Mining Closed and Multi-Supports-Based Sequential Pattern in High-Dimensional Dataset

Meng Han ${ }^{1,2}$, Zhihai Wang ${ }^{1}$, and Jidong Yuan ${ }^{1}$
${ }^{1}$ School of Computer and Information Technology, Beijing Jiaotong University, China*
${ }^{2}$ School of Computer Science and Engineering, Beifang University of Nationalities, China

Abstract

Previous mining algorithms on high dimensional datasets, such as biological dataset, create very large patterns sets as a result which includes small and discontinuous sequential patterns. These patterns do not bear any useful information for usage. Mining sequential patterns in such sequences need to consider different forms of patterns, such as contiguous patterns, local patterns which appear more than one time in a special sequence and so on. Mining closed pattern leads to a more compact result set but also a better efficiency. In this paper, a novel algorithm based on BI-directional extension and multisupports is provided specifically for mining contiguous closed patterns in high dimensional dataset. Three kinds of contiguous closed sequential patterns are mined which are sequential patterns, local sequential patterns and total sequential patterns. Thorough performances on biological sequences have demonstrated that the proposed algorithm reduces memory consumption and generates compact patterns. A detailed analysis of the multi-supports-based results is provided in this paper.

Keywords: High-dimensional dataset, closed pattern, contiguous pattern, multi-supports, biological sequences.
Received November 1, 2012; accepted April 29, 2013; published online August 17, 2014

1. Introduction

Sequential Pattern Mining (SPM) has become an essential data mining task with broad applications. Some previous studies contributed to the efficient mining of sequential patterns in high dimensional dataset. TD-Seq [11] is used for mining sequential pattern from high dimensional stock sequence database with a top-down transposition-based searching strategy. BVBUC [14] is an efficient colossal pattern mining in high dimensional datasets. SPM is becoming a promising strategy in mining biological sequences which is an important high dimensional dataset. It is used to mine structured motifs from protein or DNA sequences [1, 3, 16, 17]. Some methods are used to mine compressed patterns in biological sequences. Such as, MCSF is an efficient approach to mine maximal contiguous frequent patterns from large DNA sequence databases [9]. TOPPER is used to mine top- k patterns in biological sequences based on regularity measurement [18]. All these methods above are used to mine patterns to meet a support in high dimensional dataset. In recent years, some methods focus on mining some interesting patterns, such as BioPM [16] and WildSpan [8]. BioPM is based on prefix projected method to find the protein motifs in protein sequences. It discovers patterns to meet local support and distribution support [16]. WildSpan conducted experiments with two mining strategies, protein-based

[^0]and family-based mining [8]. These algorithms mine complete patterns with two kinds of supports.

The complete set of patterns is huge for effective usage. We need a compact but high quality set of patterns, such as closed patterns and maximal patterns [6]. In order to mine efficient and interesting patterns on high dimensional dataset, a novel algorithm called Multi-supports-based and Contiguous Closed Pattern Mining (MCCPM) is proposed. It bases on multisupports and discovers three kinds of contiguous closed sequential patterns.

The rest of this article is organized as follows. Section 2 reviews the closed SPM algorithm BIDE [15]. In section 3, some concepts are defined and the novel algorithm is proposed. Section 4 shows the experimental results on high dimensional dataset such as biological sequences and provides some interesting patterns. Finally, the conclusion is provided in section 5.

2. Problem Definition

In this section, we will discuss some patterns to meet different requirements. The first type is common sequential pattern which is frequent subsequence in a sequence database and the subsequence whose occurrence frequency is no less than minimum support threshold (called min_sup). The second one is contiguous sequential pattern. It is contiguous subsequence in each sequence. The third type is closed contiguous pattern which is compact but high quality. The last kind is multi-supports-based pattern. It finds
some interesting patterns which appear more than once in a sequence.

2.1. Problem Definition

Let S be a sequence database with a set of tuples <sequence_id, s >, where sequence_id is a sequence id and s is a sequence. If sequence α is contained in sequence β, α is a subsequence of β and β a supersequence of α. The support of a sequence α in S is the number of s containing α, denoted as support(α). Given a support threshold min_sup, a subsequence α is a frequent sequential pattern in S if support $(a) \geq$ min_sup* N, where parameter N is the number of sequences in S.

For example, Table 1 shows the input biological sequence database S. Suppose the min_sup $=50 \%$ (0.5), so a pattern occurrence frequency in the set of sequences is no less than $2(4 * 0.5)$. The set of items in the database is $\{\mathrm{a}, \mathrm{c}, \mathrm{g}, \mathrm{t}\}$ and the sequence_id are $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$. There are 7 items in sequence $s_{1}, 14$ items in sequence $s_{2}, 11$ items in sequence s_{3} and 9 items in sequence s_{4}. Since, these 4 sequences contain sub-sequence $x=(\mathrm{gag}), x$ is a length-3 pattern and its support is 4 , denoted as support $(x)=4(100 \%)$.

Table 1. Dataset S.

Sequence ID	Sequence
S_{1}	gaggaga
\mathbf{S}_{2}	agatatgettagag
S_{3}	actgaggtaga
S_{4}	attgagctt

2.2. Different Sequential Patterns

2.2.1. Contiguous Sequential Pattern

When minimum support $=50 \%(0.5), 411$ patterns are generated from dataset S. There are 4 length- 1 patterns, 14 length -2 patterns, 47 length- 3 patterns, 103 length- 4 patterns, 131 length 5 patterns, 85 length- 6 patterns, 24 length-7 patterns and 2 length- 7 patterns. However, most of these patterns are discontinuous and useless.

For example, support of lengh-6 pattern (a g g a g a) is 3 and it appears in sequence s_{1}, s_{2} and s_{3}. It is clear that its positions in sequence s_{2} and s_{3} are discontinuous as shown in Figure 1.

\[

\]

Figure 1. Discontinuous pattern (aggaga).
In this paper, we focus on mining contiguous frequent patterns from high dimensional dataset, mainly on biological sequences. A sequence $\alpha=<$ sequence $_{\alpha_{-}} i d, a_{1}$, $a_{2}, \ldots, a_{n}>$ is called a contiguous subsequence [9] of another sequence $\beta=\left\langle\right.$ sequence $_{\beta_{-}} i d, b_{1}, b_{2}, \ldots, b_{m}>$ and β is a contiguous supersequence of α, if there exists integers $1 \leq j_{1} \leq j_{2} \leq \ldots \leq j_{n} \leq m$ and $j_{i}=j_{i-1}+1$ for $1 \leq i \leq n-1$, while $a_{1}=b_{j 1}$, $a_{2}=b_{j 2}, \ldots, a_{n}=b_{j n}$. Given a support threshold min_sup, a
contiguous subsequence α is a contiguous sequential pattern in S if support $(\alpha) \geq$ min_sup $* N$.

The horizontal search tree [14] of generating contiguous sequential pattern in S is shown in Figure 2. There are 4 items a, c, g, t. Suppose min_sup $=50 \%(0.5)$, there are 24 contiguous patterns of dataset S. There are 4 length- 1 patterns, 9 length- 2 patterns, 7 length- 3 patterns and 4 length- 4 patterns.

Figure 2. Horizontal search tree.
Figure 3 shows discontinuous and contiguous pattern (tgag). The first Figure 3-a shows the discontinuous pattern. Support of discontinuous pattern (tgag) is 3 and it appears in sequence s_{2}, s_{3} and s_{4}. Figure 3-b shows the contiguous pattern (tgag). It is clear that the support (tgag) $=2$ and it appears in sequence s_{3} and s_{4}. In this paper, we focus on contiguous patterns.
$S_{2} \quad(\mathbf{a})(\mathbf{g})(\mathbf{a})(\mathbf{t})(\mathbf{a})(\mathbf{t})(\mathrm{g})(\mathbf{c})(\mathbf{t})(\mathbf{t})(\mathbf{a})(\mathrm{g})(\mathbf{a})(\mathrm{g})$
$S_{3} \quad(\mathbf{a})(\mathbf{c})(\mathbf{t})(\mathbf{g})(\mathbf{a})(\mathbf{g})(\mathrm{g})(\mathbf{t})(\mathbf{a})(\mathrm{g})(\mathbf{a})$
$\mathrm{S}_{4} \quad(\mathrm{a})(\mathrm{t})(\mathrm{t})(\mathrm{g})(\mathrm{a})(\mathrm{g})(\mathrm{c})(\mathrm{t})(\mathrm{t})$

```
Sequence_id
Sequence_id
a) Discontinuous pattern.
Sequence_id
Sequence
(a) (c) (t)(g)(a)(g)(g)(t)(a)(g)(a)
\(\begin{array}{ll}S_{3} & (a)(\mathbf{c})(\mathbf{t})(\mathbf{g})(\mathbf{a})(\mathbf{g})(\mathrm{g})(\mathrm{t})(\mathrm{a}) \\ \mathbf{S}_{4} & (\mathbf{a})(\mathbf{t})(\mathbf{t})(\mathrm{g})(\mathbf{a})(\mathrm{g})(\mathrm{c})(\mathrm{t})(\mathrm{t})\end{array}\)
b) Contiguous pattern (tgag).

Figure 3. Discontinuous and contiguous pattern (tgag).

\subsection*{2.2.2. Closed Contiguous Sequential Pattern}

The number of complete patterns is huge and we need a compact with high quality set of patterns. In general, compact pattern can be divided into two categories: lossless and lossy compression [6]. Closed patterns are lossless compression of frequent patterns. It contains the complete support information regarding to its corresponding frequent patterns.

When minimum support is \(50 \%(0.5)\), the horizontal search tree of dataset \(S\) is shown in Figure 2. There are 4 items and 24 patterns. However, some of these patterns can be compressed, such as 24 patterns can be compressed into 9 closed patterns. Figure 4 shows the search tree of frequent subsequence (g). In this Figure, the value 'ga (4)' means that the support of frequent subsequence (ga) is 4 . The subsequence with gray background means that it doesn't meet the minimum support and it needs to be pruned out. Closed sequential patterns are in black boxes. It is clear that there are 4 closed patterns of prefix (g). Dotted arrow points from \(A\) to \(B\) means that \(A\) is the supersequence of \(B\) and they have the same support. Therefore, \(B\) can be pruned. Such as \(\operatorname{support}(\mathrm{gag})=\operatorname{support}(\mathrm{ga})\) and \(\operatorname{support}(\mathrm{ga})=\) support \((\mathrm{g})\), then subsequences (ga) and (g) are deserted.


Figure 4. Search tree of prefix (g).

\subsection*{2.2.3. Multi-Supports-Based and Contiguous Closed Pattern}

There are some interesting patterns in biological datasets. In this paper, we focus on three types of patterns:
1. Pattern appears in some sequences meeting the min_sup.
2. Pattern appears many times in a special sequence.
3. Pattern appears in some sequences but appears different times in each sequence. Positions and times of the last two kinds of patterns are recorded.

For example, pattern (gag) appears 5 times in 4 sequences, as shown in Figure 5. It appears 2 times in sequence \(s_{1}\) and 1 time in other three sequences. Therefore, from this perspective, the relation of sequence \(s_{2}\) to \(s_{3}\) and \(s_{4}\) is closer than them with sequence \(s_{1}\).
\begin{tabular}{|c|c|}
\hline Sequence & Sequence_id \\
\hline \(\mathrm{S}_{1}\) & (g)(a)(g)(g)(a)(g)(a) \\
\hline \(\mathrm{S}_{2}\) & \((\mathrm{a})(\mathrm{g})(\mathrm{a})(\mathrm{t})(\mathrm{a})(\mathrm{t})(\mathrm{g})(\mathrm{c})(\mathrm{t})(\mathrm{t})(\mathrm{a})(\mathrm{g})(\mathrm{a})(\mathrm{g})\) \\
\hline \(\mathrm{S}_{3}\) & (a )(c)(t) (g)(a)(g)(g)(t)(a)(g)(a) \\
\hline \(\mathrm{S}_{4}\) & \((\mathrm{a})(\mathrm{t})(\mathrm{t})(\mathrm{g})(\mathrm{a})(\mathrm{g})(\mathrm{c})(\mathrm{t})(\mathrm{t})\) \\
\hline
\end{tabular}

Figure 5. Patten (gag).
Meanwhile, we find that there are 9 patterns appear in sequence \(\mathrm{s}_{1}\). They are: Pattern (g) appears 4 times; (a) and (ga) appear 3 times; (ag) and (gag) appear 2 times; (gg), (aga), (agg) and (gagg) appear 1 time. Suppose the pattern which appears in sequence \(s_{1}\) more than 2 times is needed, 3 local patterns: (g), (a) and (ga) are mined. Furthermore, there are only 3 closed patterns: (gag),
(aga) and (gagg) in sequence \(s_{1}\). If the local minimum support is 2 , the local pattern (gag) is generated. There are 7 closed patterns in sequence \(s_{2}\). There are 2 patterns: (at), (aga) appear 2 times and 5 patterns: (ct), (tg), (gag), (gctt), (taga) appear 1 time. We can also get 7 closed patterns in sequence \(s_{3}\) and 6 closed patterns in sequence \(s_{4}\).

The focus of this paper is on mining continuous and closed sequential patterns based on multi-supports in high dimensional dataset.

\section*{3. The BIDE Algorithm}

BIDE [15] is a fast algorithm for mining discontinuous closed sequential patterns. It uses a sequence closure checking scheme to avoid the maintenance of closed candidate sequence. The proposed back scan pruning method can prune the search space aggressively [15].
- Definition 1 [6]. Closed Sequential Pattern: A pattern \(X\) is a closed sequential pattern in a data set \(S\) if \(X\) is frequent in \(S\) and there exists no super pattern \(Y\) such that \(Y\) has the same support as \(X\) in \(S\).
The BIDE algorithm [15] is shown as Algorithm 1. It contains two methods, one for length-1 frequent subsequence and one for other length frequent subsequence. BIDE algorithm first scans the database \(S\) once to find the length-1 frequent subsequences. Treat each subsequence \(\alpha\) as a prefix, build a pseudoprojected database \(S \mid \alpha\) and compute the number of forward-extension items which are the frequent items appear before prefix with the same support of prefix. If there is no forward-extension item, then calls subroutine \(\operatorname{bide}(\alpha, S \mid \alpha)\). If there is no backwardextension item and no super sequence of \(\alpha\), then output \(\alpha\) as a closed pattern. This is the first method.

Algorithm 1: BIDE
Method 1:BIDE(S)
\{
scan the database \(S\) once to find the length-1 frequent subsequences \(\alpha\);
for each \(\alpha\) do
bide(bide \((\alpha, S \mid \alpha))\);
end for
\}
Method 2: bide \((\alpha, S \mid \alpha)\) )
\{
for each \(\alpha\) do
if there is no forward-extension item; then
scan its projected database \(S \mid \alpha\), find each
frequent item \(b\), append \(b\) to \(\alpha\) to form \(a\)
subsequence \(\alpha\) ';
bide \(\left(\alpha^{\prime}, S \mid \alpha^{\prime}\right)\) );
end if
if there is no backward-extension item; then
output \(\alpha\) as a frequent closed pattern;
end if
end for
\}

Subroutine bide() is the second method. It recursively calls itself and works in some steps:
1. For each prefix \(\alpha\), scan \(S \mid \alpha\) once to find each frequent item \(b\). For each frequent item \(b\), append it to \(\alpha\) to form a new prefix \(\alpha^{\prime}\) and compute its forwardextension items number. If there is no forwardextension item, then calls subroutine \(\operatorname{bide}\left(\alpha^{\prime}, S \mid \alpha^{\prime}\right)\).
2. If there is no backward-extension item and no super sequence of \(\alpha^{\prime}\), then output \(\alpha^{\prime}\) as a closed pattern.
3. Return the maximal support \(\left(\alpha^{\prime}\right)\).

For example, when min_sup is 0.5 , prefixes and the corresponding projected databases and patterns of database \(S\) are shown in Table 2. It is clear that, there are 24 complete sequential patterns. In Table 2, 24 complete patterns are compressed into 5 maximal sequential patterns or 9 closed sequential patterns. Therefore, 9 closed patterns are more compressed than 24 and they contain the complete information regarding to its corresponding frequent patterns. Though 5 maximal patterns are more compact, it does not contain the complete information.

Table 2. Prefixes and sequential patterns.
\begin{tabular}{|c|c|c|c|}
\hline Prefix & Complete Atterns & \begin{tabular}{c} 
Maximal \\
Patterns
\end{tabular} & \begin{tabular}{c} 
Closed \\
Patterns
\end{tabular} \\
\hline \(\mathbf{g}\) & \(\mathrm{g}, \mathrm{gc}\), ga, gg, gct, gag,gctt, gagg & gctt, gagg & gag, gctt, gagg \\
\hline \(\mathbf{t}\) & t, ta, tt, tg,tag, tga,taga, tgag & taga, tgag & tg, taga, tgag \\
\hline \(\mathbf{c}\) & \(\mathrm{c}, \mathrm{ct}, \mathrm{ctt}\), & & ct \\
\hline \(\mathbf{a}\) & a, at, ag, aga, agg & at & at, aga \\
\hline
\end{tabular}

\section*{4. Mining Contiguous Closed Patterns}

In this paper, two novel algorithms which are used to discover contiguous sequential patterns based on multisupports are proposed. The first algorithm is PrefixSpan* which is an improvement of PrefixSpan [13] and is used to mine contiguous pattern based on multi-supports. The second one is used to mine contiguous closed sequential patterns based on multisupports, called MCCPM. Some methods are similar in these two algorithms. Therefore, we just provide the information of MCCPM. At first, we propose some definitions.
- Definition 2 [4]. Support: The support of a subsequence \(X\) in a dataset \(S\) is the number of tuples in the dataset containing \(X\), denoted as support \((X)=\) \(\mid\{<\) sequence_id, \(s>\mid(<\) sequence_id, \(s>\in S) \wedge(X \subseteq s)\} \mid\).
- Definition 3 [18]. Local Support: The local support of a subsequence \(X\) in a dataset \(S\) is the number of tuples in a specific sequence \(Y\) containing \(X\), denoted as local_support \((X, Y)=\mid\left\{<l o c a t i o n \_i d, Y>\mid(Y \in S) \wedge(X \subseteq\right.\) Y) \(\}\) \}|.
- Definition 4. Total Support: The total support of a subsequence \(X\) in a dataset \(S\) is the total number of tuples in \(S\), denoted as total_support \((X)=\sum_{\mathrm{Y}}\) local_ support \((X, Y)\).
- Definition 5. Local Sequential Pattern: Local sequential pattern is a subsequence whose
occurrence frequency in one specific sequence is no less than local minimum support (local_min_sup (sequence_id)).
- Definition 6. Total Sequential Pattern: Total sequential pattern is a subsequence whose occurrence frequency in dataset \(S\) is no less than total minimum support (total_min_sup).

There are three types of patterns in this paper. The first one is sequential pattern, which is a frequent subsequence whose occurrence frequency in the set of sequences is no less than min_sup [4]. The second one is local sequential pattern, which is a frequent subsequence whose occurrence frequency in one specific sequence is no less than local_min_sup (sequence_id). The third one is total sequential pattern, which is a frequent subsequence whose occurrence frequency in dataset \(S\) is no less total_min_sup.

For example, the database \(S\) is as shown in Table 1. Table 3 shows some information of closed contiguous patterns on \(S\). The first column is closed sequential pattern, denoted as \(X\), the second column is the support \((X)\) and the third column is the total_ support \((X)\). The tuples <sequence_id, location_id> in last column is the location where the frequent pattern appears. The variable sequence_id is the sequence id and location_id is the item id started with number 0 in that sequence. Suppose the min_sup is 0.75 , we get 4 closed sequential patterns as shown in Table 3. The support \((\mathrm{aga})=3\) means that pattern (aga) appears in 3 sequences: \(s_{1}, s_{2}\) and \(s_{3}\). While total_support(aga) \(=4\) means that (aga) appears 4 times in dataset \(S\). It appears 1 time in location_id=4 of sequence \(s_{1}\) (denoted as \(<\) sequence_id, location_id \(>=<s_{1},\{4\}>\) ). It appears 2 times in location_id \(=\{0,10\}\) of sequence \(s_{2}\left(<s_{2},\{0\right.\), \(10\}>\) ). It appears 1 time in location_id \(=8\) of sequence \(s_{3}\left(\left\langle s_{3},\{8\}>\right)\right.\). If total_min_sup \(=\overline{4}, 2\) total sequential patterns: (gag) and (aga) are discovered.

Table 3. Closed sequential patterns and supports.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Closed \\
Pattern
\end{tabular} & Support & Total Support & Location
\(<\) sequence id, location id> \\
\hline tg & 3 & 3 & \(<s_{4},\{2\}>,<s_{3},\{2\}>,<s_{2},\{5\}>\) \\
\hline ct & 3 & 3 & \(<s_{4},\{6\}>,<s_{3},\{1\}>,<s_{2},\{7\}>\) \\
\hline gag & 4 & 5 & \(<s_{4},\{3\}>,<s_{3},\{3\}>,<s_{2},\{11\},<s_{1},\{0,3\}>\) \\
\hline aga & 3 & 4 & \(<s_{3},\{8\}>,<s_{2},\{0,10\}>,<s_{1},\{4\}>\) \\
\hline
\end{tabular}

Table 4 shows the local frequent subsequences in sequence \(s_{1}\). The first column is local sequential pattern and the second column is the local support of pattern. The tuples <sequence_id, location_id> in the last column has the same meaning as in Table 3. Subsequences(gag) appears 2 times in location_id \(=\{0\), \(3\}\). Therefore, its local support is 2 , denoted as local_support (gag, \(\left.s_{1}\right)=2\) and (aga) appears 1 time in location_id \(=\{4\}\), denoted as local_support(aga, \(\left.s_{1}\right)=1\). If local_min_sup \(\left(s_{1}\right)\) is 1 , two local sequential patterns in sequence \(s_{1}\) are discovered.

Table 4. Local closed sequential patterns in sequence \(s_{1}\).
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Local \\
Pattern
\end{tabular} & Support & \begin{tabular}{c} 
Local \\
Support
\end{tabular} & \begin{tabular}{c} 
Location \\
<sequence_id,location_id \(>\)
\end{tabular} \\
\hline gag & 4 & 2 & \(<s_{1},\{0,3\}>\) \\
\hline aga & 3 & 1 & \(<s_{1},\{4\}>\) \\
\hline
\end{tabular}

From Tables 3 and 4 we can get three types of sequential patterns and their positions:
1. If min_sup \(=0.75\), four closed patterns are generated: ( tg ), (ct), (gag) and (aga).
\(<\) pattern, \(<\) seuqnece_id, location_id \(\gg=\left\{<\operatorname{tg},\left\{<s_{4},\{2\}>\right.\right.\), \(\left.<s_{3},\{2\}>,<s_{2},\{5\}>\right\}>,<c t,\left\{<s_{4},\{6\}>,<s_{3},\{1\}>,<s_{2}\right.\), \(\{7\}>\}><\) gag, \(\left\{<s_{4},\{3\}>,<s_{3},\{3\}>,<s_{2},\{11\},<s_{1},\{0\right.\), \(3\}>\}>,<\) aga, \(\left.\left\{<s_{3},\{8\}>,<s_{2},\{0,10\}>,<s_{1},\{4\}>\right\}>\right\}\).
2. If min_sup \(=0.75\) and local_min_sup \(=2\), two local patterns are generated: (gag) and (aga).
\(<\) local pattern, sequence_id \(\rangle=\left\{<\right.\) gag, \(\left.s_{1}\right\rangle,\left\langle\right.\) aga, \(\left.\left.s_{2}\right\rangle\right\}\).
3. If min_sup \(=0.75\) and total_min_sup \(=4\), two total patterns are generated: (gag) and (aga).
\(<\) total pattern, \(<\) seuqnece_id, location_id \(\gg=\left\{<\mathrm{gag},\left\{<s_{4}\right.\right.\), \(\left.\{3\}>,<s_{3},\{3\}>,<s_{2},\{11\},<s_{1},\{0,3\}>{ }^{-}\right\}>,<\)aga, \(\left\{<s_{3}\right.\), \(\left.\{8\}>,\left\langle s_{2},\{0,10\}>,<s_{1},\{4\}>\right\}>\right\}\).

Algorithm MCCPM is suitable to discover patterns on biological sequences and different interesting patterns based on multi-supports. MCCPM is shown as follows. The input parameters are sequence database and three kinds of minimum supports.

Algorithm 2: MCCPM

\section*{Input:}
1. Database \(S\),
2. minimum support thresholds: support_thresholds \(=\) \{min_sup,local_min_sup,total_min_sup\}.

Output: Sets of three kinds of contiguous closed sequential patterns.
```

Method 1: MCCPM(S)
{
scan S, find length-1 frequent patterns \alpha;
for each \alpha do
scan S again, find the location information of \alpha: <\alpha,
sequence id, location_id> and store them into
PrefixLocation|\alpha.
generate S| | = pseudo projected database of prefix \alpha.
if (!ForwardScan(\alpha))
then
call bide(\alpha, S|\alpha, PrefixLocation |\alpha, support_
thresholds);
end if
end for
}
Method 2: bide(\alpha,S|\alpha, PrefixLocation |\alpha, support_ thresholds)
{
scan S| | once, find each frequent item b;
for each b do
append b to \alpha to form a new prefix \alpha';
according to PrefixLocation }|\mathrm{ , find the location
information < \alpha', sequence_id,location_id> of \alpha'
and store into PrefixLocation| }\alpha\mathrm{ ';
let S| ' =pskjeudo projected database of \alpha';
if(!ForwardScan(\alpha'))
then

```
```

 call bide(}\mp@subsup{\alpha}{}{\prime},S|\alpha,, PrefixLocation | ','
 support_thresholds);
 end if
 if(!ForwardScan(\alpha')&&!BackwardExtension(\alpha'))
 then
 if support(\alpha')>min_sup
 then
 output \alpha' as sequential pattern;
 end if
 if local_support(}\alpha\mathrm{ ', s)>local_min_sup(s)
 then
 output <\alpha', s> as local sequential pattern;
 end if
 if total_support((')>total_min_sup
 then
 output \alpha' as total sequential pattern.
 end if
 end for
 }

```

In algorithm MCCPM, the method ForwardScan() is used to check whether it exists items before prefix to meet the same support. Return true if we should stop to explore this prefix. Method Backward Extension() return true if there is a backward-extension [15] as it is used in BIDE.

We provide examples of discovering contiguous closed sequence patterns. Dataset \(S\) is as shown in Table 1. There are four items: (a), (c), (g), (t) in \(S\). Suppose the min_sup \(=0.5\), take item (g) as prefix to generate patterns. There are 4 closed sequential patterns of \(\operatorname{prefix}(\mathrm{g})\) and it works in 5 steps.
- Step 1: Generate patterns (gagg) and (gag) as shown in Figure 6. Value 'gagg (2)' means frequent subsequence (gagg) and support (gagg)=2. Because of no more frequent subsequence of prefix(gagg) and \(\operatorname{support}(\mathrm{gagg}) \geq 2\), it is a frequent pattern. Support(gaga) and support(gagc)) are less than minimum support, therefore they are pruned. After all frequent subsequence of prefix(gag) are generated, it gets the return value ' 2 ' as shown in Figure 6-b. It is clear that 2 is the maximal support of support(gagg), support(gaga) and support(gagc). Because \(\operatorname{support}(\mathrm{gag})=4\) is not equal to 2 , (gag) is a frequent pattern.


Figure 6. Generate patterns of prefix (gag).
- Step 2: Figure 7 shows the subsequences of prefix (gat). Because of no more frequent subsequence of prefix(gat) and its support is less than minimum support, it is pruned. After generating all frequent subsequence of prefix(ga), it get the return value ' 4 '
as shown in Figure 7-b. Value 4 is the maximal support of support(gag) and support(gat). Because \(\operatorname{support}(\mathrm{ga})=4\) is equal to the return value 4 , (ga) is not a frequent pattern.


Figure 7. Generate subsequence of prefix (ga).
- Step 3: Generate sequential pattern (gg) as shown in Figure 8. The supports of subsequences (gag) and (ggt) are less than minimum support, therefore they are pruned. The \(\operatorname{support}(\mathrm{gg})=2\) is more than minimum support, it is a frequent pattern.


Figure 8. Generate pattern (gg).
- Step 4: Generate sequential pattern (gatt) as shown in Figure 9. The support of frequent subsequence (gctt) is more than minimum support as shown in Figure 9-a, therefore it is a sequential pattern. After generating all frequent subsequence of prefix (gct), it gets the return value 2 as shown in Figure 9-b. The support \((\mathrm{gct})=2\) is equal to the return value 2 , so \((\mathrm{gct})\) is not a frequent pattern. The frequent subsequence \((\mathrm{gc})\) is not a pattern too as shown in Figure 9-c.
- Step 5: Maximal support value 4 is returned to frequent subsequence (g) as shown in Figure 10. The value 4 is the maximal support value of support(ga), \(\operatorname{support}(\mathrm{gg})\) and \(\operatorname{support}(\mathrm{gc})\). Because the \(\operatorname{support}(\mathrm{g})=4\) is equal to value 4 , it is not a frequent pattern.

a) Generate pattern \((\mathrm{gctt})\).

b) Return to prefix (gct).

c) Return to prefix (gc).

Figure 9. Generate sunsquences of prefix (gc).


Figure 10. Return maximal support to subsequence (g).
From step 1 to step 5, four closed patterns are mined of prefix (g). Methods of discovering local closed patterns and total closed patterns are the same as discovering closed patterns.

\section*{5. Performance Evaluation}

In this chapter, we provide experimental results to compare the performance of two algorithms. PrefixSpan* mines complete and contiguous patterns based on multi-supports. MCCPM mines closed and contiguous patterns based on multi-supports. All experiments were conducted on a 3.0 GHz AMD PC with 2.0 GB main memory, running Microsoft Windows 7.

In our performance study, we use 7 DNA sequences, which meet the condition of "Homo sapiens" and "cancer" from NCBI. There are four kinds of cancers as shown in Table 5, the first 4 lines are sequences about colon cancer, line 5 is about stomach cancer, line 6 is about colorectal cancer and the last line is about ovarian cancer. The sequence lengths are shown in the last column in Table 4 and the average length is 2384.

Table 5. DNA sequences.
\begin{tabular}{|c|l|c|}
\hline ID & \multicolumn{1}{|c|}{ Sequence Title } & \#items \\
\hline \(\mathbf{i u}\) & \begin{tabular}{l} 
Mutation in the DNA mismatch repair gene homologue hPMS2 is \\
associated with hereditary nonpolyposis colon cancer
\end{tabular} & 2697 \\
\hline \(\mathbf{s}_{\mathbf{1}}\) (U03911) & \begin{tabular}{l} 
The human mutator gene homolog MSH2 and its association with \\
hereditary nonpolyposis colon cancer
\end{tabular} & 3080 \\
\hline \(\mathbf{s}_{\mathbf{2}}\) (U07418) & Mutation of a mutL homolog in hereditary colon cancer & 2503 \\
\hline \(\mathbf{s}_{\mathbf{3}}\) (U07343) & \begin{tabular}{l} 
Mutation in the DNA mismatch repair gene homologue hMLH1 is \\
associated with hereditary non-polyposis colon cancer
\end{tabular} & 2484 \\
\hline \(\mathbf{s}_{\mathbf{4}}\) (U27467) & \begin{tabular}{l} 
A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach \\
cancer and preferentially expressed in bone marrow
\end{tabular} & 737 \\
\hline \(\mathbf{s}_{\mathbf{5}}\) (U04045) & \begin{tabular}{l} 
Mutations of a mutS homolog in hereditary nonpolyposis \\
colorectal cancer
\end{tabular} & 2947 \\
\hline \(\mathbf{s}_{\mathbf{6}}\) (U34880) & \begin{tabular}{l} 
A cDNA from the ovarian cancer critical region of deletion on \\
chromosome 17p13.3
\end{tabular} & 2234 \\
\hline
\end{tabular}

Figure 11-a shows the processing time of the two algorithms: PrefixSpan* and MCCPM, at different support thresholds. The min_sup is from 0.5 to 1 . It is clear that the runtime of MCCPM is higher than PrefixSpan*. The reason is that the time consumptions of backward and forward extension checks on every prefix. The memory usages of the two algorithms at different support thresholds are shown in Figure 11-b. It is clear that the memory usage of MCCPM is lower than PrefixSpan* because of the pruning strategy. Figure 12 shows the numbers of complete patterns and closed patterns. From this figure, we can get that closed sequential pattern compress the result of complete sequential patterns, about \(43 \%\) patterns are be compressed.


Figure 11. The performance of algorithms PrefixSpan* and MCCPM on biological dataset.


Figure 12. Numbers of frequent patterns on biological dataset.
When min_sup \(=100 \%\), the comparison between complete and closed patterns is shown in Figure 13. There are 623 complete frequent patters. The number of closed frequent patterns is 267 . The number of closed patterns is \(42 \%\) of number of complete patterns. Therefore, more than half of complete patterns are deleted and the result set becomes more concise to use.


Figure 13. Length distribution of patterns on biological dataset.
What is the relationship between min_sup, local_ min_sup and total_min_sup? From the description of MCCPM algorithm we get that the sequential pattern should meet the min_sup. While local and total pattern should first meet the min_sup and then meet local_min_sup and total_min_sup. Let us discuss the relationship in three steps.

In the first step, we analyze the result set of complete contiguous patterns. When min_sup is \(100 \%\) and \(50 \%\), the length distribution of patterns is shown in Figure 14. There are 623 patterns and the length of pattern is from 1 to 7 when min_sup is \(100 \%\). When min_sup is \(50 \%\)
there are 3593 patterns and the length of pattern is from 1 to 11 .

Figure 15 -a shows the numbers of total patterns when min sup is \(100 \%\) and \(50 \%\). The total minimum support threshold is from 50 to 90 . In this figure, the first value ' 255 ' is the number of total frequent pattern when min_sup \(=100 \%\) (the minimum support number is 7) and total_min_sup \(=50\). Specifically, 255 patterns appear more than 50 times in dataset \(S\) and appear in all sequences in \(S\). The second value ' 271 ' is the number of total pattern when min_sup= \(50 \%\) and total_min_sup \(=50\). It means that 271 patterns appear more than 50 times in dataset \(S\) and appear in 4 different sequences in \(S\).


Figure 14. Length distribution of complete patterns.

b) The number of local patterns in each sequence with different local_min_sup.

Figure 15. Number of total and local sequential patterns.
When min_sup is \(100 \%\), the numbers of local patterns are shown in Figure 15-b. The value of the abscissa is the sequence id. There are 5 broken lines in the figure which are the values of different local minimum supports. The local_min_sup is from 10 to 50 . The value ' 122 ' on the second line means 122 patterns appear more than 20 times in sequence \(s_{0}\) and appear in all sequences in \(S\). The number of local pattern in sequence \(s_{0}\) is shown in Figure 16. The first value ' 248 ' in this figure means 248 local patterns which appear more than 50 times in sequence \(s_{0}\) when min_sup \(=100 \%\). The second value ' 266 ' means 266 local patterns which appear more than 50 times in sequence \(s_{0}\) and all these patterns appear in different 4 sequences in \(S\).


Figure 16. Number of local pattern of sequence \(s_{0}\).
It is concluded that there is a little difference existed in numbers of total complete patterns with various min_sup. But, disparity in numbers of local complete patterns with various min_sup is increasing when local_min_sup is increasing.

In the second step, we analyze the result sets of closed contiguous patterns. When min_sup is \(100 \%\) or \(50 \%\), the distribution of different length closed patterns is shown in Figure 17. There are 267 patterns and length of them is from 1 to 7 when min_sup is \(100 \%\). When min_sup is \(50 \%\) there are 2103 patterns and length of that is from 1 to 11. It is clear that value 2103 (number of closed pattern) is much less than 3593 (number of complete pattern).


Figure 17. Number of different length closed sequential patterns.
The numbers of total closed patterns are shown in Figure 18-a. Total minimum support threshold is from 10 to 50 which are lower than 50 to 90 (total_min_sup in mining complete patterns). The reason is that when total_min_sup number is 50 , there are 255 complete patterns and only 7 closed patterns. Therefore, we choose the threshold from 10 to 50 . In this figure, the first value ' 249 ' is the number of total closed pattern when min_sup \(=100 \%\) and total_min_sup \(=10\). It means 249 patterns appear more than 10 times in dataset \(S\) and appear in all sequences in \(S\). The second value ' 614 ' is the number of total patterns when min_sup \(=50 \%\) and total_min_sup=10. It is clear that, there is a large difference in the number of total pattern with two min_sup values. But, when total_min_sup number is 20 to 50 , it is a little difference in these two min_sup values.

Figure 18-b shows the numbers of closed local pattern in each sequence when min_sup \(=100 \%\). The value of the abscissa is the sequence id. There are 5 broken lines in the figure which are the values of different local minimum supports. The local_min_sup is from 6 to 10 which are lower than 10 to 50 as shown in Figure 15-b. Because when local_min_sup is 10 , there are 8 closed local patterns much lower than 198
complete local patterns on average of all sequences. In Figure 18 -b, the last value ' 25 ' means that 25 closed local patterns appear more than 6 times in sequence \(s_{6}\) and appear in all sequences in \(S\).

The comparison between number of local pattern with min_sup \(50 \%\) and with \(100 \%\) in sequence \(s_{0}\) is shown in Figure 19. The first value ' 56 ' means 56 closed local patterns appear more than 6 times in sequence \(s_{0}\) and appear in 7 sequences in \(S\). The second value ' 75 ' means 75 closed local patterns appear more than 6 times in sequence \(s_{0}\) and all these patterns appear in different 4 sequences in \(S\). From Figure 19, it is clear that the difference in two min_sup values is small when local_min_sup is higher than 8 .

b) The number of local closed patterns in each sequences with different local_min_sup.

Figure 18. Number of total and local closed sequential patterns.


Figure 19. The closed local frequent pattern numbers of sequence \(s_{0}\).

The last step compares the result sets of complete and closed patterns. Figure 20 -a shows the numbers of total patterns and Figure 20-b shows the numbers of local pattern in different sequences. It is clear that the closed total pattern number and closed local number are much lower than complete pattern numbers.

a) The comparison of complete total patterns and closed total patterns.

b) The comparison of comlete and closed local patters in each sequence.

Figure 20. The comparison of complete and closed patterns in the same dataset.

From Figures 14 to 20, we concluded that:
1. Number of closed frequent patterns is lower than number of complete frequent patterns. About 43\% complete patterns, \(90 \%\) complete total patterns and \(70 \%\) complete local patterns (with local_min_sup \(=10\) ) are compressed on average.
2. Each total pattern and local pattern should meet two supports: min_sup and total_min_sup (or local_ min_sup). They should first satisfy minimum support and then satisfy total or local minimum support.
3. Numbers of total or local patterns are decreasing with increasing min_sup. The difference in numbers of complete total patterns is little with various min_sup. But, the difference in numbers of complete local patterns with various min_sup is increasing with the growth of local_min_sup.
4. There are only 7 sequences in dataset \(S\), but many patterns appear more than 100 times in \(S\) and appear more than 60 times in one sequence. Therefore, these patterns should be mined out and analyzed.

Now, we analyze the results about multi-supports sequential patterns. When min_sup \(=100 \%\) there are 623 complete contiguous patterns and 267 closed contiguous patterns. It is clear that closed patterns are much compressed than complete patterns.

Supposed min_sup number is 7 (100\%) and total_min_sup is 50 seven total sequential patterns are mined as shown in Table 6. There are 7 patterns: 5 lentgh-4 patterns and 2 length- 5 patterns. Pattern (tatt) appears 76 times in 7 DNA sequences. In details, it appears 19 times in sequence U14658, 15 times in sequence U03911, 14 times in sequence U07418, 14 times in sequence U07343, 6 times in sequence U27467, 7 times in sequence U04045 and 1 time in U34880. Because (tatt) appears 14 times in U07343 and U07418, the relationship between these two sequences may be closer than that with others.

From the results of MCCPM, we can also get the local patterns in one sequence. For example, when min_sup \(=100 \%\) and local_min_sup \((\mathrm{U} 14658)=13\), there are -8 local patterns in \(\bar{U} 14 \overline{6} 58\) as shown in Table 7. Pattern (tatt) appears 19 times and location_id \(=\{2036\), 2651, 401, 2946, 2978, 911, 772, 1294, 1900, 2835, 1952, \(1563,354,2866,1751,2936,2876,2846,2570\}\).

Table 6. Patterns of total supports higher than 50.
\begin{tabular}{|c|c|c|}
\hline Closed Pattern & Support & Total support \\
\hline gect & 7 & 72 \\
\hline tact & 7 & 52 \\
\hline tatt & 7 & 76 \\
\hline ttat & 7 & 55 \\
\hline aaaaa & 7 & 54 \\
\hline aatc & 7 & 62 \\
\hline agatg & 7 & 50 \\
\hline
\end{tabular}

Table 7. Part of local patterns in sequence U 14658.
\begin{tabular}{|c|c|c|l|}
\hline \begin{tabular}{c} 
Closed \\
Pattern
\end{tabular} & Support & \begin{tabular}{c} 
Local \\
Support
\end{tabular} & \multicolumn{1}{|c|}{ Location < Sequence_Id, Location_Id> } \\
\hline tatt & 7 & 19 & \begin{tabular}{l}
\(<U 14658,\{2036,2651,401,2946,2978,911,772,1294,1900\), \\
\(2835,1952,1563,354,2866,1751,2936,2876,2846,2570\}>\)
\end{tabular} \\
\hline ttac & 7 & 13 & \begin{tabular}{l}
\(<U 14658,\{2002,1128,2950,1565,1203,1321,2797,603\), \\
\(1140,2362,2689,1214,1654\}>\)
\end{tabular} \\
\hline ttat & 7 & 13 & \begin{tabular}{l}
\(<U 14658,\{713,1252,3053,308,2444,1951,2863,2650,2977\), \\
\(1897,1293,840,2873\}>\)
\end{tabular} \\
\hline aaaaa & 7 & 13 & \begin{tabular}{l}
\(<U 14658,\{685,744,1975,684,1611,2985,683,2645,2644\), \\
\(2807,1267,1591,1695\}>\)
\end{tabular} \\
\hline aatc & 7 & 16 & \begin{tabular}{l}
\(<U 14658,\{821,2810,2777,789,1431,2237,2578,381,558\), \\
\(2376,1236,259,222,2397,2026,3063\}>\)
\end{tabular} \\
\hline aaga & 7 & 13 & \begin{tabular}{l}
\(<U 14658,\{1135,1936,955,2224,2319,1978,2970,2932\), \\
\(1207,1473,397,1105,271\}>\)
\end{tabular} \\
\hline atga & 7 & 13 & \begin{tabular}{l}
\(<U 14658,\{1939,1711,1399,2773,2825,1681,2356,249\), \\
\(2245,900,759,1455,1273\}>\)
\end{tabular} \\
\hline agtt & 7 & 13 & \begin{tabular}{l}
\(<U 14658,\{305,2475,1304,826,2859,865,800,2560,3071\), \\
\(1348,1180,391,1555\}>\)
\end{tabular} \\
\hline
\end{tabular}

\section*{6. Conclusions}

Most of the previous work focuses on mining discontinuous closed sequential patterns. Some dataset, such as biological sequence analysis needs contiguous patterns. In order to mine contiguous and efficient sequential patterns, a novel algorithm, called Multi-supports-based and Contiguous Closed Pattern Mining (MCCPM) is proposed. It is based on multi-supports and used to mine contiguous closed pattern in high dimensional datasets.

There are three kinds of contiguous closed patterns: sequential patterns, local sequential patterns and total sequential patterns. These patterns correspond to three subsequence supports: support, local support and total support. The support \((X)\) ( \(X\) is a subsequence) is the number of sequences in the dataset containing \(x\). If support \((X) \geq\) min_sup, then \(X\) is a sequential pattern. The local_support \((X, Y)\) ( \(Y\) is a sequence) is the number of tuples in sequence \(Y\) containing \(X\). If local_support \((X\), \(Y) \geq\) local_min_sup \((Y)\), then \(X\) is a local sequential pattern in sequence \(Y\). The total_support \((X)\) is the sum number of local_ support \((X, Y)\). If total_support \((X) \geq\) total_min_sup, then \(X\) is a total sequential pattern.

There are many interesting issues that need to be studied in the future, such as mining sequential patterns with constraints [4, 7, 12], mining closed gapped sub-sequences \([5,10]\) and so on.

\section*{References}
[1] Alves R., Baena D., and Ruiz J., "Gene Association Analysis: A Survey of Frequent Pattern Mining from Gene Expression Data," Briefings in Bioinformatics, vol. 11, no. 2, pp. 210-224, 2009.
[2] Chen Y., Peng W., and Lee S., "CEMiner-an Efficient Algorithm for mining Closed Patterns from Time Interval-Based Data," in Proceedings of the \(11^{\text {th }}\) IEEE International Conference on

Data Mining, Vancouver, Canada, pp. 121-130, 2011.
[3] Exarchos T., Papaloukas C., Lampros C., and Fotiadis D., "Mining Sequential Patterns for Protein Fold Recognition," the Journal of Biomedical Informatics, vol. 41, no. 1, pp. 165179, 2008.
[4] Ferreira P. and Azevedo P., "Protein Sequence Pattern Mining with Constraints," in Proceedings of the \(9^{\text {th }}\) European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, pp. 96-107, 2005.
[5] Fournier-Viger P., Nkambou R., and Nguifo E., "A Knowledge Discovery Framework for Learning Task Models from User Interactions in intelligent Tutoring Systems," in Proceedings of the \(7^{\text {th }}\) Mexican International Conference on Artificial Intelligence, Zaragoza, Mexico, pp. 765778, 2008.
[6] Han J., Cheng H., Xin D., and Yan X., "Frequent Pattern Mining: Current Status and Future Directions," Data Mining and Knowledge Discovery, vol. 15, no. 1, pp. 55-86, 2007.
[7] He D., Zhu X., and Wu X., "Mining Approximate Repeating Patterns from Sequence Data with Gap Constraints," Computational Intelligence, vol. 27, no. 3, pp. 336-362, 2011.
[8] Hsu C., Chen C., and Liu B., "WildSpan: Mining Structured Motifs from Protein Sequences," Algorithms for Molecular Biology, vol. 6, no. 1, pp. 1-16, 2011.
[9] Karim M., Rashid M., Jeong B., and Choi H., "An Efficient Approach to Mining Maximal Contiguous Frequent Patterns from large DNA Sequence Databases," Genomics and Informatics, vol. 10, no. 1, pp. 51-57, 2012.
[10] Lavanya B. and Murugan A., "A DNA Based Approach to Find Closed Repetitive Gapped Subsequences from A Sequence Database," International Journal of Computer Applications, vol. 29, no. 5, pp. 45-49, 2011.
[11] Liu H., Lin F., He J., and Cai Y., "New Approach for the Sequential Pattern Mining of HighDimensional Sequence Databases," Decision Support Systems, vol. 50, no. 1, pp. 270-280, 2010.
[12] Mallick B., Garg D., and Grover P., "ConstraintBased Sequential Pattern Mining: A Pattern Growth Algorithm Incorporating Compactness, Length and monetary," the International Arab Journal of Information Technology, vol. 11, no. 1, pp. 1-11, 2014.
[13] Pei J., Jiawei H., Han J., Mortazavi-Asl B, Pinto H., Chen Q., Dayal U., and Hsu M., "Mining Sequential Patterns by Pattern-Growth: The prefixspan Approach," IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 11, pp. 1-17, 2004.
[14] Sohrabi M. and Barforoush A., "Efficient Colossal Pattern Mining in High Dimensional Datasets," available at: http://www. sciencedirect.com/science/article/pii/S09507051 12000597, last visited 2012.
[15] Wang J., Han J., and Chun Li., "Frequent Closed Sequence Mining without Candidate Maintenance," IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 8, pp. 1042-1056, 2007.
[16] Wang K., Xu Y., and Yu J., "Scalable Sequential Pattern Mining For Biological Sequences," in Proceedings of the \(13^{\text {th }}\) ACM International Conference on Information and Knowledge Management, New York, USA, pp. 178-187, 2004.
[17] Xiong Y. and Zhu Y., "BioPM: An Efficient Algorithm for Protein Motif Mining," in Proceedings of the \(1^{\text {st }}\) International Conference on Bioinformatics and Bio-Medical Engineering, Wuhan, China, pp. 394-397, 2007.
[18] Xiong Y., "TOPPER: An Algorithm for Mining Top K Patterns In Biological Sequences Based On Regularity Measurement," in Proceedings of IEEE International Conference on Bioinformatics and Biomedicine Workshops, HongKong, China, pp. 283-288, 2010.


Meng Han is received the MS degree in computer science from Beijing Jiaotong University, in 2008. She is now an Associate Professor at Beifang University of Nationalities in China and studies her PhD at Beijing JiaoTong Univeristy. Her research interests include data mining and machine learning.


Zhihai Wang is received the Doctor's degree in computer application from HeFei University of Technology in 1998. He is now a Professor in School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China. He has published dozens of papers in international conferences and journals. His research interest includes data mining and artificial intelligence.


Jidong Yuan is currently a candidate of PhD student in Beijing Jiaotong University (Beijing, China). His research interests include machine learning and data mining.```


[^0]:    *Project supported by Science Foundation of State Nationalities Affairs Commission (No. 14BFZ008) and Scientific Research Funds for the Ningxia Universities (No. NGY2013094).

