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Abstract: Neural networks have always been a popular approach for intelligent machine development and knowledge 

discovery. Although, reports have featured successful neural network implementations, problems still exists with this 

approach, particularly its excessive training time. In this paper, we propose a Gene-Regulated Nested Neural Network 

(GRNNN) model as an improvement to existing neural network models to solve the excessive training time problem. We use a 

Gene Regulatory Training Engine (GRTE) to control and distribute the genes that regulate the proposed nested neural 

network. The proposed GRNNN is evaluated and validated through experiments to classify accurately the 8bit XOR parity 

problem. Experimental results show that the proposed model does not require excessive training time and meets the required 

objectives.  
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1. Introduction 

Biologically inspired computing has been an active 

area of research for the past decades. This approach is 

implemented with the first wave of human neuron-

connection modeling, which is also called a neural 

network. The wave continues with the learning theory 

introduced by [7], which is known as hebbian learning 

and the introduction of the Genetic Algorithm (GA) 

[5]. This second wave is currently being developed 

with increasingly complex models, such as self-

organizing maps [10], recurrent neural networks [12] 

and spiking neural networks [4]. 

The problems in neural network models are mostly 

related to the intensity and quantity of input data. The 

massive input data that flow to the input layer in a 

neural network prolong training times and cause 

training malfunctions. A nested neural network model 

is proposed to address this problem by using data input 

partitions, which are distributed among several neural 

networks in the nested network architecture. Several 

studies have experimented with and tested nested 

neural networks in a number of applications such as 

image compression [11], hierarchical cluster model, 

which has been described as a parallel neural network 

in the neocortex model of the brain and others [2, 13, 

18, 19, 20]. In this work, we aim to improve the 

architecture and efficiency of the nested neural 

network model by incorporating genetic properties 

inspired by the Gene Regulatory Network (GRN) of 

humans to develop a more dynamic structure. 

The modeling of human GRN from a biological 

perspective to a computational perspective is an 

ongoing effort started by researchers from the 

bioinformatics group of INRIA Rhône-Alpes [3]. 

Several models have been produced to represent GRN 

with different development methods, including simple 

and imprecise GRN modeling by using kauffman 

boolean network with boolean vectors for genes state 

[1], extensive representation by using bayesian and 

regression networks with transitional probabilities [9], 

artificial hopfield-type neural networks as the core 

principle of GRN computational model development 

[14], as well as others [8, 16, 17]. 

We have proposed the Gene Regulatory Training 

Engine (GRTE) in our previous work to experiment 

with the proben1 benchmark dataset as uncorrelated 

data [6]. We modified the GRTE further to solve a 

crystallography data analysis problem [15]. In the 

current paper, we propose a Gene-Regulated Nested 

Neural Network (GRNNN) model that uses an 

extended GRTE with the ability to evolve according to 

the structure of the partitioned correlated input data. 

The remainder of this paper is organized as follows: 

Section 2 presents our proposed GRNNN. Section 3 

describes the extended GRTE. Section 4 shows the 

implementation and experimental set-up for the 

evaluation of the proposed model. Section 5 displays 

the results and discussion. Section 6 concludes and 

discusses the direction of future works. 

2. GRNNN 

Correlated data can be described as a set of partitioned 

data that is related to each other. In this section, we 

introduce GRNNN, which expedites the training and 

analysis of correlated input data. In the proposed 

GRNNN architecture, neural networks form a sub-
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network where the output of one network is the input of 

the next network. The structure of this sub-network 

depends on its gene properties. When we group neural 

networks into a nested neural network with several 

layers Φ, where Φ={Φ1, Φ2, …, Φk}, the number of 

GRNNN layers depend on the number of partitioned 

input and can be defined as follows: 

                                 

( 1)
2

2

kn
k

−
= −  

Where k is the number of layers Φ that occur in the 

Outer Neural Network (ONN) and n is the number of 

input partitions. 
Figure 1 shows the general architecture of the 

GRNNN model, which consists of several sub-network 
layers that are referred to as the Inner Neural Network 
(INN). These sub-network layers connect with each 
other to form the main network, that is, the ONN. By 
using the number of ONN layers k, the number of 
neuro genes NNG for the GRNNN can be calculated as 
follows:  

                           0 2
ik

iNGN =∑=  

 

Figure 1. GRNNN model architecture. 

Before presenting the GRNNN algorithm, let us 
briefly define some notations used in the algorithm: 

Φk: Layers of ONN where k is the number of ONN 
layers. 
ηh: INN, where h is the number of neural networks. 
αm: Layers of the inner neural network, where m is the 
number of layers in INN. 
µp: Neurons where p is the number of neurons in the 
INN layers. 
wij: Weight connection from neuron i to j. 
σij: Activation state of every neuron.  

O: Final output. 
  

• Step 1: The number of outer layers Φ={Φ1, Φ2, …, 

Φk} is initialized by using Equation 1, inner layers 
α={α1, α2, …, αm}, ONN neurons ηh={η1, η2, …, ηh}, 
neurons within INNs µi and weight connections ωij. 

• Step 2: By using the initialized ONN and INN 
structure

 
Φ1= {η1, 1, η1, 2, …, η1, p},

 
Φ2= {η2, 1, η2, 2, …, 

η2, p} and
 

Φk= {ηk,1, ηk,2, …, ηk,p}, neurons
 

{µlayer,1, 

µlayer,2, …, µlayer, p} are constructed for every neural 
network η(layer, variable)

 
where every layer is {α1, α2, …, 

αm+p} and weight connection is {ω11, ω12, ω21, …, 

ωij}.  
• Step 3: The number of node/agent is created based 

on Equation 2.  

• Step 4: The GRNNN architecture is set based on the 

given gene. Based on Equation 1, we create the 

number of INN in every ONN by using the 

following Equation: 

{ }( )
2 , , 1, 2, 3, ...,

k - j

jΦ = kwhere Ν j= k∈  

• Step 5: The number of input neurons in the ONN 

input layer µα is expressed as follows: 

1

( )

( )
a

# input n

# inputlayernodes Φ
µ =  

• Step 6: The number of input neurons in the hidden 
layer Φ2 is set with respect to the output neurons 
from the previous layer Φ1 and the number of input 
neurons in the output layer Φk.is set with respect to 
the output neurons from the hidden layer Φ1. 

3. GRTE 

The proposed GRNNN uses an extension of the GRTE 

[18] to create and manage gene-like properties. The 

extended GRTE uses three different sets of gene, 

which determines the structure and parameters of the 

GRNNN.  

• The First Gene: Is the core GRNNN gene that 

defines the neural network training algorithm that is 

used in the GRNNN and the number of nodes 

involved in the parallelization process.  
Neural Network Training Algorithm  

{MLP, BPNN, etc.,} 
Number of Node { 1, 2 , … , n} 

• The Second Gene: Is the gene variable of the INN. 

This gene contains the variable of the neural 

network parameters for every node in the layer. 

These parameters include the number of neurons, 

input nodes, hidden nodes and output nodes, as well 

as the epoch learning and momentum rates. 

Momentum 

Rate  

Learning  

 Rate  
Epoch 

Number of 

Hidden 

Layer 

Number of 

Output 

Neurons 

Number of 

Hidden 

Neurons 

Number of 

Input 

Neurons 

• The Last Gene: Is the gene variable of the ONN. 

This gene contains the parameters for the 

construction of the ONN, including the number of 

nodes, inputs, hidden neurons and output neurons. 

(1) 

(2) 

(3) 

(4) 
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Before we describe the fitness function, we first have 
to introduce the objective function. The objective 
function is basically used to verify and measure the 
objectivity of a neural network. We find that the use of 
the root-mean-square error is suitable for our 
architecture (i.e., multi-layer feed-forward networks). 
The root-mean-square error can be formulated as 
follows:  

                   

2
1

1
( )op p pN

o o o

o

E d y
N

=∑= −  

Where Ep represents the root of the difference between 
the desired output value 

p

od for unit o with a particular 
pattern p and actual network output 

p

oy for every 
training sample, in which No is the number of output 
units. 

Every gene has its own objective function; that is, 
we can obtain the average objective function EAVG for 
all genes by the following Equation: 
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Equation 6 can be calculated after GRTE training. 
After the calculation, a different data sample will be 
trained in each partition data. For example, the data 
sample in the neural network for the input layer can be 
bigger than the data in the hidden or output layer. Once 
the GRTE sends the gene to the environment, the 
GRNNN produces the final output OCD. The final 
output OCD is used to measure the error with the 
expected output Eo. Thus, we can obtain the fitness of 
the output Fo by the following: 

   o o CDF E O= −     

We obtain the fitness function in one generation of 
GRTE for GRNNN from Equations 5, 6 and 7. The 
fitness function is expressed as follows: 

  

2
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1
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All GRTE variables have different functions and 

purposes in GRNNN construction. Thus, we can 

perform the optimization for these variables. The 

optimization is conducted by applying a GA in GRTE. 

Before we proceed to the GA inside the GRTE, we 

have to describe the mutation regulatory. 

After we analyze the gene representation of the 

GRTE, the genetic operator that can occur in this 

representation is only a mutation operator; thus, no 

crossover and parent selection occurs (i.e., every gene 

is a single individual that has to be mutated with 

mutation regulatory). Mutation regulatory consists of 

algorithms and equations to control the mutation of a 

gene. We aim to mutate several entities. The algorithm 

and equations are provided below. 
The mutation regulatory for input neurons is related 

to the data variance to be used. Suppose that, we want 

to apply the GRNNN input data in n-bit parity 
problem, that is we have to have n inputs. Assume that 
we need a multi-layer GRNNN; n has to be 2≤ n ≤ ∞. 
Based on Equation 3, we can denote the number of 
inputs NI as follows: 

                   1NI Φ=     

Mutation regulatory for hidden neurons is quite 
different from the mutation regulatory for input 
neurons. The sequence of Algorithms 1 shows that this 
algorithm adapts to search for the best gene by 
mutating the hidden layer and the neurons inside the 
layer. The mutation regulatory for the proposed 
GRNNN can be described in the following algorithm: 

Algorithm 1: Hidden neurons mutation regulatory. 

1. initialize(NH=2) and (Epoch=10). 

2. mutate_hidden_neuron      

               NH=NH+(2.(Random(4)))       

3. mutate_epoch 

              (Epoch=Epoch+(10.(Random(4))) 

4. begin If (Ep-Ep-1|<0.1)  

5.                stop_hidden_neuron_mutation; 

6.                mutate_epoch  

                   (Epoch=Epoch+(100.(Random(30))) 

7. End If             

Another factor in optimizing the objective/fitness value 
is mutation’s epoch. We can combine both hidden 
neurons NH and epoch as one equation for GRNNN 
because of the nature of the partitioned data. The 
equations are as follows: 

               10 and
10

Epoch
Epoch NH NH= ⋅ =  

Given that, we have different data partitions, the 
appropriate number of output neurons NO for GRNNN 
depends on the data and should be NO>1. For GRNNN, 
the number of output neurons is NO=1. For rate and 
momentum, the number can also be mutated. However, 
for simplicity, we set a fixed number with rate≥0.5 and 
momentum≥0.7 for both GRNNN modes. Algorithm 2 
is an adaptive algorithm with fitness function FCD or 
FUD as termination criterion. GRTE is also involved in 
the training, transmission and retrieval of GRNNN 
results. 

GRTE employs a simple GA with a mutation 
operator. The Algorithm 2 shows how GRTE adapts 
the GA algorithm from Lines 8 to 14. Our GRTE 
differs from the common GA because it does not use 
crossover and parent selection (every gene act as a 
single parent) and random population initialization 
does not occur in the algorithm. We present the 
complete diagram of the GRTE model in Figure 2.  

Algorithm 2: GRTE algorithm. 

1.  intializeGene( ). 

2.  while not(FCD≤ 0.030) || (FUD≤0.030) do 

3.  trainingGene( ) 

4.  send_neural_network( ) 

5.  execute_neural_network( ) 

6.  retrieve_result( ) 

(8) 

(5) 

(6) 

(7) 

(9) 

(10) 
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7.  evaluate_fitness_function for GRNNN( ) 

8.  while(0.01≤ Ep≤ 0.98) do 

9.  execute_mutation_regulatory( ) 

10. evaluate_fitness_function for GRNNN( ) 

11. end while 

12. create_new_solution( ) 

13. send_and_compare_to_population( ) 

14  choose_best_solution( )  

15. end while  

INPUT 

ONN (X)
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NETWORK GENE
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r = 0.5 m = 0.7Epoch = NH * 10

NH = Epoch / 10
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MUTATE HIDDEN NEURON (NH = NH +(2.(Random(4)))

MUTATE EPOCH (Epoch = Epoch + (10.Random(4)))

BEGIN IF ( |  Ep – Ep-1 | < 0.1 )
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Figure 2. GRTE extension model to cover the proposed GRNNN. 

The fitness function and mutation regulatory is an 
important GRTE element. These two methods support 
the proposed GRNNN and allow the extended GRTE 
model to become more adaptive. Figure 2 describes the 
positions of these two methods in GRTE. The ONN 
should be translated first to construct the INN. The 
genes produced by the INN have to be trained before 
the genes are sent to the environment. Results from the 
environment will be analyzed by using the fitness 
function and placed in the population. Given that the 
fitness function does not affect the mutation in the 
ONN level, the mutation process will be implemented 
in the INN. The rule of mutation will be conducted by 
mutation regulatory to control the objectivity of the 
gene. The GRTE will then create new genes for 
training that will be sent to the environment. This 
iteration will stop after the fitness function reaches the 
termination point. 

4. Implementation and Validation 

From the application perspective, we can divide our 
methodology into client/agent application and server 
application. Three different modules exist in the agent 
application as shown in Figure 3. First, a data collector 

is purposed to collect data from benchmark datasets. 
This data should be partitioned. Second, an input 
analyzer is used to analyze and classify the data. The 
input analyzer can also be used as a pre-processing 
data module. Finally, the neural network engine of the 
agent is used to run the neuro-gene engine that has 
been injected to the node by using the dataset as input 
resources. 

 

Figure 3. Client/agent-server applications. 

The server has one module and one database. The 
module is the GRN engine, which implements the 
GRTE to create the neuro gene and acts as the home 
base of neural network training and GA. The GRN 
engine is connected to the database to record gene 
activity and population.  

The process flow in the environment is as follows. 
First, the agents are activated. Thereafter, an agent will 
request neuro genes to the server. The server then 
provides the neuro gene. Every agent should start the 
neural network activity inside the node and the 
architecture will be built automatically inside the 
environment based on the given neuro genes. Every 
agent will record the information of their activities for 
later use in the GRTE as the parameters for 
performance measurements. 

The network acts as the pre-elementary requirement 
of our model in setting up several computers that will 
act as agents. The number of required computers 
depends on the number of neurons in the ONN. 

4.1. XOR Parity Problem Data Set-up 

We design the first experiment to test the proposed 
GRNNN model by using an 8bit XOR parity problem. 
We can define the number of input in one particular 
INN as 8/4= 2 by using Equation 1. Therefore, we have 
to divide eight inputs into two separate inputs. The 
diagram in Figure 1 shows how the inputs are fed to 
the GRNNN. We train seven datasets for this parity 
problem experiment. However, we can minimize the 
agents into four agents only (agent in input layer) 
because these particular agents can also act as agents 
for the hidden and output layers of the ONN. Another 
important thing in this data experiment is the creation 
of a truth table for the 8bit parity problem, which 
consists of 256 data samples. 

5. Analysis and Results 

The XOR parity problem can be categorized as a 
linearly separable problem. The 8bit XOR parity 
dataset contains 256 samples, whereas the eight inputs 

Client/Agent Application 
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Network Engine 
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Server Application 

Listener 
 

 Agents Neural 
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of the datasets are divided by four neuro genes. Thus, 
one neuro gene in the input layer receives two inputs 
only. In this section, we report the results obtained 
when experimenting our proposed method with the 
8bit XOR parity problem.  

In this part, we present the result obtained from 
GRNNN in the environment. We use four agents to 
perform GRNNN calculations, which produce seven 
neuro genes. We also use the default value, that is, (0, 
0, 1, 0, 0, 1, 1 and 1), as the 8bit input. The expected 
result of every 2bit input is based on the 4bit truth 
table. In Figures 4, 5 and 6, we present the output 
result from the neuro genes in the input and hidden 
layers. The output results are achieved from GRNNN 
after 10 generations. 

Output Results From Neuro-Gene 1 and 4   
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u
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u
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10 9 8 7 6 5 4 3  2 1 Generations 
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0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0253  0.0424 0.6179  Input (1, 1) D 

Figure 4. GRNNN results for the first and third neuro-gene in input 

layer of outer neural network. 

Output Results From Neuro-Gene 2 and 3   
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Figure 5. GRNNN results for the second and fourth neuro-gene in 

input layer of outer neural network.  

Output Results From Neuro-Gene 5 and 6   
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Figure 6. GRNNN results for the first and second neuro-gene in 

hidden layer of outer neural network.  

Figure 4 shows the result from neuro genes 1 and 4 
with (0, 0) and (1, 1) as inputs, respectively. Figure 5 
shows the result from neuro genes 2 and 3 with (1, 0) 
and (0, 1) as inputs, respectively. After 10 generations, 
the GRNNN exhibits the best result in the fourth 
generation.  

Once the input layer of the ONN finishes the 
recognition, the outputs of the four neuro genes have to 
pass the next hidden layers directly. Figure 6 shows the 
result of the input from the output of the previous 
result in Figures 4 and 5. The first neuro gene in the 

hidden layer receives inputs from neuro genes 1 and 2, 
whereas the second neuro gene in the hidden layer 
receives input from neuro genes 3 and 4 Figure 7. 

Final Output Results From Neuro-Gene 7  
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Figure 7. Final output results from the last node of output layer. 

The next step is to pass the outputs from the two 
neuro genes in the ONN hidden layer to act as inputs 
for the last neuro gene in the output layer. Figure 7 
shows the final result OCD of the whole GRNNN in 
every generation. Our GRNNN provides the best result 
in the 10

th generation, where it reaches OCD= 0.021. This 
final output is important in the fitness function of the 
GRTE. 

Figure 8 describes the objective value obtained by 
using the objective function E

P in Equation 4. E
P 

should be lower in every generation to prove that our 
neural network evolves properly. The four neuro genes 
in the input layer obtain the optimum and minimum 
errors. For example, the first generation EP of all neural 
networks in the input layer reaches ±0.3. When the 
neural network mutates, E

P becomes ±0.03 in the 
second generation. All neural networks in the input 
layer reaches convergence from the fourth generation. 

Objective Function   
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Figure 8. GRTE objective values EP for GRNNN.  

Thus, for the hidden and output layers, we can see 
that the movement of the objective function changes in 
the fourth generation. The movement of the objective 
function is static from the first to third generation. For 
example, the E

P of all neural networks in the input 
layer reaches ±0.35 in the fourth generation. E

P 
becomes ±0.07 in the sixth generation when the neural 
network mutates. All neural networks in the hidden 
and output layers reach convergence starting from the 
sixth generation. Finally, the entire neural networks 
converge in the 10

th generation. 
The objective function also shows the accuracy of 

our neural network. The accuracy is measured by the 
correctness percentage of the objective values of the 
final neural networks in the 10

th generation. We verify 
the accuracy in Table 1. 
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Table 1. GRNNN accuracy. 

 Generations 

 1 2 3 4 5 6 7 AVG 

Accuracy (%) 99.4 99.5 99.4 99.3 99 99 99 99.2 

In Figures 9 and 10, we present the results of the 

hidden neuron and epoch in every generation to show 

the adaptive architecture created by our proposed 

method. Based on our mutation regulatory, the hidden 

neurons and epoch are the entities that need to be 

mutated. Figure 9 shows the result of the hidden 

neuron and epoch mutations. The number of hidden 

neurons and epochs adapt for each generation. For 

example, in the third generation, hidden neuron= 6 and 

epoch= 40. In the fourth generation, hidden 

neuron= 10 and epoch= 100. The mutation of hidden 

neurons stops in the fourth generation because it is 

inappropriate, whereas the epoch mutation 

continuously evolves. 
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Figure 9. Hidden neurons in GRNNN. 
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Figure 10. Epochs in GRNNN. 

In Figure 11, it clearly shows how mutation 

regulatory provides a rule in the GRTE flows. The blue 

line shows that the mutation only occurs in the first 

four generations and the mutation at the remaining 

generation never occurs again. This observation can be 

attributed to the termination criteria (0.01≤ Ep≤ 0.98) for 

the mutation regulatory, which is created to minimize 

the GRTE workload. The red line shows the mutation 

change of the hidden and output layers, which 

continuously evolve until it meets the termination 

criteria. 
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Figure 11. Mutation change result from mutation regulatory               

method in GRTE. 

We perform sequential training (without agents) and 

parallel training (with agents) to measure the training 

speed of our proposed GRNNN. Figure 12 shows the 

result of the training time in sequential and parallel 

modes (by using agent) in 10 generations. The agent 

based parallel implementation of the GRNNN 

significantly improves the training speed. 
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Figure 12. Training time comparisons for xor parity problem. 

The last result described in Figure 13 is the fitness 

function, which is retrieved from GRTE based on 

Equation 7. The fitness function is the main 

termination criterion of GRTE for its evolving 

algorithm. Figure 13 clearly shows that the evolution is 

terminated when the fitness function FCD reaches≤ 

0.030.  
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Figure 13. Fitness function results for GRNNN. 

6. Conclusions 

We have proposed the GRNNN by using an extended 

GRTE as the adaptive controller and an engine to 

distribute neuro genes in the execution environment. 

We apply the 8bit parity problem dataset to validate 

our proposed approach. The results show a high 

accuracy of 99% for the classification results as well as 

showcasing GRNNN ability to evolve its structure for 

optimum results. Our results also show that the 

proposed GRNNN, which has the ability to obtain each 

network trained in parallel, does not require excessive 

training time compared with the sequential training of 

normal neural networks. Future works include 

applying GRNNN to solve computationally complex 

scientific problems with large datasets while enhancing 

its algorithm further. 
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