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Abstract: The Elgamal encryption scheme is best described in the setting of any finite cyclic group. Its classic case is typically 

presented in the multiplicative group *
pZ  of the ring of integers modulo a prime p and the multiplicative groups *

2mF  of finite 

fields of characteristic two. The Elgamal cryptosystem was modified to deal with Gaussian integers, and extended to work with 

group of units of Zp[x]/<x
2
>. In this paper, we consider yet another extension to the Elgamal cryptosystem employing the 

second group of units of Zn and the second group of units of Z2[x]/<h(x)>, where h(x) is an irreducible polynomial. We 

describe the arithmetic needed in the new setting, and present examples, proofs and algorithms to illustrate the applicability of 

the proposed scheme. We implement our algorithms and conduct testing to evaluate the accuracy, efficiency and security of the 

modified cryptographic scheme. 
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1. Introduction 

The Classical Elgamal Public Key encryption scheme 

is perhaps one of the most popular and widely used 

cryptosystems. It is described in the setting of the 

multiplicative group *
pZ . The multiplicative group of 

*
pZ  = {1, 2, ..., p-1} is a cyclic group generated by a 

generator from the group [9]. The following algorithms 

show how the Elgamal cryptosystem functions: 

Algorithm 1: Key Generation 

A should do the following: 

1. Generate a large random prime p and find the generator 

α of *
pZ . 

2. Select a random integer a, 1 ≤ a ≤ p−2 and compute α
a 

mod p. 

3. A's public key is (p, α, α
a
) and A's private key is a. 

Algorithm 2: Encryption 

B should do the following: 

1. Obtain A's authentic public key (p, α, α
a
). 

2. Represent the message as an integer m in the range {0, 1, 

2, …, p−1}. 

3. Select a random integer k, where 2 ≤ k ≤ p−2. 

4. Compute 
kαγ ≡ mod p and 

kam ).(αδ ≡ mod p.  

5. Send the ciphertext c = (γ, δ) to A. 

Algorithm 3: Decryption 

A should do the following: 

1. Use the private key a to compute γ1−p−a 
mod p.  

2. Compute 
ac .γ δ−≡  mod p to recover the message m. 

 

However, the Elgamal cryptosystem can be 

generalized to work in any finite cyclic group G. 

The security of the scheme is based on the 

intractability of the Discrete Logarithm Problem 

[12] in the group G. G should be carefully chosen 

so that the group operations in G would be 

relatively easy to apply for efficiency. Moreover, 

the Discrete Logarithm Problem in G should be 

computationally infeasible. 

Cross [3] gave a classification of all Gaussian 

integers β such that the group of units of the 

quotient ring Z[i]/<β> is cyclic. So, one may 

consider Elgamal public-key cryptosystem using 

the cyclic group of units of Z[i]/<β>, where β = 

1+i, (1+i)², (1+i)³, p, (1+i) p, πⁿ, (1+i) πⁿ, p is a 

prime integer of the form 4k+3, and π is a 

Gaussian prime with |π|
2
 is a prime integer of the 

form 4k+1.  

In [6], the authors described the second group 

of units of Zn, denoted by U
2
(Zn), and 

characterized the cases for n that make U
2
(Zn) 

cyclic. They applied the Elgamal scheme in 

U
2
(Zn)  (in the cases where it is cyclic). 

The authors in [10] determined the structure of 

the group of units of the quotient ring 

Fq[x]/<f(x)>, where f(x) is a polynomial over a 

finite field Fq of order q. Using this 

decomposition, a characterization of the quotient 

ring of polynomials over finite fields with cyclic 

group of units was given. In [8], this 

classification was applied to extend Elgamal 

scheme to the settings of the group of units of 

Zp[x]/<x
2
> and Z2[x]/<h(x)>, where h(x) is a 
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product of irreducible polynomials whose 

degrees are pairwise relatively prime. 

The purpose of this paper is to use the 

characterization of the quotient ring of 

polynomials over finite fields and the 

characterization of the second group of units in 

order to apply the Elgamal scheme in the second 

group of units of Z2[x]/<h(x)>, where h(x) is an 

irreducible polynomial of degree n. 

The rest of the paper is organized follows: Section 2 

summarizes the second group of units of Zn and 

describes the construction of U
2
(Zn). In section 3, the 

construction of the second group of units of 

Z2[x]/<h(x)>, where h(x) is an irreducible polynomial, 

is illustrated. Section 4 investigates the Elgamal 

scheme in this setting. Section 5 tests and evaluates the 

modified algorithms. Finally, section 6 concludes the 

paper. 

 

2. The Elgamal Cryptosystem over the 

Second Group of Units of Zn 

Before discussing the extended Elgamal 

cryptosystem, we present the following theorems 

and definitions that are necessary for our work. 

• Theorem 1: Fundamental Theorem of Abelian 

Groups, every finite Abelian group is a direct 

product of cyclic groups of prime power order 

[1]. 

Let R be a finite commutative ring with 

identity. By the fundamental theorem of finite 

Abelian groups, the group of units, U(R), is 

isomorphic to the direct product of cyclic 

groups, say U(R)≅Zn1×Zn2×…×Zni. Hence, the 

multiplicative group U(R) supports a ring 

structure by defining the operations ⊕ and ⊗ 

that make (U(R), ⊕, ⊗) a ring isomorphic to 

the direct sum Zn1⊕Zn2⊕…⊕Zni. The ring 

Zn1⊕Zn2⊕…⊕Zni is denoted as R
2
. 

• Definition 1: The second group of units of R is 

defined as the group of units of the ring U(R) 

[6]: U
2
(R) = U(U(R)) ≅ U (R

2
). 

The authors considered the problem of 

determining the values of n that make U
2
(Zn) 

cyclic. The result was as follows: 

• Theorem 2: Let p and q be odd prime integers and α 

be a positive integer. Then, U
2
(Zn) is cyclic iff one 

of the following is true: 

1. n = 2
α
.3.p, where α = 1, 2 or 3.  

2. n = 15. 

3. n = 3.p, where p = 4k+3 and 2k+1 = q
α
.  

4. n = 2.3
α
, 2

2
.3

α
, 2

3
.3

α
 or 2

4
.3.    

5. n = 2 , 4, 8, or 16. 

6. n = 5 or 2p
α
 +1 , where 2p

α
 +1 is a prime integer. 

7. n = 3
α
. 

The results can be classified into two cases: 

• Case 1: Both U(Zn) and U
2
(Zn) are cyclic, as 

known U(Zn) is cyclic when n = 2, 4, p
α
 or 2p

α
, 

where α ≥ 1 and p is an odd prime integer. So 

out of the previous seven cases for n, only the 

following belong to case 1: 

1. n = 2.3
α
, since n is in the form of 2p

α
.
 
 

2. n = 2 or 4. 

3. n = 5 or 2p
α
+1, where 2p

α
 +1 is a prime 

integer. 

4. n = 3
α
,
 
since n is a power of an odd prime. 

• Case 2: U
2
(Zn) is cyclic, whereas U(Zn) is not 

cyclic, 

1. n = 2
α
.3.p , where α = 1, 2 or 3.  

2. n = 15. 

3. n = 3.p, where p = 4k+3 and 2k+1 = q
α
. 

4. n = 2
2
.3

α
, 2

3
.3

α
 or 2

4
.3. 

5. n = 8, or 16. 

To construct the second group of units U
2
(Zn), we 

follow these steps: 

1. Form the group of units U(Zn) = {a∈Zn: gcd(a,n) = 

1}. The order of U(Zn) is ϕ(n). 

2. Find a generator r of U(Zn). 

3. Write U(Zn) in the form {r
0
, r

1
, …, r

ϕ(n)−1
}. 

4. Find U
2
(Zn) = {r

i  
mod n: gcd(i, ϕ(n)) = 1}. 

Note that the order of U
2
(Zn) is ϕ(ϕ(n)). 

For example, let n = 23. Then U(Z23) = {1, 2, 3, …, 

22} and ϕ(23) = 22. A generator of U(Z23)  is r = 5 as 

shown in Table 1. 
 

Table 1. Elements of U(Z23). 

U(Z23) 1 2 3 4 5 6 7 8 9 10 11 

5i 50 52 516 54 51 518 519 56 510 53 59 

 

U(Z23) 12 13 14 15 16 17 18 19 20 21 22 

5i 520 514 521 517 58 57 512 515 55 513 511 

 

U2(Z23)  = {5i : gcd(i, 22) = 1} 

= {51, 519, 53, 59, 521, 517, 57, 515, 55, 513}. 

Reducing the powers modulo 23, we have:  

U
2
(Z23) = {5, 10, 20, 17, 11, 21, 19, 15, 7,14}. 

The order of U
2
(Z23) is ϕ(ϕ(23)) = 10.  

The operations of the ring (U(Zn), . , ⊗) are  defined as 

follows [4]: 

1. Addition operation:  x.y = xy mod n. 

2. Multiplication operation: x⊗y= )(mod
log

nx
yr , where 

r is the generator of U(Zn).  

3. The power operation: Let θ be an element of U
2
(Zn) 

such that θ = r
k
 and r is a generator of U(Zn). Then 

N
kN r)(=θ . 
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The identity of the second group of units of Zn is r, 

where r is the generator of U(Zn). 

For the construction of U
2
(Zn) in case 2, consider: 

• Lemma 1: Let n and m be any two positive integers, 

then Zmn ≅ Zm ×Zn iff gcd(m,n) = 1.  

Hence, for n = n1. n2… ni, Zn ≅ 1nZ ×
2nZ ×…×

inZ iff 

n1, n2, …, ni are pairwise relatively prime. 

• Lemma 2:  

1. U(Z2) ≅{0}. 

2. U(Z4) ≅ Z2. 

3. 2222
)( −⊕≅ kk ZZZU , for k ≥ 3. 

4. 11)( −⊕≅ − ppp
ZZZU nn , where p is an odd prime. 

• Theorem 3: If R = R1⊕ R2⊕…⊕ Ri, then U(R) ≅ 

U(R1)× U(R2)×…×U(Ri). 

For the case where n = 3p, 

U(Zn) ≅ U(Z3)× U(Zp) ≅ Z2×Zp−1.  

Hence, R
2
 = Z2⊕Zp−1 and  

 U
2
(R) ≅ U(R

2
) = U(Z2⊕Zp−1)  

          ≅ U(Z2)× U(Zp−1) ≅ U(Zp−1). 

• Definition 2: (Isomorphism Functions) 

1. The function f: U(Zmn)→U(Zm)×U(Zn) defined by 

f(a) = (a mod m, a mod n), for all a ∈ U(Zmn),       

is an isomorphism whenever (m,n) =1.   

2. The function f1: U(Zn)→ Zϕ(n) defined by                

f1(a) = logr a mod n, for all a ∈ Zϕ(n), is an 

isomorphism whenever U(Zn) is a cyclic and  r is 

a generator of U(Zn).  
 

The group U
2
(Zn) can be constructed as follows: 

 

1. Construct U(Zn), U(Z3) and U(Zp). 

2. Find G = { (a (mod 3), a (mod p)) : a∈U(Zn). 

3. Find a generator r of U(Z3) and a generator r1 of 

U(Zp). 

4. Write G in the form:  

   ( ){ }tt 1r (mod 3 ), r (mod p ) : 0 t 1 and 0 t p 21 1≤ ≤ ≤ ≤ −  . 

5. Form the set Z2⊕Zp−1 = {(t, t1)} and find G1, the 

set of its invertible elements. Note that (a, b) is 

invertible in Z2⊕Zp−1 iff a = 1 (invertible in Z2) 

and b is invertible in Zp−1. 

6. U
2
(Zn) is the set of elements in U

2
(Zn) 

corresponding to elements in G1. 
 

For example, let p = 11. Then, U(Z33) ≅U(Z3)×U(Z11) ≅ 

Z2⊕Zp−1, where U(Z33) =  {1, 2, 4, 5, 7, 8, 10, 13, 14, 

16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32}. Now, U(Z11) 

=  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has 2 as a generator. 

Similarly, 2 is a generator for U(Z3) = {1, 2}. The 

isomorphism between U(Z33), U(Z3)×U(Z11) and 

Z2⊕Z10 is  depicted in Table 2. The invertible elements 

in Z2⊕Z10 are:  {(1,1), (1,3), (1,9), (1,7)}. Then, U
2
(Z33) 

={2, 8, 17, 29}. 

Define the operations on U
2
(Zn) as follows. 

Multiplication in (U
2
(Zn), •) is defined by a•b = 

f
−1

(f(a)⊗f(b)),  

where f is the isomorphism f: U(Zn)→U(Z3)×U(Zp) in 

Definition 2, and  

    f(a)⊗f(b) = (a mod 3, a mod p)⊗(b mod 3, b mod p) 

= ((a mod 3)⊗3(b mod 3), (a mod p)⊗p (b mod p)), x⊗3y = 

xlog
r
y and x⊗py = xlog

r1
y. 

Let a ∈ U
2
(Zn) and let N  be positive integer. Then, 

).,( 1
1

1
NN ttN

rrfa
−= The identity of U

2
(Zn) is the 

element a  = f
−1

(r, r1). 
 

Table 2. Isomorphism between U(Z33) and U(Z3)×U(Z11). 

U(Z33) 
U(Z3) 

××××U(Z11) 
( ) Z2⊕⊕⊕⊕Z10 U(Z33) 

U(Z3) 

××××U(Z11) 
Z2⊕⊕⊕⊕Z10 

1 (1,1) (20,20) (0,0) 17 (2,6) (1,9) 

2 (2,2) (21,21) (1,1) 19 (1,8) (0,3) 

4 (1,4) (20,22) (0,2) 20 (2,9) (1,6) 

5 (2,5) (21,24) (1,4) 23 (2,1) (1,0) 

7 (1,7) (20,27) (0,7) 25 (1,3) (0,8) 

8 (2,8) (21,23) (1,3) 26 (2,4) (1,2) 

10 (1,10) (20,25) (0,5) 28 (1,6) (0,9) 

13 (1,2) (20,21) (0,1) 29 (2,7) (1,7) 

14 (2,3) (21,28) (1,8) 31 (1,9) (0,6) 

16 (1,5) (20,24) (0,4) 32 (2,10) (1,5) 

2.1. Elgamal Cryptosystem over U
2
(Zn) for 

Case 1. 

Algorithm 4: Generator of U
2
(Zn)  

1. Find a generator θ1 of U(Zn). 

2. Write the order of U
2
(Zn) as ..... 21

21
i

ippp
ααα  

3. Select a random integer s, 0 ≤ s ≤ ϕ(n)−1, (s , ϕ(n)) = 1.  

4. For j = 1 to i, do: 

4.1. Compute .mod1 njpN
θ   

4.2. If ,1mod1
)(

θθ =njpNs
then go to step 3. 

5. Return s. 

For key generation, entity A does the following: 

Algorithm 5: Key Generation   

1. Find a generator θ1 of U(Zn). 

2. Find s using Algorithm 1. 

3. Compute the order of U
2
(Zn) using ϕ(ϕ(n)). 

4. Select a random integer a, 2 ≤ a ≤ϕ(ϕ(n))−1, and  

compute f = s
a
(mod ϕ(n)).    

5. A’s public key is (n, θ1, s, f) and A’s private key is a.   

B encrypts a message m for A using the algorithm 

below: 

Algorithm 6: Encryption  

1. B obtains A’s authentic public key (n, θ1, s, f).  

2. Represent the message as an integer in U
2
(Zn).  

3. Select a random integer k, 2 ≤ k ≤ ϕ(ϕ(n))−1. 

4. Compute q = s
k
(mod ϕ(n)), r = f

k
(mod ϕ(n)), γ = θk 

= θ1
q
 

(mod n) and δ ≡ m
r
 (mod n). 

5. Send the ciphertext c = (q, δ) to A.   

To recover the plaintext m from c, A should do the 

following: 
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Algorithm 7: Decryption  

1. Use the private key a to compute b = ϕ(ϕ(n)) − a. 

2. Recover the message by computing t = q
b
(mod ϕ(n)) and 

δ 
t
 (mod n).  

Theorem 4 proves that the formula γ−a
.δ (mod n) 

allows the recovery of the message m. The proof is for 

case 1. 

• Theorem 4: Given a generator θ of U
2
(Zn) such that 

θ =θ1
s
, where θ1 is a generator of U(Zn). Let γ ≡ θ 

r
(mod n) and δ ≡ m.(θ 

a
)

k
 (mod n). If s ∈ U

2
(Zn) such 

that: s ≡ γ−a
. δ (mod n), then s = m. 

For example, consider the case where n = 3
3
.
 
Select the 

generators θ1 = 5 and θ = 2 so that s = 11. Entity A 

selects a = 3 and calculates s
a
 = 2

3
 ≡ (5

11
)

3
 ≡ 11 (mod 

27) and f=11
3 ≡ 17 (mod ϕ(27)). A’s public key is 

(n=27, θ1=5, s=11, f=17). To encrypt m = 5, B selects 

an integer k = 4 and finds q = s
k 
= 11

4 ≡ 7 (mod ϕ(27)), 

r = f
k 
= 17

4 ≡ 1 (mod ϕ(27)), and δ ≡ 5
r
 = 5 (mod 27). B 

sends (s
k 

= 7, δ = 5) to A. Finally, A computes b = 

ϕ(ϕ(n)) − a = 2 and t = q
b
(mod ϕ(n)) =1. Then A finds 

δ 
t
 = 5

1
 (mod 27) = 5 = m.  

2.2. Elgamal Cryptosystem over U
2
(Zn)) for 

Case 2 

Algorithm 8: Generator of U
2
(Z3p)  

1. Find a generator θ1 of U(Zn). 

2. Write the order of U
2
(Zn) as ϕ(ϕ(n)) = ..... 21

21
i

ippp
ααα  

3. Select a random integer s, 0 ≤ s ≤ ϕ(p)−1, (s , ϕ(p)) = 1.  

4. For j = 1 to i, do: 

4.1 Compute .mod1 pjpN
θ   

4.2 If ,1mod1
)(

θθ =pjpNs then go to step 3. 

5. Use the Chinese Remainder Theorem to find θ, and s by 

solving the system of congruencies: x ≡ 2 (mod 3) and x ≡ 

θ1
s
 (mod p). 

6. Return s. 

To generate the key when n =3.p, A uses the following: 

Algorithm 9: Key Generation   

1. Find a generator θ1 of U(Zn). 

2. Find s using Algorithm 1. 

3. Compute the order of U
2
(Zn) using ϕ(ϕ(p)). 

4. Select a random integer a, 2 ≤ a ≤ϕ(ϕ(p))−1, and  

compute f = s
a
(mod ϕ(n)).    

5. A’s public key is (n, θ1, s, f) and A’s private key is a.   

B encrypts a message m for A using the algorithm 

below: 

Algorithm 10: Encryption 

1. B obtains A’s authentic public key (n, θ1, s, f).  

2. Represent the message as an integer in U
2
(Zp).  

3. Select a random integer k, 2 ≤ k ≤ ϕ(ϕ(p))−1.  

4. Compute q = s
k
(mod ϕ(n)), r = f

k
(mod ϕ(p)), γ = θk 

= θ1
q
 

(mod n) and δ ≡ m
r
 (mod n). 

5. Send the ciphertext c = (q, δ) to A.   

To recover the plaintext m from c, A should do the 

following: 

Algorithm 11 (Decryption) 

1. Use the private key a to compute b = ϕ(ϕ(p)) − a. 

2. Recover the message by computing t  = q
b
(mod ϕ(p)) and 

δ 
t
 (mod p).  

• Theorem 5: Let n =3.p and let θ  be a generator of 

U
2
(Zn) such that θ = (2, θ1

s
), where θ1 is a the 

generator of U(Zp). Let m∈U(Zp). Let γ ≡ θ 
r
(mod n) 

and δ ≡ m.(θ 
a
)

k
 (mod n). If s ∈ U(Zp) such that s ≡ 

γ−a
.δ (mod n), then s = m. 

For example, let p = 11. Then, ϕ(n) = 20, θ = 29 is a 

generator of U
2
(Z33), θ1 = 2 is a generator of U (Z11) 

with s = 7. If A uses a = 3, then f = s
a
 = 7

3 ≡ 3 (mod 

ϕ(11)). A’s public key is (p=11, θ1=2, s=7, f=3). To 

encrypt the message m = 5, B selects a random integer 

k = 2 and finds s
k 

= 7
2 ≡ 9 (mod ϕ(11)), γ ≡ (2, 

ks1θ mod 11) = (2,6), and δ≡5.(2,6). Finally, A 

computes b = 1 and γ1
.δ ≡ (2,6).5.(2,6) ≡ 5.(2,2

9
.2

9
) ≡ 

5.(2,2) ≡ 5.   

3. Elgamal Cryptosystem over 

U
2
(Z2[x]/<h(x)>)   

Let h(x) be an irreducible polynomial of degree n. 

Then, Z2[x]/<h(x)> = {a0+a1x+…+an−1x
n−1

: a0, …, 

an−1∈ Z2} is a field. The order of Z2[x]/<h(x)> is 2
n
 and 

its non-zero elements form a cyclic group 

U(Z2[x]/<h(x)>) of order ϕ(h(x)) = 2
n−1, see [7] for 

more details. 

• Theorem 6: U
2
(Z2[x]/<h(x)>) is cyclic iff one of the 

following conditions is satisfied: 

1. 2
n
 = q

α
+1 where q is an odd prime and α > 0. 

2. 2
n
 = q+1, where q is a Mersenne prime [2]. 

To construct U
2
(Z2[x]/<h(x)>): 

1. Find a generator r of the group of units 

U(Z2[x]/<h(x)>) 

2. Write U (Z2[x]/<h(x)>) ={r
0
, r

1
,… r

 ϕ(h(x)) −1
}.  

3. Find U
2
(Z2[x]/<h(x)>) = {r

i 
: gcd(i, 2

n
 −1) = 1}. 

4. Write U
2
(Z2[x]/<h(x)>) = {x : x ≡ r 

i 
mod h(x)}. 

For example, let h(x) = 1+ x + x
3
. Then, Z2[x]/<1+ x + 

x
3
>= {0, 1, x, 1+ x, x

2
, 1+ x

2
, x+ x

2
, 1+x+x

2
}, and 

U(Z2[x]/<h(x)>) = {1, x, 1+ x, x
2
, 1+ x

2
, x+x

2
, 1+x+x

2
}. 

Using the fact that 1+x+x
3
 = 0 in Z2[x]/<1+x+x

3
>, we 

have 1 = (1+x)
0
, 1+x = (1+x)

1
, 1+x

2
 = (1+x)

2
, x

2
 = 

(1+x)
3
, 1+x+x

2
 = (1+x)

4
, x = (1+x)

5
, x+x

2 
= (1+x)

6
, and r 

= 1+ x is a generator. Hence, U
2
(Z2[x]/<h(x)>) = {x, 1+ 

x, x
2
, 1+ x

2
, x+x

2
, 1+x+x

2
}. 

Next, the Elgamal scheme is extended to the setting of 

the second group of units of U
2
(Z2[x]/<h(x)>). 
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Algorithm 12: Generator of U
2
(Z2[x]/<h(x)>) 

1. Find a generator θ1(x) of U(Z2[x]/<h(x)>).  

2. Write the order of U
2
(Z2[x]/<h(x)>) as ϕ(h(x)) = 

..... 21
21

i
ippp
ααα  

3. Select a random integer s, 0 ≤ s ≤ ϕ(h(x)) − 1, such that 

(s, ϕ(h(x)) = 1.  

4. For j = 1 to i, do: 

4.1 Compute θ1(x)
N/Pj

 mod h(x). 

4.2 If 
)/(

)(1
jpN

s
xθ mod h(x) = θ1(x), then go to step 3. 

5. Return s. 

In order to generate the corresponding public and 

private keys, entity A follows the steps below: 

Algorithm 13: Key Generation 

1. Select an irreducible polynomial h(x) of degree n. 

2. Find a generator θ1(x) of U(Z2[x]/<h(x)>). 

3. Find s using Algorithm 12. 

4. Compute ϕ(ϕ(h(x))), the order of U
2
(Z2[x]/<h(x)>). 

5. Select a random integer a, 0 ≤ a ≤ ϕ(ϕ(h(x))) − 1, and 

compute f = s
a
 (mod ϕ(h(x))).  

6. A’s public key is (n, h(x), θ1(x), s, f) and A’s private key is 

a.   

B encrypts a message m(x) for A using the algorithm 

below: 

Algorithm 14: Encryption 

1. B obtains A’s authentic public key (n, h(x), θ1(x), s, f).  

2. Represent a message m(x) in U
2
(Z2[x]/<h(x)>).  

3. Select a random integer k, where 0 ≤ k ≤ ϕ(ϕ(h(x))) − 1. 

4. Compute q = s
k
 (mod ϕ(h(x))), r = s

k
 (mod ϕ(h(x))), γ(x) 

= θ(x)
k
 = θ1(x)

q
  (mod h(x)), and δ(x) = m(x)

r
 (mod h(x)). 

5. Send the ciphertext c = (q, δ(x)) to A.   

To recover m(x) from c, A should do the following: 

Algorithm 15: Decryption 

1. Use the private key a to compute b = ϕ(ϕ(h(x))) − a.  

2. Recover the message by computing t = q
b
 (mod ϕ(h(x))) 

and δ(x)
k
 (mod h(x)).  

 

• Theorem 7: Let θ(x) = θ1(x)
s
 be a generator of 

U
2
(Z2[x]/<h(x)>), where θ1(x) is the generator of 

U(Z2[x]/<h(x)>), and let γ(x) ≡ θ(x)
k
 (mod h(x)), and 

δ(x) = m(x).(θ(x)
a
)

k
 (mod h(x)).  If s(x) ∈ 

U
2
(Z2[x]/<h(x)>) such that s(x) ≡ γ(x)

−a
.δ(x)  (mod 

h(x)), then s(x) = m(x). 

For example, consider h(x) = 1+x+x
3
. A selects the 

generator θ(x) = x, θ1(x) = 1+x, s = 5 and a = 3. Then 
A computes f = s

a
 = 5

3 ≡ 5 (mod ϕ(7)). Then A's public 
key is (n = 3, h(x) = 1+x+x

3
, θ1(x) = 1+x, s = 5, f = 5). 

To encrypt the message m(x) = x
2
, B selects a random 

integer k=3 and computes, r=s
k 

=5
3 ≡5 (mod ϕ(7)), 

q=f
k
 (mod 6) ≡5, and δ(x)= m(x)

q
 (mod 1+x+x

3
) ≡ 1+x. 

B sends (r,δ(x)).   

To decrypt the message A computes b = 6 − 3 = 3 and t 

= r
b  

= 5
3
 mod 6 = 5. Finally, A computes δ(x)

t
 = 

(1+x)
3 
 (mod 1+x+x

3
) ≡ x

2
.  

4. Testing and Evaluation 

The modified Elgamal cryptosystem was tested and 

evaluated by implementing the modified algorithms. 

We used Mathematica 7.0 as a programming language 

and an HP computer with 1.73 GHZ CPU and 1014 

MB RAM.  

   Using Mathematica 7.0, we have written programs 

for the following algorithms: 

1. Elgamal with n in the form 2.3
α
. 

2. Elgamal with n in the form 4.3
α
. 

3. Elgamal with n in the form 3
α
. 

4. Elgamal with n in the form 3.p. 

5. Elgamal with n in the form 3.2
α
.p.   

6. Elgamal with n in the form 2.p
 α
+1. 

7. Elgamal over the polynomial case. 
 

After running the programs, it was clear that all the 

programs have generated a public and private key. A 

message is encrypted and is sent to a decryption 

scheme which recovered the message. 

      Table 3 and Figure 3 show the results obtained 

after running the Mathematica programs for 100 times. 

For more information on these programs, readers are 

referred to [5]. 
 

Table 4. Elgamal evaluation. 

Algorithm 
Key 

Generation 
Encryption Decryption 

n=3^a 972.158 5116.84 2801.47 

n=2.3^a 1941.4 10302.2 5669.9 

n=2p^a+1 2.4 2.35 7736.1 

n=4.3^a 2651.25 14160.9 2.13333 

n=3.p 2.3 6.81421*10^(-15) 6.81421*10^(-15) 

n=3.4.p 2.35 0.75 5.14996*10^(-15) 

Poly case 937.5 20.4 3.15 

 

 

Figure 1. Testing the modified Elgamal cryptosystems. 

 

Comparing these algorithms with one another, one can 

conclude the following: 

1. All programs are reliable. They can encrypt and 

decrypt any message. 
2. For the irreducible polynomial case, it took 

considerable time to find an irreducible polynomial 
of high degree. Moreover, it takes more time to 
generate the public and private key than to decrypt 
or encrypt a message. Finally, it takes a 
considerable time to find some of the elements of 
U(Z2[x]/<h(x)>) when the degree of h(x) is high. 

Elgamal Crypotosystems 
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3. For cases 2, 3 and 4, the time needed for encryption 

is more than that needed for generating public and 

private keys and for decryption. But it works well 

even for a=10000.   

4. Cases 5, 6 and 7 are more efficient than others since 

they work for every prime number, even for primes 

consisting of 13 digits and they require less time for 

encryption, decryption and key generation. 

5. The case where n = 3p is the most efficient since it 

takes the least time for encryption, key generation 

and decryption. 

6. In case 7, the time needed for decryption was much 

more than that needed for key generation and 

encryption. 

 

4.1. The Discrete Logarithm Problem 

The security of the El-gamal cryptosystem depends on 

the intractability of the Discrete Logarithm Problem: 

Let G be a finite cyclic group of order n. Let a be a 

generator of G, and Gβ ∈ . The Discrete Logarithm of 

β  to the base a, denoted by logα β , is the unique 

integer x, 0 x n 1≤ ≤ − , such that 
xaβ = . 

To attack the modified Elgamal cryptosystem, we 

have to solve the Discrete Logarithm Problem. The 

most popular attack algorithm is the Baby-Step Giant-

Step algorithm [11]: 

Let m n =   , where n is the order of a. If 

xaβ = , then one can write x = im + j, where 

0 i , j m≤ < . Hence,
x i m ja a a= , which implies  

m i j( a ) aβ − = . 

Algorithm 16: Baby-Step Giant-Step algorithm 

Input: a generator of a cyclic group G of order n, and an 

element  Gβ ∈  

Output: the discrete logarithm  x logα β= . 

1. Set  m n =   . 

2. Construct a table with entries (j,
ia ) for 0 j m≤ < . 

Sort this table by the second component. 

3. Compute 
ma−

 and  set γ β←  . 

4. For i from 0 to m-1 do the following: 

4.1 Check if is the second component of some entry in 

the table, 

4.2 If 
jaγ =  then return x = im + j, 

4.3 Set 
m.aγ −← . 

Below is a list of the implemented attack algorithms: 

1. Baby giant with n = 2.3
α
. 

2. Baby giant with n = 4.3
α
. 

3. Baby giant with n = 3
α
. 

4. Baby giant with n = 3.p. 

5. Baby giant with n = 3.2
α
.p.   

6. Baby giant with n = 2.p
 α
+1. 

7. Irreducible polynomial baby giant. 

In order to attack any protocol that uses Elgamal 
public key encryption scheme we have to solve the 
discrete logarithm problem. We enhanced the baby 
step giant step algorithm to work with the modified 
algorithms. Table 5 and Figure. 2 show the results of 
running the programs 100 times in each case. 

Table 5. Baby step giant step attack. 

Algorithm Time needed in atto sec 

n=3^a 3.04119) 

n=2.3^a 3.07689 

n=2p^a+1 4.34042 

n=4.3^a 3.20547 

n=3.p 5.0357 

n=3.4.p 2.96404) 

Poly case 11.3508 

 

         

Figure 2. The baby step giant step algorithm evaluation. 

 

After running these attack algorithms, we observed the 

following: 

1. All the attack programs are reliable so that they can 

hack an encrypted message by finding the private 

key. 

2. In all the cases, the time needed to attack the 

modified cryptosystem is approximately the same.  

3. The most difficult to attack is the irreducible 

polynomial case. This is due to the fact that 

mathematically it is complex and needs 

considerable computing time to find the modulus of 

a given polynomial with respect to a certain 

irreducible polynomial. 

4. We were not able to run the programs on large 

values of p and large powers since it would take a 

considerable time to generate some of the elements 

of the second group of units in each case. 

 

5. Conclusions 

In this paper, we extended the Elgamal cryptosystem 

using the second group of units. We presented 

algorithms for the extended cryptosystem in the setting 

of U
2
(Zn) and provided numerical examples to illustrate 

the proposed scheme. We provided algorithms for the 

case of the second group of units of Z2[x]/<h(x)> where 

h(x) is an irreducible polynomial. We also provided 

proofs that the proposed scheme does really recover 

the plaintext from the ciphertext. We also conducted 

testing and evaluation of the proposed scheme.  

Baby Step Giant Step Attack Algorithm Evaluation 
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As for future work, we are currently investigating 

the case of n = 8.3
α 

and 16.3
α
 where different 

algorithms would be used. This due to the fact that 4 is 

relatively prime with neither 2.3
α
 nor 4.3

α
. We can also 

considering the cases where h(x) = x
2
 and when h(x) is 

a product of irreducible polynomials whose degrees are 

pairwise relatively prime and using time stamps [13]. 
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