
532 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

A Gene-Regulated Nested Neural Network

Romi Rahmat
1
, Muhammad Pasha

2
, Mohammad Syukur

3
, and Rahmat Budiarto

4

1
Faculty of Computer Science and Information Technology, University of Sumatera Utara, Indonesia

2
School of Computer Sciences, University Sains Malaysia, Malaysia

3
Faculty of Mathematics and Natural Sciences, University of Sumatera Utara, Indonesia

4
College of Computer Science and Information Technology, Albaha University, Saudi Arabia

Abstract: Neural networks have always been a popular approach for intelligent machine development and knowledge

discovery. Although, reports have featured successful neural network implementations, problems still exists with this

approach, particularly its excessive training time. In this paper, we propose a Gene-Regulated Nested Neural Network

(GRNNN) model as an improvement to existing neural network models to solve the excessive training time problem. We use a

Gene Regulatory Training Engine (GRTE) to control and distribute the genes that regulate the proposed nested neural

network. The proposed GRNNN is evaluated and validated through experiments to classify accurately the 8bit XOR parity

problem. Experimental results show that the proposed model does not require excessive training time and meets the required

objectives.

Keywords: Neural networks, gene regulatory network, artificial intelligence, bio-inspired computing.

Received May 13, 2013; accepted July 21, 2013; published online December 3, 2014

1. Introduction

Biologically inspired computing has been an active

area of research for the past decades. This approach is

implemented with the first wave of human neuron-

connection modeling, which is also called a neural

network. The wave continues with the learning theory

introduced by [7], which is known as hebbian learning

and the introduction of the Genetic Algorithm (GA)

[5]. This second wave is currently being developed

with increasingly complex models, such as self-

organizing maps [10], recurrent neural networks [12]

and spiking neural networks [4].

The problems in neural network models are mostly

related to the intensity and quantity of input data. The

massive input data that flow to the input layer in a

neural network prolong training times and cause

training malfunctions. A nested neural network model

is proposed to address this problem by using data input

partitions, which are distributed among several neural

networks in the nested network architecture. Several

studies have experimented with and tested nested

neural networks in a number of applications such as

image compression [11], hierarchical cluster model,

which has been described as a parallel neural network

in the neocortex model of the brain and others [2, 13,

18, 19, 20]. In this work, we aim to improve the

architecture and efficiency of the nested neural

network model by incorporating genetic properties

inspired by the Gene Regulatory Network (GRN) of

humans to develop a more dynamic structure.

The modeling of human GRN from a biological

perspective to a computational perspective is an

ongoing effort started by researchers from the

bioinformatics group of INRIA Rhône-Alpes [3].

Several models have been produced to represent GRN

with different development methods, including simple

and imprecise GRN modeling by using kauffman

boolean network with boolean vectors for genes state

[1], extensive representation by using bayesian and

regression networks with transitional probabilities [9],

artificial hopfield-type neural networks as the core

principle of GRN computational model development

[14], as well as others [8, 16, 17].

We have proposed the Gene Regulatory Training

Engine (GRTE) in our previous work to experiment

with the proben1 benchmark dataset as uncorrelated

data [6]. We modified the GRTE further to solve a

crystallography data analysis problem [15]. In the

current paper, we propose a Gene-Regulated Nested

Neural Network (GRNNN) model that uses an

extended GRTE with the ability to evolve according to

the structure of the partitioned correlated input data.

The remainder of this paper is organized as follows:

Section 2 presents our proposed GRNNN. Section 3

describes the extended GRTE. Section 4 shows the

implementation and experimental set-up for the

evaluation of the proposed model. Section 5 displays

the results and discussion. Section 6 concludes and

discusses the direction of future works.

2. GRNNN

Correlated data can be described as a set of partitioned

data that is related to each other. In this section, we

introduce GRNNN, which expedites the training and

analysis of correlated input data. In the proposed

GRNNN architecture, neural networks form a sub-

A Gene-Regulated Nested Neural Network 533

network where the output of one network is the input of

the next network. The structure of this sub-network

depends on its gene properties. When we group neural

networks into a nested neural network with several

layers Φ, where Φ={Φ1, Φ2, …, Φk}, the number of

GRNNN layers depend on the number of partitioned

input and can be defined as follows:

(1)
2

2

kn
k

−
= −

Where k is the number of layers Φ that occur in the

Outer Neural Network (ONN) and n is the number of

input partitions.
Figure 1 shows the general architecture of the

GRNNN model, which consists of several sub-network
layers that are referred to as the Inner Neural Network
(INN). These sub-network layers connect with each
other to form the main network, that is, the ONN. By
using the number of ONN layers k, the number of
neuro genes NNG for the GRNNN can be calculated as
follows:

 0 2
ik

iNGN =∑=

Figure 1. GRNNN model architecture.

Before presenting the GRNNN algorithm, let us
briefly define some notations used in the algorithm:

Φk: Layers of ONN where k is the number of ONN
layers.
ηh: INN, where h is the number of neural networks.
αm: Layers of the inner neural network, where m is the
number of layers in INN.
µp: Neurons where p is the number of neurons in the
INN layers.
wij: Weight connection from neuron i to j.
σij: Activation state of every neuron.

O: Final output.

• Step 1: The number of outer layers Φ={Φ1, Φ2, …,

Φk} is initialized by using Equation 1, inner layers
α={α1, α2, …, αm}, ONN neurons ηh={η1, η2, …, ηh},
neurons within INNs µi and weight connections ωij.

• Step 2: By using the initialized ONN and INN
structure

Φ1= {η1, 1, η1, 2, …, η1, p},

Φ2= {η2, 1, η2, 2, …,

η2, p} and

Φk= {ηk,1, ηk,2, …, ηk,p}, neurons

{µlayer,1,

µlayer,2, …, µlayer, p} are constructed for every neural
network η(layer, variable)

where every layer is {α1, α2, …,

αm+p} and weight connection is {ω11, ω12, ω21, …,

ωij}.
• Step 3: The number of node/agent is created based

on Equation 2.

• Step 4: The GRNNN architecture is set based on the

given gene. Based on Equation 1, we create the

number of INN in every ONN by using the

following Equation:

{ }()
2 , , 1, 2, 3, ...,

k - j

jΦ = kwhere Ν j= k∈

• Step 5: The number of input neurons in the ONN

input layer µα is expressed as follows:

1

()

()
a

input n

inputlayernodes Φ
µ =

• Step 6: The number of input neurons in the hidden
layer Φ2 is set with respect to the output neurons
from the previous layer Φ1 and the number of input
neurons in the output layer Φk.is set with respect to
the output neurons from the hidden layer Φ1.

3. GRTE

The proposed GRNNN uses an extension of the GRTE

[18] to create and manage gene-like properties. The

extended GRTE uses three different sets of gene,

which determines the structure and parameters of the

GRNNN.

• The First Gene: Is the core GRNNN gene that

defines the neural network training algorithm that is

used in the GRNNN and the number of nodes

involved in the parallelization process.
Neural Network Training Algorithm

{MLP, BPNN, etc.,}
Number of Node { 1, 2 , … , n}

• The Second Gene: Is the gene variable of the INN.

This gene contains the variable of the neural

network parameters for every node in the layer.

These parameters include the number of neurons,

input nodes, hidden nodes and output nodes, as well

as the epoch learning and momentum rates.

Momentum

Rate

Learning

 Rate
Epoch

Number of

Hidden

Layer

Number of

Output

Neurons

Number of

Hidden

Neurons

Number of

Input

Neurons

• The Last Gene: Is the gene variable of the ONN.

This gene contains the parameters for the

construction of the ONN, including the number of

nodes, inputs, hidden neurons and output neurons.

(1)

(2)

(3)

(4)

534 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

Before we describe the fitness function, we first have
to introduce the objective function. The objective
function is basically used to verify and measure the
objectivity of a neural network. We find that the use of
the root-mean-square error is suitable for our
architecture (i.e., multi-layer feed-forward networks).
The root-mean-square error can be formulated as
follows:

2
1

1
()op p pN

o o o

o

E d y
N

=∑= −

Where Ep represents the root of the difference between
the desired output value

p

od for unit o with a particular
pattern p and actual network output

p

oy for every
training sample, in which No is the number of output
units.

Every gene has its own objective function; that is,
we can obtain the average objective function EAVG for
all genes by the following Equation:

0

N
NG

i p

AVG

NG

E
E

N

=∑
=

Equation 6 can be calculated after GRTE training.
After the calculation, a different data sample will be
trained in each partition data. For example, the data
sample in the neural network for the input layer can be
bigger than the data in the hidden or output layer. Once
the GRTE sends the gene to the environment, the
GRNNN produces the final output OCD. The final
output OCD is used to measure the error with the
expected output Eo. Thus, we can obtain the fitness of
the output Fo by the following:

 o o CDF E O= −

We obtain the fitness function in one generation of
GRTE for GRNNN from Equations 5, 6 and 7. The
fitness function is expressed as follows:

2
10

0

1
()oNG

NG

NN p p
oiN o o

i p o
CD AVG o o CD o CD

NG NG

d y
E N

F E F E O E O
N N

==

=

∑ ∑ −
∑

= ⋅ = ⋅ − = ⋅ −

All GRTE variables have different functions and

purposes in GRNNN construction. Thus, we can

perform the optimization for these variables. The

optimization is conducted by applying a GA in GRTE.

Before we proceed to the GA inside the GRTE, we

have to describe the mutation regulatory.

After we analyze the gene representation of the

GRTE, the genetic operator that can occur in this

representation is only a mutation operator; thus, no

crossover and parent selection occurs (i.e., every gene

is a single individual that has to be mutated with

mutation regulatory). Mutation regulatory consists of

algorithms and equations to control the mutation of a

gene. We aim to mutate several entities. The algorithm

and equations are provided below.
The mutation regulatory for input neurons is related

to the data variance to be used. Suppose that, we want

to apply the GRNNN input data in n-bit parity
problem, that is we have to have n inputs. Assume that
we need a multi-layer GRNNN; n has to be 2≤ n ≤ ∞.
Based on Equation 3, we can denote the number of
inputs NI as follows:

 1NI Φ=

Mutation regulatory for hidden neurons is quite
different from the mutation regulatory for input
neurons. The sequence of Algorithms 1 shows that this
algorithm adapts to search for the best gene by
mutating the hidden layer and the neurons inside the
layer. The mutation regulatory for the proposed
GRNNN can be described in the following algorithm:

Algorithm 1: Hidden neurons mutation regulatory.

1. initialize(NH=2) and (Epoch=10).

2. mutate_hidden_neuron

 NH=NH+(2.(Random(4)))

3. mutate_epoch

 (Epoch=Epoch+(10.(Random(4)))

4. begin If (Ep-Ep-1|<0.1)

5. stop_hidden_neuron_mutation;

6. mutate_epoch

 (Epoch=Epoch+(100.(Random(30)))

7. End If

Another factor in optimizing the objective/fitness value
is mutation’s epoch. We can combine both hidden
neurons NH and epoch as one equation for GRNNN
because of the nature of the partitioned data. The
equations are as follows:

 10 and
10

Epoch
Epoch NH NH= ⋅ =

Given that, we have different data partitions, the
appropriate number of output neurons NO for GRNNN
depends on the data and should be NO>1. For GRNNN,
the number of output neurons is NO=1. For rate and
momentum, the number can also be mutated. However,
for simplicity, we set a fixed number with rate≥0.5 and
momentum≥0.7 for both GRNNN modes. Algorithm 2
is an adaptive algorithm with fitness function FCD or
FUD as termination criterion. GRTE is also involved in
the training, transmission and retrieval of GRNNN
results.

GRTE employs a simple GA with a mutation
operator. The Algorithm 2 shows how GRTE adapts
the GA algorithm from Lines 8 to 14. Our GRTE
differs from the common GA because it does not use
crossover and parent selection (every gene act as a
single parent) and random population initialization
does not occur in the algorithm. We present the
complete diagram of the GRTE model in Figure 2.

Algorithm 2: GRTE algorithm.

1. intializeGene().

2. while not(FCD≤ 0.030) || (FUD≤0.030) do

3. trainingGene()

4. send_neural_network()

5. execute_neural_network()

6. retrieve_result()

(8)

(5)

(6)

(7)

(9)

(10)

A Gene-Regulated Nested Neural Network 535

7. evaluate_fitness_function for GRNNN()

8. while(0.01≤ Ep≤ 0.98) do

9. execute_mutation_regulatory()

10. evaluate_fitness_function for GRNNN()

11. end while

12. create_new_solution()

13. send_and_compare_to_population()

14 choose_best_solution()

15. end while

INPUT

ONN (X)

HIDDEN

ONN (Y)

OUTPUT

ONN (Z) OUTER NEURAL

NETWORK GENE

TRANSLATED TRANSLATED TRANSLATED

INPUT HIDDEN EPOCH RATE MOMENTUM

NI ≥ 1

OR

NI = Φ1

r = 0.5 m = 0.7Epoch = NH * 10

NH = Epoch / 10

INITIALIZE (NH = 2) and (Epoch = 10)

MUTATE HIDDEN NEURON (NH = NH +(2.(Random(4)))

MUTATE EPOCH (Epoch = Epoch + (10.Random(4)))

BEGIN IF (| Ep – Ep-1 | < 0.1)

 STOP_HIDDEN_NEURON_MUTATION

 MUTATE_EPOCH (Epoch = Epoch + (100.(Random(30)))

END IF

INPUT HIDDEN EPOCH RATE MOMENTUM

HIDDEN EPOCH RATE MOMENTUM

HIDDEN EPOCH RATE MOMENTUM

HIDDEN EPOCH RATE MOMENTUM

0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

X

0

1

.

Y

Z

INNER NEURAL

NETWORK GENE

E

N

V

I

R

O

N

M

E

N

T

GRNNN for Correlated Data

ANNN for Uncorrelated Data

ANNN FOR UNCORRELATED DATA

GRNNN FOR CORRELATED DATA

POPULATION

MUTATED

Figure 2. GRTE extension model to cover the proposed GRNNN.

The fitness function and mutation regulatory is an
important GRTE element. These two methods support
the proposed GRNNN and allow the extended GRTE
model to become more adaptive. Figure 2 describes the
positions of these two methods in GRTE. The ONN
should be translated first to construct the INN. The
genes produced by the INN have to be trained before
the genes are sent to the environment. Results from the
environment will be analyzed by using the fitness
function and placed in the population. Given that the
fitness function does not affect the mutation in the
ONN level, the mutation process will be implemented
in the INN. The rule of mutation will be conducted by
mutation regulatory to control the objectivity of the
gene. The GRTE will then create new genes for
training that will be sent to the environment. This
iteration will stop after the fitness function reaches the
termination point.

4. Implementation and Validation

From the application perspective, we can divide our
methodology into client/agent application and server
application. Three different modules exist in the agent
application as shown in Figure 3. First, a data collector

is purposed to collect data from benchmark datasets.
This data should be partitioned. Second, an input
analyzer is used to analyze and classify the data. The
input analyzer can also be used as a pre-processing
data module. Finally, the neural network engine of the
agent is used to run the neuro-gene engine that has
been injected to the node by using the dataset as input
resources.

Figure 3. Client/agent-server applications.

The server has one module and one database. The
module is the GRN engine, which implements the
GRTE to create the neuro gene and acts as the home
base of neural network training and GA. The GRN
engine is connected to the database to record gene
activity and population.

The process flow in the environment is as follows.
First, the agents are activated. Thereafter, an agent will
request neuro genes to the server. The server then
provides the neuro gene. Every agent should start the
neural network activity inside the node and the
architecture will be built automatically inside the
environment based on the given neuro genes. Every
agent will record the information of their activities for
later use in the GRTE as the parameters for
performance measurements.

The network acts as the pre-elementary requirement
of our model in setting up several computers that will
act as agents. The number of required computers
depends on the number of neurons in the ONN.

4.1. XOR Parity Problem Data Set-up

We design the first experiment to test the proposed
GRNNN model by using an 8bit XOR parity problem.
We can define the number of input in one particular
INN as 8/4= 2 by using Equation 1. Therefore, we have
to divide eight inputs into two separate inputs. The
diagram in Figure 1 shows how the inputs are fed to
the GRNNN. We train seven datasets for this parity
problem experiment. However, we can minimize the
agents into four agents only (agent in input layer)
because these particular agents can also act as agents
for the hidden and output layers of the ONN. Another
important thing in this data experiment is the creation
of a truth table for the 8bit parity problem, which
consists of 256 data samples.

5. Analysis and Results

The XOR parity problem can be categorized as a
linearly separable problem. The 8bit XOR parity
dataset contains 256 samples, whereas the eight inputs

Client/Agent Application

Data

Collector

Input

Analyzer

Agents Neural

Network Engine
Listener

Server Application

Listener

 Agents Neural

Network Engine

Database

536 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

of the datasets are divided by four neuro genes. Thus,
one neuro gene in the input layer receives two inputs
only. In this section, we report the results obtained
when experimenting our proposed method with the
8bit XOR parity problem.

In this part, we present the result obtained from
GRNNN in the environment. We use four agents to
perform GRNNN calculations, which produce seven
neuro genes. We also use the default value, that is, (0,
0, 1, 0, 0, 1, 1 and 1), as the 8bit input. The expected
result of every 2bit input is based on the 4bit truth
table. In Figures 4, 5 and 6, we present the output
result from the neuro genes in the input and hidden
layers. The output results are achieved from GRNNN
after 10 generations.

Output Results From Neuro-Gene 1 and 4

0.7

 O

u
tp

u
t

V
al

u
es

 0.6

0.5

0.4

0.3

0.2

0.1

0

10 9 8 7 6 5 4 3 2 1 Generations

0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0137 0.0119 0.4041 Input (0, 0) A

0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0131 0.0253 0.0424 0.6179 Input (1, 1) D

Figure 4. GRNNN results for the first and third neuro-gene in input

layer of outer neural network.

Output Results From Neuro-Gene 2 and 3

1.2

O

u
tp

u
t

V
al

u
es

 1

0.8

0.6

0.4

0.2

0

10 9 8 7 6 5 4 3 2 1 Generations

0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9858 0.9694 0.8931 Input (1, 0) B

0.9911 0.9911 0.9911 0.9911 0.9911 0.9911 0.9911 0.9854 0.9657 0.8201 Input (0, 1) C

Figure 5. GRNNN results for the second and fourth neuro-gene in

input layer of outer neural network.

Output Results From Neuro-Gene 5 and 6

1.2

O

u
tp

u
t

V
al

u
es

 1

0.8

0.6

0.4

0.2

0

10 9 8 7 6 5 4 3 2 1 Generations

0.9855 0.9786 0.9697 0.9489 0.9009 0.7416 0.5121 0.5142 0.5133 0.5112 Input (A, B)

0.9847 0.9748 0.9689 0.9458 0.8953 0.7271 0.5135 0.5159 0.5141 0.5106 Input (C, D)

Figure 6. GRNNN results for the first and second neuro-gene in

hidden layer of outer neural network.

Figure 4 shows the result from neuro genes 1 and 4
with (0, 0) and (1, 1) as inputs, respectively. Figure 5
shows the result from neuro genes 2 and 3 with (1, 0)
and (0, 1) as inputs, respectively. After 10 generations,
the GRNNN exhibits the best result in the fourth
generation.

Once the input layer of the ONN finishes the
recognition, the outputs of the four neuro genes have to
pass the next hidden layers directly. Figure 6 shows the
result of the input from the output of the previous
result in Figures 4 and 5. The first neuro gene in the

hidden layer receives inputs from neuro genes 1 and 2,
whereas the second neuro gene in the hidden layer
receives input from neuro genes 3 and 4 Figure 7.

Final Output Results From Neuro-Gene 7
0.7

 F

in
al

 O
u
tp

u
t

V
al

u
es

 0.6

0.5

0.4

0.3

0.2

0.1

0

10 9 8 7 6 5 4 3 2 1 Generations

0.0212 0.0364 0.0486 0.1045 0.2361 0.5939 0.5129 0.5151 0.5137 0.5109 Final Output

Figure 7. Final output results from the last node of output layer.

The next step is to pass the outputs from the two
neuro genes in the ONN hidden layer to act as inputs
for the last neuro gene in the output layer. Figure 7
shows the final result OCD of the whole GRNNN in
every generation. Our GRNNN provides the best result
in the 10

th generation, where it reaches OCD= 0.021. This
final output is important in the fitness function of the
GRTE.

Figure 8 describes the objective value obtained by
using the objective function E

P in Equation 4. E
P

should be lower in every generation to prove that our
neural network evolves properly. The four neuro genes
in the input layer obtain the optimum and minimum
errors. For example, the first generation EP of all neural
networks in the input layer reaches ±0.3. When the
neural network mutates, E

P becomes ±0.03 in the
second generation. All neural networks in the input
layer reaches convergence from the fourth generation.

Objective Function

0.4

O
b
je

ct
iv

e
V

al
u
es

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

10 9 8 7 6 5 4 3 2 1 Generations

0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.0152 0.0294 0.2365 Input Layer 1

0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0106 0.0241 0.3156 Input Layer 2

0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0135 0.0267 0.2964 Input Layer 3

0.0071 0.0071 0.0071 0.0071 0.0071 0.0071 0.0071 0.0148 0.0248 0.2929 Input Layer 4

0.0105 0.0169 0.022 0.0394 0.0776 0.2189 0.3657 0.3678 0.3658 03633 Hidden Layer 1

0.0101 0.0162 0.0211 0.0381 0.0749 0.2517 0.3657 0.3675 0.3656 0.3635 Hidden Layer 2

Figure 8. GRTE objective values EP for GRNNN.

Thus, for the hidden and output layers, we can see
that the movement of the objective function changes in
the fourth generation. The movement of the objective
function is static from the first to third generation. For
example, the E

P of all neural networks in the input
layer reaches ±0.35 in the fourth generation. E

P
becomes ±0.07 in the sixth generation when the neural
network mutates. All neural networks in the hidden
and output layers reach convergence starting from the
sixth generation. Finally, the entire neural networks
converge in the 10

th generation.
The objective function also shows the accuracy of

our neural network. The accuracy is measured by the
correctness percentage of the objective values of the
final neural networks in the 10

th generation. We verify
the accuracy in Table 1.

A Gene-Regulated Nested Neural Network 537

Table 1. GRNNN accuracy.

 Generations

 1 2 3 4 5 6 7 AVG

Accuracy (%) 99.4 99.5 99.4 99.3 99 99 99 99.2

In Figures 9 and 10, we present the results of the

hidden neuron and epoch in every generation to show

the adaptive architecture created by our proposed

method. Based on our mutation regulatory, the hidden

neurons and epoch are the entities that need to be

mutated. Figure 9 shows the result of the hidden

neuron and epoch mutations. The number of hidden

neurons and epochs adapt for each generation. For

example, in the third generation, hidden neuron= 6 and

epoch= 40. In the fourth generation, hidden

neuron= 10 and epoch= 100. The mutation of hidden

neurons stops in the fourth generation because it is

inappropriate, whereas the epoch mutation

continuously evolves.

H

id
d
en

 N
eu

ro
n
s

 Hidden Neurons

12

10

8

6

4

2

0

 1 2 3 4 5 6 7 8 9 10

 Generations

Figure 9. Hidden neurons in GRNNN.

 E

p
o
ch

s

 Epoch

4500

4000
3500

3000

2500
2000

1500

1000

500
0

 1 2 3 4 5 6 7 8 9 10

 Generations

Figure 10. Epochs in GRNNN.

In Figure 11, it clearly shows how mutation

regulatory provides a rule in the GRTE flows. The blue

line shows that the mutation only occurs in the first

four generations and the mutation at the remaining

generation never occurs again. This observation can be

attributed to the termination criteria (0.01≤ Ep≤ 0.98) for

the mutation regulatory, which is created to minimize

the GRTE workload. The red line shows the mutation

change of the hidden and output layers, which

continuously evolve until it meets the termination

criteria.

A
v
er

ag
e

O
b
je

ct
iv

e

F
u
n
ct

io
n
 i

n
 1

0
 G

en
er

at
io

n
s

 Mutation Change
0,4

0,35

0,3
0,25

0,2

0,15
0,1

0,05

0

 2,10 4,20 8,40 10,100 10,500 10,700 10,1000 10,1500 10,2000 10,4000

 Number of Hidden Neurons, Epoch

 Input Layer Hidden, Output Layer

Figure 11. Mutation change result from mutation regulatory

method in GRTE.

We perform sequential training (without agents) and

parallel training (with agents) to measure the training

speed of our proposed GRNNN. Figure 12 shows the

result of the training time in sequential and parallel

modes (by using agent) in 10 generations. The agent

based parallel implementation of the GRNNN

significantly improves the training speed.

 Training Time Comparasions

Parallel Time
Sequential Time

8000

T
im

e
(m

s)

7000

6000

5000

4000

3000

2000

1000

0

 10 9 8 7 6 5 4 3 2 1

 Generations

Figure 12. Training time comparisons for xor parity problem.

The last result described in Figure 13 is the fitness

function, which is retrieved from GRTE based on

Equation 7. The fitness function is the main

termination criterion of GRTE for its evolving

algorithm. Figure 13 clearly shows that the evolution is

terminated when the fitness function FCD reaches≤

0.030.

Fittness Function
0.9

F
it

n
es

s
V

al
u
es

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

10 9 8 7 6 5 4 3 2 1 Generations

0.0292 0.0475 0.0615 0.1242 0.2727 0.706 0.6732 0.6804 0.6851 0.8297 FF

Figure 13. Fitness function results for GRNNN.

6. Conclusions

We have proposed the GRNNN by using an extended

GRTE as the adaptive controller and an engine to

distribute neuro genes in the execution environment.

We apply the 8bit parity problem dataset to validate

our proposed approach. The results show a high

accuracy of 99% for the classification results as well as

showcasing GRNNN ability to evolve its structure for

optimum results. Our results also show that the

proposed GRNNN, which has the ability to obtain each

network trained in parallel, does not require excessive

training time compared with the sequential training of

normal neural networks. Future works include

applying GRNNN to solve computationally complex

scientific problems with large datasets while enhancing

its algorithm further.

Acknowledgement

This work was supported in part by Universiti Sains

Malaysia Research University (RU) grant no.

1001/PKOMP/817047. The authors also would like to

538 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

acknowledge the cross collaboration between

Universiti Sains Malaysia and University of Sumatera

Utara, that have resulted in this paper.

References

[1] Akutsu T., Miyano S., and Kuhara S.,

“Identification of Genetic Networks from a Small

Number of Gene Expression Patterns under the

Boolean Network Model,” available at:

http://psb.stanford.edu/psb-online/proceed

ings/psb99/Akutsu.pdf, last visited 1999.

[2] Awad M., “Input Variable Selection using

Parallel Processing of RBF Neural Networks,”

the International Arab Journal of Information

Technology, vol. 7, no. 1, pp. 6-13, 2010.

[3] De H., “Modeling and Simulation of Genetic

Regulatory Systems: A Literature Review,”

Journal of Computational Biology, vol. 9, no. 1,

pp. 67-102, 2002.

[4] Ghosh S. and Adeli H., “Spiking Neural

Networks,” the International Journal of Neural

Systems, vol. 19, no. 4, pp. 295-308, 2009.

[5] Golberg D., Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-

Wesley, 1989.

[6] Hasibuan A., Rahmat F., Pasha F., and Budiarto

R., “Adaptive Nested Neural Network (ANNN)

Based on Human Gene Regulatory Network

(GRN) for Gene Knowledge Discovery Engine,”

the International Journal of Computer Science

and Network Security, vol. 9, no. 6, pp. 43-54,

2009.

[7] Hebb D., The Organization of Behavior, John

Wiley and Sons, 1949.

[8] Kasabov N., Benuskova L., and Wysoski G.,

“Computational Neurogenetic Modelling: Gene

Network within Neural Networks,” in

Proceedings of International Joint Conference on

Neural Networks, Budapest, Hungary, pp. 1203-

1208, 2005.

[9] Kato M., Tsunoda T., and Takagi T., “Inferring

Genetic Networks from DNA Microarray Data

by Multiple Regression Analysis,” available at:

https://www.jsbi.org/pdfs/journal1/GIW00/GIW0

0F12.pdf, last visited 2000.

[10] Kohonen T., Self-Organizing Maps, Springer,

2001.

[11] Kumar K. and Mahalingam N., “Nested Neural

Networks for Image Compression,” in

Proceedings of the 10
th

 International Conference

on Global Connectivity in Energy, Computer,

Communication and Control, New Delhi, India,

pp. 369-372, 1998.

[12] LukošEvičIus M. and Jaeger H., “Survey:

Reservoir Computing Approaches to Recurrent

Neural Network Training,” Computer Science

Review, vol. 3, no. 3, pp. 127-149, 2009.

[13] Manzhos S., Wang X., Dawes R., and Carrington

T., “A Nested Molecule-Independent Neural

Network Approach for High-Quality Potential

Fits,” Journal of Physical Chemistry, vol. 110,

no. 16, pp. 5295-5304, 2006.

[14] Marnellos G. and Mjolsness D., Modeling Neural

Development, MIT Press, 2003.

[15] Pasha F., Rahmat F., Budiarto R., and Syukur M.,

“A Distributed Autonomous Neuro-Gen Learning

Engine and its Application to the Lattice

Analysis of Cubic Structure Identification

Problem,” the International Journal of Innovative

Computing, Information and Control, vol. 6, no.

3, pp. 1005-1022, 2010.

[16] Sehgal M., Gondal I., and Dooley L., “AFEGRN:

Adaptive Fuzzy Evolutionary Gene Regulatory

Network Reconstruction Framework,” in

Proceedings of International Conference on

Fuzzy Systems, Vancouver, Canada, pp. 1737-

1741, 2006.

[17] Vohradsky J., “Neural Network Model of Gene

Expression,” Journal of the Federation of

American Societies for Experimental Biology,

vol. 15, no. 3, pp. 846-854, 2001.

[18] Wu T. and Kareem A., “Modeling Hysteretic

Nonlinear Behavior of Bridge Aerodynamics via

Cellular Automata Nested Neural Network,”

Journal of Wind Engineering and Industrial

Aerodynamics, vol. 99, no. 4, pp. 378-388, 2011.

[19] Xiong X., Wang J., Niu T., and Song Y., “A

Hybrid Model for Fault Diagnosis of Complex

Systems,” Electronics Optics and Control, vol.

16, no. 2, pp. 56-59, 2009.

[20] Yap H., Guan L., and Liu W., “A Recursive Soft-

Decision Approach to Blind Image

Deconvolution,” IEEE Transactions on Signal

Processing, vol. 51, no. 2, pp. 515-526, 2003.

Romi Rahmat received his BCs and

MSc degrees in computer science

from University Sains Malaysia in

2007 and 2008 respectively.

Currently, he is a lecturer in Faculty

of Computer Science and

Information Technology, University

of Sumatera Utara, Medan, Indonesia. His research

interests include image and signal processing,

intelligent system, mobile computing and neuro-

genetic system.

A Gene-Regulated Nested Neural Network 539

Muhammad Pasha is a research

fellow at the School of Computer

Sciences, Universiti Sains Malaysia.

He holds PhD degree in computer

science from University Sains

Malaysia in 2009 in addition to

membership of the IEEE. His main

interests are in the area of brain inspired computing,

machine intelligence, intelligent network monitoring,

medical image analysis, neuro imaging, and healthcare

IT.

Mohammad Syukur is a Professor

at the Faculty of Mathematics and

Natural Sciences, University of

Sumatera Utara, Medan, Indonesia.

Currently, he is the head of

Crystallography and Radiation

Physics Research Laboratory. His

research interests include material physics, X-ray

diffraction methods, artificial intelligence application

and crystallography. He has written two book chapters

and numerous refereed research papers.

Rahmat Budiarto received his BSc

degree from Bandung Institute of

Technology in 1986, MEng and

phDEng in computer science from

Nagoya Institute of Technology in

1995 and 1998 respectively.

Currently, he is a professor at the

College of Computer Science and Information

Technology, Albaha University, Saudi Arabia. He is

also a research fellow at InterNetWorks Research Lab,

UUM-CAS, Malaysia. His research interests include

next generation network (IPv6 and smart networks),

intelligent network monitoring system and security,

intelligent systems and brain modeling.

