
406 The International Arab Journal of Information Technology, Vol. 11, No. 4, July 2014

Consistent Integration between Object Oriented

and Coloured Petri Nets Models

Bassam Rajabi and Sai Peck Lee
Faculty of Computer Science and Information Technology, University of Malaya, Malaysia

Abstract: Unified Modeling Language (UML) is easier to understand and communicate using graphical notations, but lacks

techniques for model validation and verification especially if these diagrams are updated. Formal approaches like Coloured

Petri Nets (CPNs) are based on strong mathematical notations and proofs as basis for executable modeling languages.

Transforming UML diagrams to executable models that are ready for analysis is significant, and providing an automated

technique that can transform these diagrams to a mathematical model such as CPNs avoids the redundancy of writing

specifications. The use of UML diagrams in modeling Object Oriented Diagrams (OODs) leads to a large number of

interdependent diagrams. It is necessary to preserve the diagrams consistency since they are updated continuously. This

research proposes a new structure for the mutual integration between OODs and CPNs modeling languages to support model

changes, the proposed integration suggest a new structure (Object Oriented Coloured Petri Nets (OOCPN)) to include set of

rules to check and maintain the consistency and integrity of the OOCPN model based on OODs relations.

Keywords: CPNs, consistency rules, OODs, OOCPN, UML.

Received September 13, 2012; accepted March 24, 2013; published online April 4, 2013

1. Introduction

Software modeling is one of the most important
activities for large-scale software development. Object
Oriented (OO) modeling language is widely used in
software analysis and design. Unified Modeling
Language (UML) as an OO modeling technique
supports a variety of diagrams to model software
systems from different perspectives using UML
structural, behavioural, and interaction diagrams. UML
diagrams are interrelated; some components for one
diagram may be derived from other diagrams. Since
UML diagrams can be divided into different categories,
where each category focuses on a different perspective
of a problem domain, one of the critical issues is to
keep consistency among diagrams [12, 15, 26].
UML is powerful in describing the static and

dynamic aspects of systems, but remains semi-formal
and lacks techniques for diagrams validation and
verification especially if these diagrams updated
continuously. Formal specifications and mathematical
foundations such as Coloured Petri Nets (CPNs) are
used to automatically validate and verify the behaviour
of the model. The main advantages expected from the
integration of OO and CPNs modeling languages are:
better representation of systems complexity as well as
ease to adapt, correct, analyze, and reuse a model. This
integration is based on the combination of the best
characteristics of CPNs and OO design methods. UML
has a powerful structuring capability to describe the
static aspects of systems, and CPNs are powerful in
modeling system dynamics and behavioural aspects [9,
13, 21, 27]. CPNs complement UML modeling in

providing a powerful and visual formalism for
specifying behaviour, especially the concurrent
behaviour in executable notation. CPNs have a static
part and a dynamic behaviour part. The static part
describes the structure of the nets, and the dynamic
behaviour part describes how the states can change
during simulation [22].
Transforming UML diagrams to executable models

that are ready for analysis is significant, and providing
an automated technique that can transform these
diagrams to a mathematical model such as CPNs
avoids the redundancy of writing specifications. Many
approaches for the integration of OO and CPNs have
been investigated and developed. This research aims
to consider the neglected aspects, particularly, the
transformation of OODs (which are represented by the
UML structural, behavioural, and interaction
diagrams) to OOCPN model including consistency
and integrity rules for supporting model changes. In
addition, rules to maintain the consistency and
integrity of OOCPN model during the transformation
process and after updating OOCPN model elements
are proposed based on OODs relations. The rest of the
paper is organized as follows: In section 2, a brief
overview on related works is provided. In sections 3
and 4, the transformation between the UML structural,
behavioural, and interaction diagrams to OOCPN is
proposed based on the transformation rules, which
include rules to check diagrams consistency and
integrity. Transformation rules modeling and
validation are provided in section 5. Finally, we
concludes the research and presents the future work in
section 6.

Consistent Integration between Object Oriented and Coloured Petri Nets Models 407

2. Related Works

UML is one of the most widely used for OO modeling.
It provides a variety of diagrams with powerful syntax
and semantics to build precise models for software
development [26]. UML supports variety of diagrams to
model software systems from structural, behavioural,
and interaction perspectives.
Most graph-based modeling languages have their

root in Petri Net (PN) theory. Places and transitions are
the main components of PN model, and arcs are used to
connect between them. The main characteristics of the
Coloured Petri Net (CPN) are data structures and
hierarchical structure. These characteristics are used to
represent the object dynamics and to check the models
correctness [1, 13]. Object PNs extend the formalism of
CPNs with OO features, including inheritance,
polymorphism, and dynamic binding [18]. Timed Petri
Nets (PNs) introduce time in PNs. A framework to
transform UML state chart and collaboration diagrams
to CPNs is proposed in [11] to provide a dynamic
model analysis. State chart diagrams are converted to
CPNs, and collaboration diagrams are used to connect
the state charts into a single CPN model. Object PN
Models (OPMs) [24] are used to generate a PN model
from UML object diagram. Object classes and states
classes are represented using CPN places, while object
instances are represented by CPN tokens. Generating
object CPNs from UML state chart diagrams was
proposed in [2]. An abstract node approach is used to
transform an OO model into a hierarchical CPN model
[1]. Using this approach, class and sequence diagrams
can be transformed to CPNs. Transforming UML 2.0
sequence diagrams into CPNs is presented in [8, 14].
The approach by Shin et al. [25] is to model the

transformation of UML use case, class, and
collaboration diagrams to CPN models. Integrating OO
design with CPN was developed by [19] for analysis
purpose. The CPN model is used to verify the UML
diagrams before the implementation. Meta-modeling
and formalism transformation framework is a general
framework for the analysis of software systems using
model-checking [10]. This framework transforms the
UML model into PNs for further analysis. The UML
model is composed of classes, state charts, and
sequence diagrams. A Hierarchical Object Oriented
Petri Net integrates HPN with OO concepts to support
OO features including abstraction, encapsulation,
modularization, message passing, inheritance, and
polymorphism [28]. A meta-level and highly automated
technique based on graph transformation approach is
presented in [30]. This approach formally transforms
UML state charts and behavioural diagrams to PNs for
verification. A methodology to derive CPNs from UML
object, sequence, state chart, and collaboration
diagrams is proposed in [3, 4]. Some of the PN
modeling languages adapt the OO concepts in PN
called Object Oriented Petri Nets (OOPN) as in [20].

The main concepts of these approaches are: OOPN is
a set of class nets; a class is specified by a set of object
nets, method nets, synchronous ports, negative
predicates, and message selectors; object nets and
method nets can be inherited; a token represents an
object or instance of class; synchronous ports are
special transitions which cannot fire alone but only
dynamically fused to some regular transitions. A
comparative study for software tools that support the
transformation of UML static and dynamic diagrams
to PNs/ CPNs models is provided in [21]. Some of
these tools are ArgoSPE tool and WebSPN. This study
indicates that the transformation approaches have
certain weaknesses, such that, each transformation
approach uses only a subset of the UML diagrams,
and most of these transformations are based on the
behavioural UML diagrams. A comparative study
between approaches that transform the UML diagrams
to CPNs is discussed in [21].

3. Proposed OODs to OOCPN

Transformation Rules

Many approaches for integrating OO modeling and
PNs/CPNs have been investigated and developed. The
transformation between UML diagrams and CPNs is
partially supported for a subset of the UML diagrams.
This research focuses on the transformation of UML
diagrams from the structural, behavioural, and
interaction perspectives. This includes rules to
maintain the consistency and integrity of the OOCPN
model to support model changes. The block diagram
of the transformation process is shown in Figure 1.

Figure 1. Block diagram for transformating UML diagrams to
OOCPN model.

The components of UML structural, behavioural,

and interaction diagrams are transformed to CPNs
elements based on the proposed transformation rules.
Consistency and integrity rules are checked during the
transformation process and after updating the CPNs
model. We apply the proposed OOCPN structure on
four UML diagrams (class diagram, object diagram,
activity diagram, and sequence diagram). These
diagrams cover three perspectives of UML diagrams
(structural, behavioural, and interaction perspectives).
Activity and sequence diagrams implement the same

UML Structural
Diagrams

UML Behavioural
Diagrams

UML Interaction
Diagrams

UML Diagrams to OOCPN Transformation

Consistency and Integrity Rules

OOCPN Model Components

Updating OOCPN Model Components

408 The International Arab Journal of Information Technology, Vol. 11, No. 4, July 2014

thing but activity diagram concerns on the control flow
and sequence diagram concerns on the object flow so
the coevolution between these diagrams is very high.
The general structure for the OOCPN model after the

transformation of UML diagrams will be as follows:
Attributes and operations are transformed from the
class diagram. These attributes and operations are used
by other OOCPN model components. Classes are
organized into subpages or subnets. These subpages can
be instantiated using tokens, which represent the
objects. Objects behaviour and interaction are described
using the transformed behavioural and interaction
diagrams. Activity diagram describes the flow of
control form activity to activity. Sequence diagram
describes the flow of control from object to object.
Sequence diagram focuses on the times that messages
are sent. The proposed structure can be described
formally as a tuple of:

<OOCPN structure, Relations, Rules>

OOCPN structure is described formally as in
Definition 1. OOCPN model elements are grouped
together according to UML diagrams relations. Rules
are used to maintain the consistency and integrity of the
transformed model as discussed in Definition 2.

• Definition 1: Proposed OOCPN Structure

The Proposed OOCPN structure is defined by the tuple:

n = (∑, Pg, P, Fp, T, SubT, A, N, C, G, E, M0, R)

Where:
∑: Is a finite set of non-empty types, called colour
sets.
Pg: {pg0, ..., pgn} is a set of pages, where pg0 is the
main page.
P: {p1, p2, …, pn} is a finite set of places.
Fp: {fp1, fp2, …, fpn} is a finite set of fusion places.
T: {t1, t2, …, tn} is a finite set of transitions.
SubT = {Subt1, …, Subtn} is a finite set of
substitution transitions.
A: Represents a set of directed arcs.
N: Is a node function.
C: P→∑ is a colour function.
G: Is a guard function.
E: Is an arc expression function.
M0: P→C is the initial (coloured) marking.
R: {r1, …, rn} is a finite set of consistency and
integrity rules.

• Definition 2: OOCPNs Model Relations and Rules
The Proposed transformation rules are used to
transform the UML diagrams’ elements to OOCPN
elements. OOCPN elements are grouped together
according to the UML diagrams’ relations as follows:
Let O be an OO software system represented by a set of
UML diagrams elements (E), where Eo = {E1, E2, …,
En}. Let TRo = {TR1, TR2, …, TRn} be the set of
transformation rules. Let OOCPNo = {OOCPN1,
OOCPN2, …, OOCPNn} be the set of equivalent

OOCPN elements of Eo. We can define the
transformation rule between {Ej, OOCPNj} as follows:
∀ Diagram element ∈ E: Ej⇒OOCPNj// where j is a
specific diagram element. OODs are organized in
OOCPNs as a set of {S, B, and I}. Where S: Is for the
structural diagrams’ elements, B: Is for the Behavioral
diagrams’ elements, and I: Is for the Interaction
diagrams’ elements. OODs elements in OOCPNs are a
set of:

{S (E1, E2, …, En), B (E1, E2, …, En), I (E1, E2, …, En)}

{CD (E1, ..., En), OD (E1, ..., En), AD (E1, ..., En), SD (E1, ...,

En)}

Where, CD: Class Diagram, OD: Object Diagram,
AD: Activity Diagram, and SD: Sequence Diagram.
The proposed transformation rules include information
about the following: Rules to transform UML
diagrams’ elements to OOCPN as discussed in
Definition 2. Consistency and integrity rule (s) to
maintain the consistency and integrity during the
transformation and after updating OOCPN model
components. These rules have the structure:

If (set of input conditions) then (set of output conditions)

Else (set of output conditions)

This research proposes two rules (rules 1 and rule 2)
to maintain the integrity after updating OOCPN model
elements, and rule 3 is a set of consistency constraints
to be checked during the transformation process:

• Rule 1: Deleting a Referenced Element
If (an update is to delete a referenced element) then

(deleting the referenced element is not allowed)

Where a referenced element is an element defined by
another diagram. For example, all diagrams’ attributes
must be defined in the CD. The following update
operations are determined based on rule 1, delete a CD
attribute, operation, class, class inheritance,
association, or navigability arrow. Delete an object in
the OD, SD:

• Rule 2: Modifying a Referenced Element
If (an update is to modify a referenced element) then

(modifying the referenced element is not allowed)

The following update operations are determined based
on rule 2, modify a CD attribute name, operation
name, class name, inherited class name, navigability
arrow direction, polymorphic operation name, or
interface element name. Modify an object name in the
OD, SD. Modify a SD message name or a message
attribute name.

• Rule 3: Consistency Constraints

• Rule 3.1: The class attribute name and the
association role name cannot have the same
name [5].

• Rule 3.2: Two associations with the same name
and role name are not allowed.

Consistent Integration between Object Oriented and Coloured Petri Nets Models 409

• Rule 3.3: No private/ protected attribute or
operation can be accessed by an operation of
another class.

• Rule 3.4: All diagrams’ attributes/ operations
must be defined in the CD.

• Rule 3.5: A cycle is not allowed in the directed
paths of aggregation links.

4. Transformation of UML Diagrams

Elements to OOCPN

A class diagram is useful to represent information of
actors, roles, organizational unit, and relevant data.
Actors and data stores are objects in the object diagram.
Processes are implemented as operations in the object
model. A process may be split over a number of
operations [17, 29]. Both sequence and activity
diagrams describe the dynamic behavior of use cases.
An activity diagram is used to model the business
logical steps and dynamic behavior derived from the
use cases [6]. It concentrates on the dynamical relations
among business activities [29]. Sequence diagram is
used to describe the interactions among business
objects based on messages. The sequence diagram
focuses on the messages’ times. In this section,
transformation rules for transforming UML class,
object, activity, and sequence diagrams’ elements to
OOCPN are provided.

4.1. Class Diagram Transformation Rules

Class diagram elements are transformed to OOCPN
according to the following transformation rules:

CD attribute ⇒⇒⇒⇒ CPN place

Consistency and integrity rule:

If (a new attribute is created) then ((the attributes name

should be unique in the class) ⇒ (Rule 3.1 is verified))

CD attributes type ⇒⇒⇒⇒ CPN colour set

CD values ⇒⇒⇒⇒ CPN tokens

CD value type ⇒⇒⇒⇒ CPN colour set

CD operation ⇒⇒⇒⇒ CPN subpage

Consistency and integrity rules:

If (a new operation is created) then (Rule 3.3 is verified)

If (an operation has a pre or post condition attribute) then

((Rule 3.4 is verified)⇒ (attribute type must be

compatible))

CD class transformation to CPNs

CD class ⇒ CPN subpage

CD class instance ⇒ CPN substitution transition

CD class name and attribute ⇒ CPN place with appropriate

colour type

Consistency and integrity rule:

If (the created class contains at least one abstract

operation) then ((it must be declared abstract) ∩ (it

cannot be instantiated or invoked))

CD communication method and dynamic binding

transformation to CPNs

CD synchronous request ⇒ CPN transition fusion

CD asynchronous request ⇒ CPN fusion places

Consistency and integrity rules are the same as in the SD

message transformation to CPNs.

SD synchronous and asynchronous messages are

transformed to CPNs the same as in CD communication

methods and dynamic binding:

CD generalization ⇒⇒⇒⇒ Hierarchical Coloured Petri Net

(HCPN) by net addition (place and/or transition fusion)

Consistency and integrity rule:

If (a class element is part of an inheritance relation it

is not a polymorphic operation) then

(All sub classes are not allowed to redefine the inherited

element)

(classes that have the “leaf” property cannot be

extended)

(classes that have the “root” property cannot extend

another classes)

CD associations ⇒⇒⇒⇒ CPN places connected between the

classes’ subnets

Consistency and integrity rule:

If (a new association is created/ modified) then

(Rule 3.1 and Rule 3.2 are verified)

CD aggregation ⇒⇒⇒⇒ HCPN by net addition (place and/ or

transition fusion)

Consistency and integrity rule:

If (a new association is created/ modified) then

(Rule 3.1, Rule 3.2, and Rule 3.5 are verified)

The aggregation relation means that the target subnet
needs to contain some instances of the source subnet.
Communication between subnets will be the same as
in the CD communication methods and dynamic
binding. Composition (is-part-of) can be modeled the
same as in aggregation, but the difference is that the
target subnet needs to contain one instance of the
source subnet.

CD navigability arrow ⇒⇒⇒⇒ CPN arc

Consistency and integrity rules:

If (a navigability arrow is created) then

If (an association type is generalization) then

(the navigability arrow should be from the sub class to

the super class)

Else if (an association type is aggregation) then

(Rule 3.5 is verified)

CD polymorphism ⇒⇒⇒⇒ HCPN by net addition (place and/or

transition fusion)

Consistency and integrity rule:

If (a polymorphism operation is created) then

((Rule 3.4 is verified) ∩ (It can override by the

subclasses of its class))

CD multiplicity ⇒⇒⇒⇒ CPN tokens and substitution transition

Consistency and integrity rules:

If (a multiplicity range is created) then

(the multiplicity range for an attribute must be adhered

to by all elements that access it)

(Class’s multiplicity must not be violated by the

multiplicity of any association end in which it is the

participant)

Else if (a multiplicity range is modified) then

(it must be consistent/ correct after the modification)

CD role name ⇒⇒⇒⇒ CPN auxiliary text

Consistency and integrity rule:

If (a role name is created or modified) then

410 The International Arab Journal of Information Technology, Vol. 11, No. 4, July 2014

(Rule 3.1 and Rule 3.2 are verified)

CD interface ⇒⇒⇒⇒ the same as in CD class transformation

except that it lacks instance variables and implemented

methods [7]

Consistency and integrity rule:

If (an interface element/ operation is created)

then (Rule 3.4 is verified)

4.2. Object Diagram Transformation Rules

Object diagram elements are transformed to OOCPN
according to the following transformation rules:

OD object transformation to CPNs

OD and SD object (class instance) ⇒ CPN tokens

Number of tokens is equal to (∑Occi , i > 0. where Occi is

the number of instances).

OD object attribute ⇒ CPN token colour

Consistency and integrity rule:

If (a new object is created) then ((an object name should

be unique) ⇒ (it represents an instance of a class in the

CD))

OD object states transformation to CPNs

OD instance variable ⇒ CPN place

OD variable type ⇒ CPN place colour

OD message data type ⇒ CPN product data type supported

in CPNs for all the message attributes

OD behavior transformation to CPNs is the same as in the

CD operation transformation

OD communication transformation to CPNs is the same as in

SD messages transformation

Consistency and integrity rule:

If (a new type is created/ modified) then (it must be

defined in the CD attributes or operations types)

4.3. Activity Diagram Transformation Rules

Activity diagram elements are transformed to OOCPN
according to the following transformation rules:

AD sub-activity ⇒⇒⇒⇒ CPN subpage

Consistency and integrity rules:

If (a sub-activity is created) then (It should represent an

operation in the CD)

If (an activity has a pre or post condition attribute) then

(Rule 3.4 is verified)

AD action ⇒⇒⇒⇒ CPN transition (it takes a specific input from

some places and produces a specific output to places)

Consistency and integrity rule:

If (an action has a pre or post condition attribute) then

(Rule 3.4 is verified)

AD control flow ⇒⇒⇒⇒ CPN places with input/ output arcs

Consistency and integrity rule:

If (a control flow is created) then (two AD elements are

connected using the created control flow)

AD object flow transformation to CPNs

AD object flow ⇒ CPN places with input/output arcs

AD object node ⇒ CPN place

AD control nodes (Fork, Join, and Merge) transformation to

CPNs

AD control node ⇒ CPN transition

AD control node input and output flow ⇒ CPN places

AD decision node ⇒⇒⇒⇒ CPN arc inscription

AD activity sequence transformation to CPNs

AD activity sequence ⇒ CPN page including a set of

interconnected activities

AD activity ⇒ CPN transition

AD activity input and output ⇒ CPN places

Consistency and integrity rule:

If (a new sequence of activities is created/deleted/

modified) then (the same sequence of activities in the

AD)

AD start/ end state transformation to CPNs

AD start node ⇒ CPN place without any incoming arc

AD end node ⇒ CPN place without any outgoing arc

Consistency and integrity rule:

If (a start or end node is created/ deleted) then (one

start/end node only is founded in the AD)

4.4. Sequence Diagram Transformation Rules

Sequence diagram elements are transformed to
OOCPN according to the following transformation
rules:

SD message ⇒⇒⇒⇒ CPN transition

Consistency and integrity rules:

If (a message is created) then begin

If (a message is to call an operation) then ((Rule 3.4 is

verified) ⇒ (the object in the SD can only invoke an

operation on another object if it has a navigable

association to it in the CD))

If (a message name and an object name are the same)

then (the message name is not allowed to be the same as

the object’s name)

If (a message is to call a private/protected operation)

then (Rule 3.3 is verified)

If (a message is to invoke an abstract operation) then

(the abstract operation cannot be invoked in the SD)

If (an operation that is called by the message has a pre

or post condition attribute) then (Rule 3.4 is verified)

If (attributes are assigned to return messages/

operations values) then (attributes types have to be

compatible)

End if

Transforming the following diagrams’ elements to
CPNs are the same as message transformation to
CPNs: AD Call Behavior, SD operation call, SD
creation and deletion:

SD and AD condition ⇒⇒⇒⇒ CPN place

SD action bars/ lifelines ⇒⇒⇒⇒ CPN places to represent the

beginning and the end of the action bar [26]

Consistency and integrity rule:

If (an action bar/ life line is created/ modified) then (it

should represents sequence of activities in the AD)

5. Transformation Rules Modeling and

Validation

In this section, transformation rules modeling and
validation are provided with examples. CPN Tools
version 3.4 [27] is used to model and simulate the
proposed OOCPN structure. The following Figures: 2
to 18 are examples with some description of the

Consistent Integration between Object Oriented and Coloured Petri Nets Models 411

transformation for the basic diagrams elements to
OOCPN based on the proposed structure where
transformation and consistency rules are applicable in
any system modeled using CPNs diagrams.
CD operation can be modeled as subpage in CPNs.

Substitution transition is used to call the operation as
shown in Figure 4. Substitution transitions (Method 1
and Method 2) can be recognized by double boxes and
subpage tags positioned next to them, tags (Method1
and Method 2) contains the name of the related
subpage. Operation parameters are: pre and post
conditions, and messages to be transferred.
“[ClassName A or B]” is an example for the operation
precondition. Sometimes the transition components
(input, output, guard, and action) are enough to model
the operation. CD classes with their data fields and
functions are modeled as subnets in CPNs. These
subnets can be instantiated many times using
substitution transitions. For example, the class diagram
in Figure 2 is transformed to CPNs as in the following
CPN code:

var Operation_Date: STRING;

var Amount: STRING;

colset Transaction = product STRING * STRING;

//Transaction class colour set is a product of the class

attributes’ colours

Operations are transformed to subpages. Subpages are
only accessed by the class name “[ClassName A or B]”
as shown in Figure 4. Abstract classes are modeled in
CPNs the same as in classes, but abstract classes have
no instances.

Figure 2. An example class diagram.

CD Communication methods and dynamic binding
are transformed to CPN transition and place fusion. A
substitution transition is an example of transition fusion
as shown in Figure 4 (Method 1 and Method 2 tags).
Figure 3 is an example for fusion places. A
synchronous request is modeled by a transition fusion,
such that the CPN model cannot continue its own
process until the reply token is arrived from the
substitution transition subpage. An asynchronous
request is modeled by fusion places. Place fusion is a
method to transfer a token to all fusion places at the
same time. Fusion places can be used for concurrent
processing [13, 18]. CD generalization/ class
inheritance and dynamic of objects can be represented
using HCPN by net addition (place and/ or transition
fusion). Modularity is also supported by HCPN. Figure
4 shows the transformation of generalization to CPNs.

T1

Fusion 1Fusion 1

T2

Fusion 1Fusion 1
Figure 3. Place fusion example.

Figure 4. CPNs for generalization/inheritance.

CD Associations are transformed to CPN places
connected between the classes’ subnets. These subnets
communicate between themselves using the transition
and place fusions as shown in Figures 3 and 4. CD
polymorphism can be transformed to CPNs through
net structure (HCPN), in addition to the net inscription
as shown in Figure 5.

ObjB Method ()

Method

[ClassName=ObjB]

ObjA Method ()

Method

[ClassName=ObjA]

Outport

Polymorphism
token

OutOut

Inport

Method Method

ObjB Method
Exit

ObjA Method
Exit

Figure 5. CPNs for polymorphism.

An inherited attribute (polymorphism token) can
hold tokens of the super and subclasses. It is
connected to the transition which represents the
overriding operation. OD Object (class instance) and
attribute transformation is shown in Figure 6 (object
“C1: Class” is transformed to CPN place). AD control
nodes (Fork, Join, and Merge) are modeled as a CPN
transition. Each input flow and each output flow of the
control node is modeled by a CPN place as shown in
Figures 7 and 8. The merge node and the decision
node have the same notation, but in the merge node
there are multiple inputs and one output [16].

class

1' C1

Figure 6. Object instance modeled in CPNs.

Method 2

Method 2

[ClassName C or D]

Method 1

Method 1

[ClassName A or B]

Outport

Method 2
Out

Method 1

Out

Inport

Method 1 Method 2

Method 1

Exit
Method 2

Exit

412 The International Arab Journal of Information Technology, Vol. 11, No. 4, July 2014

Figure 7. Transformation of fork node to CPNs.

Figure 8. Transformation of join node to CPNs.

AD Decision node is represented in CPNs by arc
inscription to control the tokens passing. Tokens
represent the variables’ values. Each activity connected
to the transition node is transformed to a CPN transition
as shown in Figure 9. AD branch has the same
transformation such that each decision node represents
a branch.

Figure 9. Transformation of decision node to CPNs.

AD start/ end node and activity sequence
transformation to CPNs are shown in Figure 10.

Figure 10. Transformation of activity sequence to CPNs.

AD and SD Activity Iteration/ Loop transformation

to CPNs is shown in Figures 11 and 12. SD messages
are transformed to CPN transitions as shown in Figure
13. The order of transitions is according to the order of
the messages in the sequence diagram. Tokens flow

between places and transitions are modeled to fire the
transitions (execution of messages). Places represent
the objects used during the messages’ execution. A SD
and AD condition is transformed into a CPN place. An
example for the condition is provided in Figure 13 ([a
== True]), and it is transformed to CPNs as shown in
Figure 14. It is represented as a constraint to fire the
transition.

Figure 11. Transformation of iteration/ loop to CPNs.

Figure 12. Transformation of sequence diagram loop to CPNs.

Figure 13. Transformation of sequence diagram messages to
CPNs.

Message1

a

Figure 14. Sequence diagram conditions modeled in CPNs.

alt (alternative choice) is to represent choices

(nested branches). Each choice is transformed to
CPNs as in the messages transformation. Choices are
selected for execution based on the true value of the
choice guard. The branches are combined together
using shared input and output places as shown in
Figure 15.

[True]

[False]

Message 1

Start Loop

Condition
Test []

End Loop

Message2

T1

T2 T3

T4

T1

P3P2

P1

T1

P3

P2P1

Start

A

C

B

End

A
Condition

Test

B

[True]

[False]

Message2

Message1

Places represent

the objects

Consistent Integration between Object Oriented and Coloured Petri Nets Models 413

Figure 15. Transformation of alt operator to CPNs.

opt (optional operator) can be transformed to CPNs the
same as in the alt operator, because opt is considered as
an alternative choice with only one branch whose guard
is not the else [23]. ref construct is transformed to a
CPN substitution transition to include/reuse a sequence
diagram inside another sequence diagram. par (short for
parallel) is used to represent number of branches

occurred in parallel. Each branch is transformed to
CPNs as in the messages transformation, then these
branches are combined together using shared input
and output places and transitions as shown in Figure
16. Figures 17 and 18 show a complete example for
modeling adding a new SD massage and its
consistency rules.

Figure 16. Transformation of par operator to CPNs.

allclasseslistallclasseslistallclasseslist

(allclasseslist,
["Class8"],
strAtr)

strAtr

allclasseslistallclasseslist

allclasseslist

allclasseslist

Create
SD Element

Activity
Exist

OprSearchPattrn

File
Update

UpdateNewVersionP

Creat
SD

NewSDP

Create Ref
Element

AllClassesListAllClassesList

AllClassAtrName

AllClassesList

AllClassesList
AllClassAtrName

AllClassesList

"OpC1"

SDName

CreateE

Out
AllClassesList

In
AllClassesList
In

Out

NewSDP

UpdateNewVersionP

OprSearchPattrn

Figure 17. Adding new SD massages.

classesList

classesList

(allclasseslist,classesList,
strAtr)

allclasseslist

strAtr

strAtr

allclasseslist

empty

allclassopratr

allclassopratr

allclassopratr

rm classopratr allclassopratr

allclassopratr
classopratr

(classesList1,
oprdefinitionlst1,
allattributes1)

allclassopratr

classesList

classesList

(classesList1,
oprdefinitionlst1,
allattributes1)

classesList

oprdefinitionlst1

rm (hd oprdefinitionlst1)
 oprdefinitionlst1

oprdefinitionlst1

oprdefinitionlst1

(classesList1,
oprdefinitionlst1,
allattributes1)

strAtr

(allclassesnoconst,
CDconsistLists,ODconsistlist,
ADconsistlists,SCDconsistlists,
SDconsistlists,
allupdates)

allclasseslist

oprerationsList

CDconsistLists

(allclasseslist,
classesList,
strAtr)

oprdefinitionlst1

strAtr

allclassopratr

(allclassopratr,classesList,
oprerationsList,attributesList,
generalizeList,associationList)

oprerationsList
ins_Opr oprerationsList strAtr

strAtr

#1 oprdefinition

oprdefinition

[classesList<>
classesList1]

[mem oprerationsList strAtr
andalso oprdefinitionlst1=[]]

[classesList=classesList1
andalso length
allclassopratr=1]

ClassesList

StrAtr

AllClassesList

`

AllClassOprAtr

ClassOprAtr

AllClassOprAtr

ClassesList

OprDefinitionLst

AllClassesList

In
AllClassAtrName

STRING

Out
AllClassAtrName

CDConsistLists

OperationsList

STRING

OprDefinition

ClassOprAtr

Out

In

Figure 18. Adding new SD massegae consistency rule.

Parallel Start

Message 1 Message 2

Parallel End

[else][]

Message 1 Message 2

414 The International Arab Journal of Information Technology, Vol. 11, No. 4, July 2014

6. Conclusions and Future Work

The importance of software models in system design is
growing. Recently, large-scale software projects focus
on modeling more than programming. OO modeling
language and PN modeling are most widely used in
software analysis and design. This research combines
the advantages of the formal and semi-formal modeling
languages. The UML diagrams as semi-formal
modeling language were used to provide powerful
structuring capabilities in the model design. The CPNs
as a formal and executable modeling language
described the behaviour of UML model formally.
Transformation rules are proposed to transform the
OODs diagrams to OOCPN model. In addition, rules to
maintain the consistency and integrity of the OOCPN
model are proposed to support model changes.
Consistency and integrity rules are based the OODs
diagrams’ relations and the proposed OOCPN structure.
The future work of this research is to provide a change
impact and traceability analysis techniques that
automatically determine the impact of change in
diagrams elements.

References

[1] Bauskar E. and Mikolajczak B., “Abstract Node
Method for Integration of Object Oriented Design
with Colored Petri Nets,” in Proceedings of the

3
rd

 International Conference on Information

Technology: New Generations, Las Vegas, USA,
pp. 680-687, 2006.

[2] Bokhari A. and Poehlman S., “Translation of
UML Models to Object Coloured Petri Nets with
a View to Analysis,” in Proceedings of Software

Engineering and Knowledge Engineering, San
Francisco, USA, pp. 568-571. 2006.

[3] Bouabana-Tebibel T. and Belmesk M.,
“Formalization of UML Object Dynamics and
Behavior,” in Proceedings of IEEE International

Conference on Systems, Man and Cybernetics,
vol. 5, pp. 4971-4976, 2004.

[4] Bouabana-Tebibel T. and Belmesk M.,
“Integration of the Association Ends within UML
State Diagrams,” the International Arab Journal

of Information Technology, vol. 5, no. 1, pp. 7-15,
2008.

[5] Briand C., Labiche Y., and O’Sullivan L.,
“Impact Analysis and Change Management of
UML Models,” in Proceedings of the

International Conference on Software

Maintenance, Washington, USA, pp. 256-265,
2003.

[6] Chang L., Chen S., and Chen C., “Workflow
Process Definition and their Applications in E-
Commerce,” in Proceedings of the International

Conference on Microelectronic Systems

Education, Washington, USA, pp. 193-200, 2000.

[7] Chung L., “Object-Oriented Analysis and
Design,” available at: http://www.utdallas.edu/
~chung/Fujitsu/index.htm, last visited 2010.

[8] Fernandes J., Tjell S., Jorgensen J., and Ribeiro
Ó., “Designing Tool Support for Translating Use
Cases and UML 2.0 Sequence Diagrams into a
Coloured Petri Net,” in Proceedings of the 6

th

International Workshop on Scenarios and State

Machines, Washington, USA, pp. 1-10, 2007.
[9] GroupTGI , “Welcome to the Petri Nets World,”

available at: http://www.informatik.uni-
hamburg.de/TGI/PetriNets/, last visited 2010.

[10] Guerra E. and de-Lara J., “A Framework for the
Verification of UML Models. Examples Using
Petri Nets,” in Proceedings of VIII Jornadas

Ingeniería del Software y Bases de Datos,
Alicante, Spain, pp. 325-334, 2003.

[11] Hu Z. and Shatz M., “Mapping UML Diagrams
to a Petri Net Notation for System Simulation,”
in Proceedings of International Conference on

Software Engineering and Knowledge

Engineering, pp. 213-219, 2004.
[12] Ibrahim S., Idris B., Munro M., and Deraman A.,

“Integrating Software Traceability for Change
Impact Analysis,” the International Arab

Journal of Information Technology, vol. 2, no. 4,
pp. 301-308, 2005.

[13] Jensen K., Kristensen M., and Wells L.,
“Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent
Systems,” the International Journal on Software

Tools for Technology Transfer, vol. 9, no. 3, pp.
213-254, 2007.

[14] Khadka B., “Transformation of Live Sequence
Charts to Colored Petri Nets,” Masters Project

Report, University of Massachusetts Dartmouth,
USA, 2007.

[15] Lucas F., Molina F., and Toval A., “A
Systematic Review of UML Model Consistency
Management,” Information and Software

Technology, vol. 51, no. 12, pp. 1631-1645,
2009.

[16] Maqbool S., “Transformation of A Core
Scenario Model and Activity Diagrams Into Petri
Nets,” Master Thesis, School of Information
Technology and Engineering, University of
Ottawa, Canada, 2005.

[17] Miller R., “Practical UML: A Hands-On
Introduction for Developers,” available at:
http://bdn.borland.com/ article/ 0,1410,31863,00.
html, last visited 2003.

[18] Miyamoto T. and Kumagai S., “Application of
Object-Oriented Petri Nets to Industrial
Electronics,” in Proceedings of the 33

rd
 Annual

Conference of the IEEE Industrial Electronics

Society, Taipei, Taiwan, pp. 64-69, 2007.
[19] Motameni H., Movaghar A., Shiraz B.,

Aminzadeh B., and Samadi H., “Analysis

Consistent Integration between Object Oriented and Coloured Petri Nets Models 415

Software with an Object-Oriented Petri Net
Model,” World Applied Sciences Journal, vol. 3,
no. 4, pp. 565-576, 2008.

[20] Niul J., Zou J., and Ren A., “OOPN: An Object-
Oriented Petri Nets and its Integrated
Development Environment,” in Proceedings of

IASTED International Conference on Software

Engineering and Applications, 2003.
[21] Rajabi B. and Lee S., “A Study of the Software

Tools Capabilities in Translating UML Models to
PN Models,” the International Journal of

Intelligent Information Technology Application,
vol. 2, no. 5, pp. 224-228, 2009.

[22] Rajabi B. and Lee S., “Modeling and Analysis of
Change Management in Dynamic Business
Process,” the International Journal of Computer

and Electrical Engineering, vol. 2, no. 1, pp. 199-
206, 2010.

[23] Ribeiro R. and Fernandez J., “Some Rules to
Transform Sequence Diagrams into Coloured
Petri Nets,” in Proceedings of the 7

th
 Workshop

and Tutorial on Practical Use of Coloured Petri

Nets and the CPN Tools, pp. 237-257, 2006.
[24] Saldhana J. and Shatz S., “UML Diagrams to

Object Petri Net Models: An Approach for
Modeling and Analysis,” in Proceedings of

International Conference on Software

Engineering and Knowledge Engineering, pp.
103-110, 2000.

[25] Shin E., Levis A., and Wagenhals W.,
“Transformation of UML-based System Model to
Design/ CPN Model for Validating System
Behavior,” in Proceedings of the 6

th
 International

Conference on the UML/Workshop on

Compositional Verification of the UML Models,
San Francisco, USA, pp. 1-19, 2003.

[26] Shinkawa, Y., “Inter-Model Consistency in UML
Based on CPN Formalism,” in Proceedings of the

13th Asia Pacific Software Engineering

Conference, Washington, USA, pp. 411-418,
2006.

[27] Westergaard M. and Verbeek H., “CPN Tools,”
available at: http://cpntools.org/, last visited 2012.

[28] Xiaoning F., Zhuo W., and Guisheng Y.,
“Hierarchical Object-Oriented Petri Net Modeling
Method Based on Ontology,” in Proceedings of

International Conference on Internet Computing

in Science and Engineering, Harbin, China, pp.
553-556, 2008.

[29] Yang J. and Chen C., “An Integrated Approach
for Workflow Process Modeling and Analysis
Using UML and Petri Nets,” MIS Review, vol. 11,
pp. 47-75, 2003.

[30] Zhao Y., Fan Y., Bai X., Wang Y., Cai H., and
Ding W., “Towards Formal Verification of UML
Diagrams Based on Graph Transformation,” in
Proceedings of IEEE International Conference on

E-Commerce Technology for Dynamic E-

Business, Beijing, China, pp. 180-187, 2004.

Bassam Rajabi received his MSc
degree in computer science from
Alquds University, Jerusalem,
Palestine, in 2005. Currently, he is a
PhD student in computer science at
University of Malaya, Malaysia.
From 2001 to 2004, he was a

research and teaching assistant with the Computer
Science Department, Alquds University-Palestine.
From 2001 to 2005 he was a lecturer with the
Computer Science Department, ORT College-
Palestine. He was a lecturer and Dean Assistant for
Administrative Affairs from 2005 till Now with Wajdi
University College of Technology-Palestine. His areas
of interest are software design and modeling
techniques.

Sai Peck Lee is a professor at the
Department of Software
Engineering, University of Malaya.
She obtained her PhD degree in
computer science from Université
Paris 1 Panthéon-Sorbonne. Her
current research interests include

object-oriented techniques and CASE tools, software
reuse, requirements engineering and software quality.
She is a member of IEEE and currently in several
experts review panels, both locally and internationally.

