( ))

1 1

22
1 ln 1 ln

0
2 2

dv
cos cos

ds E f v

dt
sin sin

ds G

d E G
cos sin

ds t vG E

θ θ

θ θ

θ
θ θ

 = = ′+


= =

 ∂ ∂

= − =
∂ ∂

  

Where s is arc-length parameterization of the geodesic, 
and θ is angle between the geodesic and the v-curves. 
By Equation 10, we have: 

            2
01 ( ( )) ,

dt
f v tan const

dv
θ θ θ′= +   = =      

Thus, equations of all geodesics can be obtained by 
solving the first equation above: 

                      2
01 ( ( ))t C f v dv C′= + +∫  

Where C0 and C=tanθ0 are both constants. 

For any two points pk=r(vk, tk) and pl=r(vl, tl), the 
question now is which curve within geodesics 
described in Equation 5 is the geodesic connecting 
given points. Apparently, we have: 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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2

2

1 ( ( ))

1 ( ( ))

 ′= + +


 ′= + +


∫

∫
k

l

v

k v

v

l v

t t C f h dh

t t C f h dh

                      

By solving it, we get: 

                  2( ) / 1 ( ( ))
l

k

v

l k v
C t t f h dh′= − +∫   

Consequently, the geodesic equation passing through 
pk and pl could be written as: 

                        21 ( ( ))
k

v

k v
t t C f h dh′= + +∫                 

Its parametric form can be expressed as: 

           2( ) ( , ( ), 1 ( ( )) )
k

v

k
v

r v v f v t C f h dh′= + +∫  

Up to present moment, mission of this subsection has 
been fulfilled, i.e., deriving out equation of the 
geodesic passing through any two points. A follow-on 
effort to do is to locate their mid-point pm. 

4.2. Finding Mid-Point for Two Given Points 

We are now in a position to locate the mid-point of two 
given points on POLAR, or rather, we will find out a 
point pm on POLAR such that the geodesic distances 
between pm and other two given points are equal. 
Admittedly, two questions emerging in here are: How 
do we calculate the geodesic distance between two 
given points; and where is the position of the mid-
point?. By taking derivative of Equation 16, we have: 

        2( ) (1, ( ), 1 ( ( )) ) 0r v f v C f h′ ′ ′= + ≠               

Equation 17 tells us that v is a regularization parameter 
of the geodesic defined in Equation 16. In other words, 
the geodesic curve passing through points pk and pl is a 
regular curve. Thus, the oriented arc-length 
parameterization function starting from point pk= r(vk, 
tk)= r (vk) has following form: 

      2
1( ) ( ) ( ) 1 ( ( ))

k k

v v

k v v
s v s v r u du C f u du′ ′− = = +∫ ∫  

Where 2
1 1C C= + . In view of Equation 18, the length 

sk, l of the geodesic segment connecting points pk and pl 
can be written as follow: 

              2
, ( ) ( ) 1 1 /k l l k l ks s v s v C t t= − = + −     

If the mid-point between points pk and pl on the 
geodesic is pm= r (vm), the truth of following equation 
derives its guarantee: 

                    
,( ) ( ) / 2m k k ls v s v s− =                       

To simplify matters and without loss of generality, we 
could assume tk<tm<tl and C>0. Under this premise, 
Equation 20 can be written equivalently as: 

                      21 ( ( ))
2

m

k

v
l k

v

t t
f u du

C

−
′+ =∫                   

An unfortunate reality is that it will be difficult to 
obtain the explicit expression in terms of vm because 

not only Equation 21 is nonlinear but also the PDF. f(x) 
in its integrand may be varied in different application 
fields. But, we shouldn’t be too despondent about it 
thanks to numerical technique as a candidate. A 
realistic approach is to employ the newton’s method 
[11] to resolve it, which is also the solution in this 
paper in virtue of its fast convergence with fewer 
iteration steps. Of course, feasible alternatives don’t 
rule out the use of any other numerical techniques such 
as bisection method, fixed point iteration, muller’s 
method [11] and so on. 

Following solving the basic solution about vm from 
Equation 21, the value of tm can be deduced by 
Equation 15. Consequently, the mid-point pm is located. 

Until now, mission of this subsection has been 
accomplished, i.e., locating the mid-point of two given 
points on POLAR. In next subsection, we will continue 
to explore other topics. 

4.3. Calculating the Shortest Geodesic Distance 

In this subsection, we will answer the third question 
mentioned in the beginning of current section, i.e., 
finding out the shortest geodesic distance connecting 
given point pk and other points. And more to that point, 
we will find out the shortest geodesic distance smin for 
pk such that: smin=min{sk, k+i: j∈Z -{k}}, where Z 
represents integer set (the same below). 

To do so, the most straightforward way is to 
calculate all geodesic distances between pk and other 
all points, and then to pick out the point with shortest 
geodesic distance from them. But, this strategy is 
obviously very time-consuming. As a matter of fact, 
we just need to get part of them rather than to calculate 
all. 

To accomplish what we have outlined above, we 
need to make some hypotheses about Mt(k) described in 
Equation 5. Because the design of pruning strategy 
may be various with different mapping Mt(k) and it 
may take a far more complicated issue. To simplify 
matters, we assume: 

               0 ( 1) ( ) ( 1) ( )t t t tM k M k M l M l≤ + − ≤ + −          

if and only if k<1. If the equality sign was founded, 
Equation 22 indicates that the importance of streams is 
equal along timeline; but when the inequality sign was 
set up, it indicates that the newcomers are important 
than before. In reality, this assumption is reasonable 
and not excessive. 

For a given point pk, Equation 22 implies also that 
the geodesic distances between pk and other points will 
increase progressively while these points are far away 
from pk along timeline. Therefore, an intuitive 
understanding is that we can reduce search spaces for 
finding the shortest geodesic distance connecting pk. 
We present following theorem to state it. 

• Theorem 1: Denote B={sk, k+j: |j|≤|z|, j∈Z -{0}}, A={sk, 

k+j: j∈Z -{0}}-B. Let pj=r(vj, tj), sk, 1 and smin be any 
point in POLAR, the length of geodesic segment 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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connecting points pk and pl, and the shortest 
geodesic distance connecting given pk respectively. 
There exists an integer z≠0 such that if |tk+z- tk|≥smin, 
then smin∈B and smin< sk, k+l for any sk, k+l∈A. 

• Proof: We need to prove two aspects: smin∈B and if 

|j|>|z| then smin < sk, k+l. Denote pk+i as the point with 

smin connecting pk and let 2
2 ,1 / 1 1 / k k iC C += + . On the 

one hand, we have smin= sk, k+i=|tk+i- tk|/C2. According 
to precondition |tk+z- tk|≥ smin we get |tk+i- tk|≤ C2|tk+z- 
tk|. If z>0 and i>0, by Equation 5 and Equation 22, 
we have tk+i- tk+i-1≤ tk+i- tk≤ tk+z- tk+z-1-[ C2(tk- tk+z)+(tk+z- 
tk+z-1)]. Because C2(tk- tk+z)+( tk+z- tk+z-1)>0, so tk+i- tk+i-1< 

tk+z- tk+z-1. By Equation 22, we have |i|≤ |z| and when z 
and i take other values, we can get the same results. 
Thus, we conclude that smin∈B. On the other hand, 
we assume that there is an element sk, k+l∈A such that 
smin ≥ sk, k+l =|tk+l- tk|. Without loss of generality, let z, 
l, i >0, then we get smin≥ sk, k+l =tk+l- tk. Because sk, 

k+l∈A, so l>z. By Equation 5 and Equation 22, we 
have smin ≥|tk+z- tk|. Obviously, it contradicts with 
precondition |tk+z- tk|≥ smin. Thereby, the assumption 
is invalid. Therefore, smin< sk, k+l.  
  
Conclusions from Theorem 1 inspire us that we 

should stop searching if we find an integer z≠0 such 
that |tk+z- tk|≥smin, where smin is the shortest geodesic 
distance connecting given pk in current searching place. 

In fact, we just need to search along a single 
direction to pick out the shortest geodesic distance 
connecting given pk in series of points, ..., pk-1, pk, pk+1,... 
on POLAR. One optimal searching strategy may be to 
search towards lower indices because those points 
whose indices are greater than k have not arrived in 
real-time streams processing. 

To this end, we need first to set up two variables or 
a data structure additionally for each point pu. One is 
the shortest geodesic distance u

mins  connecting pu and 
other points and the other one is index h, denoted as Iu, 
of point ph which is the corresponding point in term of 

.u

mins In other words, the geodesic distance su, h between 
pu and ph equals to u

mins . Initial values of u

mins  and Iu may 
be set to 0 and u respectively for each new arriving 
point pu. 

When a new point pk arrives, we calculate the 
geodesic distances between pk and other points whose 
indices are less than k until tk-tk-|z|≥ .k

mins  During 
calculation, two missions should be taken. On the one 
hand, if a new distance ,

k

k h mins s<  is found out, then let 
,

k

min k hs s=  and Ik=h for given point pk. On the other 
hand, for another point ph which has participated in 
calculation when searching for k

mins , if k h
min mins s<  is met, 

then update ,
h

min h ks s= and Ih=k. We describe this 
procedure in Algorithm 1. 

Algorithm 1:  Get distance for point. 

Input: The given point pk. 

Output: The shortest geodesic distance connecting kp  and other 

points whose indices are less than k. 

  // ,k hs  is the geodesic distance between kp  and hp  described      

     by Equation 19. 

  // kt  is the time value of point kp  on the POLAR. 

  // kI  is the shortest geodesic distance connecting kp  and other   

     points. 

    , 12, k

min k kh k s s −= − = ; 

    While k

k h mint - t < s  and 0h >  do 

       Calculate geodesic distance ,k hs  by Equation 19; 

       If ,
k

k h mins s<  then 

           , ,k

min k h ks s I h= = ; 

       End if 

       If k h

min mins s<  then 

               ,h k

min min ks s I k= = ; 

      End if 

           1h h= − ; 

     End while 

By far, we discuss primarily the geodesic passing 
through any two points and the shortest geodesic 
distance connecting a given point. In next subsection, 
we shall further elaborate the stream preprocessing 
method COPOLAR in a form of algorithm. 

4.4. COPOLAR Algorithm 

We are now in a position to propose an algorithm to 
state stream preprocessing. Under the premise of not 
confusing, we also call this algorithm COPOLAR 
hereinafter. 

The primary mission of COPOLAR is to obtain 
same number samples for each stream from MDS. To 
complete this task, the primary steps include: 
Projecting original observations onto the surface 
corresponding to POLAR; merging points with shortest 
geodesic distances and replacing two of them by their 
mid-point along the geodesic on POLAR. 

Before stating more details of the algorithm, it is 
helpful to make a few assumptions. First, the algorithm 
is established based on the sliding window model and 
there are more than one observations arriving in each 
step. Secondly, if observation number of any stream of 
MDS is less than minimal threshold, we will randomly 
insert points into it to avert too little observations. 
Finally, we assume that the sliding widow has filled 
with observations coming from the last L steps before 
algorithm is called, where L represents the length of 
sliding window. 

Algorithm 2:  COPOLAR. 

Input: fi, x , nmin. Where fi represents the PDF of stream Xi, 
x=(x1, x2, ..., xn) is the newest observations, 

T
1 2( , , , )i i i

i ni
x x x x= ⋯  is a vector containing the observations of 

Xi and nmin is the minimal threshold of the common number of 

points we hope to obtain. 

Output: The MDS X with common number for each stream Xi. 

//Step 1: Project the newest observations onto the POLAR.  

   for i= 1, ..., p do 

  Delete points from POLAR within the oldest window W1 for   

  Xi; 

  Let 1
i i i i

Ln n n n= − + ;  // | |i

L in x=  is the number of elements    

  of ix ; 

  If i

minn < n  Then 

           Insert 1( | |)i i

min in n n x− − +  points into Xi randomly; 
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  Update i

minn n= ; 

  End if 

  Project the newest observation xi onto POLAR by Equation  

  2 and Equation 5; 

   End for 

//Step 2: Calculate the shortest geodesic distances for the  

  newest points. 

  Let 1 2{ , , , }pn min n n n= ⋯ ; 

  for 1, ,i p= ⋯  do 

   If in n>  Then 

            for 1, , i

Lw n= ⋯  do 

 GetDistanceForPoint ( )i i
Ln n w

p
− +

; //Calls for  

 Algorithm 1 

           End for 

  End if 

 End for 

//Step 3: Merge the points with shortest geodesic distances. 

  For 1, ,i p= ⋯  do 

  While in n>  do 

                Pick out in n−  shortest geodesic distances and their  

  corresponding points; 

   Calculate the mid-point of these points by Equation  

   21; 

   Replace them by their mid-points respectively; 

   Update in  by the number of points of Xi. 

  End while 

  End for 

The time complexity of Algorithm 2 is mainly 
determined by second loop statement. The loop body 
might be executed p-1 instances at the most. Thus, 
frequency of this statement which calls for Algorithm 1 
is ( * *( ),1)LT c n p − where c  is average number to 
calculate the shortest geodesic distance for a given 
point and 

1
( ) /

L i

L Li
n n n

=
= ∑  is average number of the 

newest observations. According to statistical laws, 
values of c  and Ln  can be considered as constants 

because they fluctuate within a constant range usually. 
Therefore, the time complexity of Algorithm 2 is O(p). 

5. Experiments and Analysis 

We are now in a position to evaluate the effectiveness 
of our approaches by a series of simulation 
experiments. We first describe the methodology in 
section 5.1 and then analyze the results in section 5.2. 

5.1. Methodology 

We conduct three sets of simulation experiments. First 
set of experiments illustrate the effectiveness of 
COPOLAR by compared with optimal sampling [4] 
which is a newest sampling method and EM procedure 
[18] which is a classical algorithm for handling 
missing values on data streams. EM procedure derives 
from maximum likelihood estimation techniques and is 
available in many common statistical software 
packages. To this end, we primarily evaluate the cross 
covariance of MDS to illustrate the interrelationships 
within them. 

The second set of experiments is presented to detect 
the influence of compression ratio on effectiveness of 

COPOLAR. Where, compression ratio equals to the 
ratio between sample numbers we obtained and 
original observation numbers. For this purpose, we 
typically compare the empirical cdf of preprocessing 
data with distribution of original data under different 
compression ratios. 

But unlike the two formers, the last set of 
experiments is conducted to evaluate the differences in 
preprocessing among different distributions of streams. 
We principally compare two types of distributions, i.e., 
the symmetrical distributions and the skewed (or 
unsymmetrical) distributions. 

For the sake of simplicity and without loss of 
generality, we set function for the time on POLAR to 
Mt(i)= 1/(2* σ

2)+ Mt(i-1), where σ2 is variance of original 
data. 

We experiment on a PC with Inter Core Quad CPU 
@2.66GHz 2.67GHz and 2GB main memory using 
Matlab 7.12(R2011a) based on the OS Windows 7 
Professional. The experiments are conducted on 
synthetic and real data sets. Description of data sets is 
as follows: 

• Synthetic Data Sets: Stream values in each data set 
are generated according to different distributions. 
Three types of distributions are considered, i.e., the 
standard normal distribution X~N(0,1) the lognormal 
distribution and the gaussian mixture two-peak 
distribution. Among them, the first one is 
symmetrical and others are skewed. The third 
distribution has presented in Equation 4. Unlike 
other two distributions which are familiar to us, the 
lognormal distribution may be unfamiliar for some 
readers. As a matter of fact, it is a common skewed 
distribution. For instance, the income of families in 
some regions follows this distribution. The 
lognormal PDF is: 

                
2

2

(ln )1
( | , ) ( )

22

x
y f x exp

x

µ
µ σ

σσ π
−

= = −       

    Furthermore, values of parameters for each PDF 
shall be selected in accordance with different 
experiments. During the course of experiments, the 
synthetic data sets shall be adopted in almost all 
cases because of their representativeness and 
convenience to obtain. 

• Real Data Set: The Diabetes data set is selected. It is 
a classical MDS and can be found from UCI 
machine learning repository (http: //archive.ics.uci. 
edu/ml/datasets/Diabetes). The Diabetes data set has 
20 streams and the number of samples for each 
stream might be various in a same period (e.g., a 
month) or between two time intervals. During the 
course of experiments, the real data set is mainly 
employed for the first set of experiments. What’s 
more, in order to avoid influence of different 
measurement units, data is normalized by the 
Gaussian normalization defined in Equation 6 

before processing. 

(23) 
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5.2. Results and Analysis 

5.2.1. Experiment 1: Cross Covariance of MDS 

In the first set of experiments, we primarily evaluate 
cross covariance of MDS to illustrate interrelationships 
within them. To this end, we compare the 2l  norm of 
Cross Covariance Matrix (CCM for short) of different 
data coming from three preprocessing approaches. 

The experiments are carried out both on synthetic 
data set and Diabetes data set separately. The number 
of streams is set to 5. For synthetic data set, there is 
one stream whose window length for the i

th set is 
Li=100×i and lengths of other streams are generated 
randomly within a closed interval [0.7×Li, Li], i= 1, ..., 
10. But, for Diabetes data set, we first select randomly 
5 distinct streams whose codes are from 33 to 72 and 
the length of each is no less than 1000. 

A prerequisite to calculate the l2 norm of CCM is 
that lengths are equal to each other for all streams. 
Therefore, we first employ three approaches separately 
to get same number of samples for all streams, and 
then calculate the 2l  norm. The first one adopted is EM 
Procedure which is used to fill values for those streams 
whose lengths are not maximum. Once processed by 
EM Procedure, lengths of all streams are equal to the 
maximum length of original data. In contrast, others, 
i.e., COPOLAR and optimal sampling are utilized to 
get fewer samples and lengths of all streams are equal 
to the minimum length of original data. 

The l2 norm of CCM processed by COPOLAR is 
compared with both the l2 norms by other two 
approaches simultaneously and results are shown in 
Figure 2. The plots illustrate that the l2 norm of CCM 
processed by COPOLAR interposes among others. 
Furthermore, the l2 norm of CCM processed by each 
method gradually levels off with the increasing of 
window lengths, which inspires us that it is helpful to 
enlarge the length of windows appropriately. 
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Figure 2. l2 norm of the CCM. 

5.2.2. Experiment 2: Influence of Compression 

Ratio 

In current experiment, we mainly investigate the 
influence of compression ratio on effectiveness of 
COPOLAR. 

To evaluate the effectiveness, we utilize error to 
measure the difference between preprocessing data and 
original data. We define error for the empirical cdf as: 

         1

0

( )
x

pre org
x

Error F F dx= −∫                   

Where Fpre and Forg are the empirical cdf of 
preprocessing data Dpre and original data Dorg 
respectively and x0= min{Dpre, Dorg}, x1= max{Dpre, Dorg}. 
Especially, we use cubic spine interpolation to obtain 
the empirical cdf precisely. 

Experiments are repeated 30 times. And we evaluate 
their mean of errors. To simplify matters, we just only 
use synthetic data set. The data is generated in the 
same way as Experiment 1 did but window length is 
set to 1000 constantly for each repetition. The 
compression ratios are set from 0.3 to 0.9 with step 
size 0.05. The results are shown in Figure 3. 

The plot illustrates that errors gradually converge to 
zero with the increasing of compression ratios, and that 
they fluctuate in a narrow range when compression 
ratio is more than 0.5. On these grounds, the 
availability of COPOLAR is validated because it is not 
common that difference of numbers for different 
streams is more than 50 percent. 
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Figure 3. Influence of compression ratio on empirical cdf. 

5.2.3. Experiment 3: Differences in Preprocessing 

Among Different Distributions 

Inevitably, there is variability among different 
distributions for COPOLAR. The PDF is a significant 
parameter of POLAR which is the base of COPOLAR. 
The selection of the PDF varies with different data 
streams. Therefore, it shall be worth to cheer if the 
effectiveness of COPOLAR could be held for many 
streams with different distributions as far as possible. 
In the last set of experiments, we principally study the 
differences in preprocessing by COPOLAR among 
different distributions. 

To evaluate differences, the error of empirical cdf 
defined in Equation 24 is utilized again. Experiments 
are conducted repeatedly for 100 times. The mean and 
variance of errors are employed to measure them. For 
each repetition, we generate three sets of data with 
length 1000 following distributions of standard normal 

(24) 
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PDF, lognormal PDF defined in Equation 23 
(Parameters are set to µ=1, σ =0.5) and gaussian mixture 
Pdf. defined in Equation 4 (Parameters are set to p=0.2, 
µ1=1, σ1=1, µ2=9, σ2=2) respectively. What’s more, 
compression ratios are set to 0.8 consistently. The 
results are shown in Table 1. Statistics in the table 
show that errors under three distributions are all quite 
small and stable. Additionally, an interesting 
phenomenon which we cannot imagine that the error 
under gaussian mixture PDF is slightly less than errors 
under other two distributions, which indicates that 
COPOLAR can be utilized under complicated 
distributions. 

Table 1. The mean and variance of errors about empirical cdf for 
different distributions 

 Standard Normal Lognormal Gaussian Mixture 

Mean of Errors 0.03964 0.04576 -0.01019 
Variance of Errors 0.09027 0.04312 0.00012 

In short, experiments above verify that COPOLAR 
is an effective preprocessing technique for MDS. 

6. Conclusions and Future Issues 

Preprocessing data is an essential step in the procedure 
of data stream mining. In this paper, we introduce the 
knowledge of differential geometry as a trick to 
preprocess MDS for the first time. The primary 
research contents of this study are as follows: A novel 
representation model of data stream called POLAR is 
established and a preprocessing approach called 
COPOLAR is proposed to extract same number 
samples from MDS. 

The POLAR, as the basis of COPOLAR, is a 
geometry in 3

E , which consists of an intrinsic surface 
spanned by time, probability and stream value. To 
preprocess streams, COPOLAR merges points with 
shortest geodesic distances (also be regarded as the 
nearest one) along a geodesic on surface of POLAR 
into their mid-point on the same geodesic iteratively 
and incrementally until the number of points which we 
hope to obtain is met. By POLAR, time and 
probability, as two basic components of streams, could 
be involved in calculation in the procedure of 
COPOLAR. According to author’s knowledge, the 
capability of being involved in calculation 
simultaneously about time, probability and value of 
streams, although as important as it is, has not found in 
existing literatures in fields of data streams mining. 

To evaluate the effectiveness of our approaches, we 
conduct a series of simulation experiments on both 
synthetic and real data sets. Experimental results show 
that COPOLAR, as a preprocessing technique, is 
effective. 

It’s important to note that COPOLAR is different 
from sampling. They have different goals or missions. 
Properly speaking, COPOLAR is utilized to extract 
same number samples for some mining tasks purposes, 

but the goal of sampling is to obtain a part of samples 
for volume reducing purposes. 

Although, there are some differences among them, 
COPOLAR might also be a sampling method inspired 
by the results of second experiment which indicates 
that the empirical cdf maintains original distribution 
effectively when compression ratio is no less than 0.5. 
Therefore, our future work is to study whether 
COPOLAR is feasible to be a sampling method. 
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