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Abstract: Elliptic Curve Cryptography (ECC) provides a secure means of exchanging keys among communicating hosts using 

the diffie hellman key exchange algorithm. Encryption and decryption of texts and messages have also been attempted. In the 

paper on Knapsack over ECC algorithm, the authors presented the implementation of ECC by first transforming the message 

into an affine point on the EC, and then applying the knapsack algorithm on ECC encrypted message over the finite field 

GF(p). The knap sack problem is not secure in the present standards and more over in the work the authors in their decryption 

process used elliptic curve discrete logarithm to get back the plain text. This may form a computationally infeasible problem if 

the values are large enough in generating the plain text. In the present work a new mathematical model is used, which 

considers the output of ECC algorithm, a variable nonce value and a dynamic time stamp to generate the cipher text. Thus, by 

having key lengths of even less than 160 bits, the present algorithm provides sufficient strength against crypto analysis and 

whose performance can be compared with standard algorithms like RSA. 
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1. Introduction 

Historically, encryption schemes were the first central 
area of interest in cryptography [14]. They deal with 
providing means to enable private communication over 
an insecure channel. A sender wishes to transmit 
information to a receiver over an insecure channel that 
is a channel which may be tapped by an adversary. 
Thus, the information to be communicated, which we 
call the plaintext, must be transformed (encrypted) to a 
cipher text, a form not legible by anybody other than 
the intended receiver. The latter must be given some 
way to decrypt the cipher text, i. e., retrieve the 
original message, while this must not be possible for an 
adversary. This is where keys come into play; the 
receiver is considered to have a key at his disposal, 
enabling him to recover the actual message, a fact that 
distinguishes him from any adversary. An encryption 
scheme consists of three algorithms: The encryption 
algorithm transforms plaintexts into cipher texts while 
the decryption algorithm converts cipher texts back 
into plaintexts. A third algorithm, called the key 
generator, creates pairs of keys: An encryption key, 
input to the encryption algorithm, and a related 
decryption key needed to decrypt. This work mainly 
deals with the algorithm which generates sub keys 
which provides sufficient strength to the encryption 
mechanism. Partial differential equations to model 
multi scale phenomena are ubiquitous in industrial 
applications and their numerical solution is an 
outstanding challenge within the field of scientific 

computing [7-9]. The approach is to process the 
mathematical model at the level of the equations, 
before discretization, either removing non-essential 
small scales when possible, or exploiting special 
features of the small scales such as self-similarity or 
scale separation to formulate more tractable 
computational problems.  

Any symmetric encryption scheme uses a private 
key for secure data transfer. In their work on “A new 
mathematical model on encryption scheme for secure 
data transfer” [8], the authors considered not only key 
but also time stamp and nonce values to increase the 
strength of sub key generated. In addition the nonce 
value can also be used for acknowledgement support 
between participating parties. The model can be further 
improved by considering a non linear model where the 
key values vary with the data generated [7]. 

Most of the products and standards that use public-
key cryptography for encryption and digital signatures 
use RSA today. Recently, Elliptic Curve Cryptography 
(ECC) has begun to challenge RSA. The principal 
attraction of ECC, compared to RSA, is that it appears 
to offer better security for a smaller key size, thereby 
reducing processing overhead. ECC [1, 3, 4, 6, 11, 16, 
17] makes use of elliptic curves in which the variables 
and coefficients are all restricted to elements of a finite 
field. In ECC we normally start with an affine point 
called Pm (x, y). These points maybe the base point 
(G) itself or some other point closer to the base point. 
Base point implies it has the smallest x, y co-ordinates, 
which satisfy the EC. A character in a message is first 
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transformed into an affine point of the elliptic curve by 
using it as a multiplier of Pm. That is, if the ASCII 
value of a character is A, then we determine P0 m = A 
(Pm). This is one step towards introducing 
sophistication and complexity in the encryption 
process. The newly evaluated P0 m is a point on the 
EC, determined by applying the addition and doubling 
strategy of ECC technique. Then as per ECC 
algorithm, P0 m is added with kPB, where k is 
randomly chosen secret integer and PB is the public 
key of user B, to yield (P0 m + kPB). This now 
constitutes second part of the encrypted version of the 
message. The other part, namely, kG, which is the 
product of the secret integer and the Base point, 
constitutes the first part. Thus the encrypted message is 
now made up of two sets of coordinates, namely, (kG, 
P0 m + kPB). In this paper we have assigned kG = (x1, 
y1) and (Pm + kPB) = (x2, y2). Not satisfied with the 
complexity involved in determining the encryption, we 
wish to introduce further complexity by applying time 
stamp, a variable nonce value concept to the encrypted 
version. The whole idea behind these rigorous 
exercises is to make decryption totally impossible, 
even if the Base Point G, secret integer k, the affine 
Point Pm are known to the crypt analyst. Now to 
recover the information from the encrypted version, 
first the new model with time stamp has to be reversed. 
Then we apply the decryption process of ECC, by 
applying the private key of recipient (nB) on the first 
element (kG). This is subtracted from the second 
element to recover P0 m. This promises to afford 
maximum security from intruders and hackers. 

Another public key algorithm, namely RSA, is used 
to encrypt/decrypt the same message. Unlike the ECC 
procedure, this yields only one integer for each 
character of the message. The time and space 
implications for both the schemes are discussed and 
analyzed. The paper justifies that despite the harsher 
requirements of time and space for the ECC methods, 
it is far superior due to the resistance it offers to any 
brute force attack. 

Some recent works on application of ECC are cited 
here. Aydos et al. [2] discusses the results of 
implementation of ECC over the field GF (p) on an 80 
MHz, 32 bit RAM microprocessor. The works in [2, 
10, 18] provides an overview of ECC for wireless 
security. It focuses on the performance advantages in 
the wireless environment by using ECC instead of the 
traditional RSA cryptosystem. Adnan [1] explains the 
design of coprocessor, which automatically produces a 
customized ECC hardware that meets user-defined 
requirements. Shi et al. [16] explains the engineering 
of ECC as a complex interdisciplinary research field 
encompassing such fields as mathematics, computer 
science and electrical engineering. Chen et al. [3] 
presents a high performance ECC process for general 
curves over GF (p). The standard specifications for 
public key cryptography are defined in [5, 15]. 

2. The Research Method 

The weiestrass equation [12, 13] defining an elliptic 
curve over GF (p), for q>3, is as follows:   

y
2  

=  x
3 
+ ax + b                              (1) 

Where x, y are elements of GF (p), and a, b are integer 
modulo p, satisfying:  

4a
3 
+ 27b

2 
= 0  mod p                          (2) 

Here p is known as modular prime integer. An elliptic 
curve E over GF (p) consist of the solutions (x, y) 
defined by equations 1 and 2, along with an additional 
element called O, which is the point of EC at infinity. 
The set of points (x, y) are said to be affine coordinate 
point representation. The basic Elliptic curve 
operations are point addition and point doubling. 
Elliptic curve cryptographic primitives [13] require 
scalar point multiplication. Say, given a point P (x, y) 
on an EC, one needs to compute kP, where k is a 
positive integer. This is achieved by a series of 
doubling and addition of P. Say, given k = 386, entails 
the following sequence of operations P, 2P, 3P, 6P, 
12P, 24P, 48P, 96P, 192P, 193P, 386P. Let us start 
with P (xP, yP). To determine 2P, P is doubled. This 
should be an affine point on EC. Use the following 
equation, which is a tangent to the curve at point P: 

    S = [(3x
2
P  +  a) / 2yP ] mod p                    (3) 

Then 2P has affine coordinates xR, yR given by: 

xR = (S2 − 2xP ) mod p                       (4) 

yR = [S(xP − xR) − yP ] mod p                     (5) 

Now to determine 3P, we use addition of points P and 
2P, treating 2P = Q. Here P has coordinates (xP, yP) 
and Q = 2P has coordinates (xQ, yQ). Then: 

xR = (S2 – xP − xQ) mod p                      (6) 

yR = (S(xP − xR) − yP ] mod p                   (7) 

Therefore we apply doubling and addition depending 
on a sequence of operations determined for k. Every 
point xR, yR evaluated by doubling or addition is an 
affine point (points on the elliptic curve). 

 

• Solution of Linear Algebraic Equations 

The solution of the discretization equations for the one 
dimensional situation can be obtained by the standard 
Gaussian elimination method. Because of the 
particularly simple form of equations, the elimination 
process leads to a delightfully convenient algorithm. 
For convenience in presenting the algorithm, it is 
necessary to use somewhat different nomenclature. 
Suppose the grid points are numbered 1, 2, 3, …, ni 

where 1 and ni denoting boundary points. The 
discretization equation can be written as:  

AiTi  +  BiTi + 1  +  CiT-1  =  Di                     (8)       
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For I = 1, 2, 3, ..., ni. Thus the data value T is related to 
neighbouring data values Ti + 1 and Ti¡1. For the 
given problem C1 = 0 and Bn = 0. 

These conditions imply that T1 is known in terms of 
T2. The equation for I = 2, is a relation between T1, T2 
and T3. But since T1 can be expressed in terms of T2, 
this relation reduces to a relation between T2 and T3. 
This process of substitution can be continued until   
Tn-1 can be formally expressed as Tn. But since Tn is 
known we can obtain Tn-1.This enables us to begin 
back substitution process in which Tn-2, Tn-3, ..., T3, 
T2 can be obtained. For this tri-diagonal system, it is 
easy to modify the Gaussian elimination procedures to 
take advantage of zeros in the matrix of coefficients. 
Referring to the tri-diagonal matrix of 
coefficientsabove, the system is put into a upper 
triangular form by computing new Ai: 

Ai  = Ai - (C¡ - 1 - Ai) * Bi where i = 2, 3, ..., ni        (9) 

Di = Di - (C¡-1-Ai) * Di                    (10) 

Then computing the unknowns from back substitution: 

Tn  =  Dn / An                            (11)       

Then: 

Tn  = Dk - Ak *Tk+1/ Ak; k  = ni-1, ni-2, ..., 2, 1      (12)  

 
3. Implementation Details of the Proposed 

Algorithm  

Once the defining EC is know, we can select a base 
point called G. G has [x, y] coordinates which satisfy 
the equation y2 

= x3 + ax + b. The Base point has the 
smallest x, y values which satisfy the EC. The ECC 
method requires that we select a random integer k 

(k<p), which needs to be kept secret. Then kG is 
evaluated, by a series of additions and doublings, as 
discussed above. For purpose of this discussion we 
shall call the source as host A, and the destination as 
host B. We select the private key of the host B, called 
nB. k and nB can be generated by random number 
generators to give credibility. That would be digressing 
away from the main discussion. Hence we make 
suitable assumptions for these two parameters. The 
public key of B is evaluated by PB = nBG. (3) Suppose 
A wants to encrypt and transmit a character to B, he 
does the following. Assume that host A wants to 
transmit the character ‘S’. Then the ASCII value of the 
character ‘S’ is used to modify Pm as follows: 
Pm=SPm. Pm we said is an affine point. This is 
selected different from the Base point G, so as to 
preserve their individual identities. P0m is a point on 
the EC. The coordinates of the P0m should fit into the 
EC. This transformation is done for two purposes. First 
the single valued ASCII is transformed into a x, y     
co-ordinate of the EC. Second it is completely 
camouflaged from the would-be hacker. This is 
actually intended to introduce some level of 

complexity even before the message is encrypted 
according to ECC. As the next step of ECC, we need to 
evaluate kPB, here PB is a public key of user B. 
Determining this product involves a series of doubling 
and additions, depending on the value of k. For a quick 
convergence of the result, we should plan for optimal 
number of doubles and additions. The encrypted 
message is derived by adding P0m with kPB, that is, 
P0m + kPB. This yields a set of x2, y2 coordinates. 
Then kG is included as the first element of the 
encrypted version. kG is another set of x1, y1 
coordinates. Hence the entire encrypted version for 
purposes of storing or transmission consists of two sets 
of coordinates as follows:  

Cm = (kG, P0m + kPB)                       (13) 

 Where kG = (x1, y1), (P0m + kPB) = (x2, y2). 

 

• Mathematical Modelling of the Problem 

The approach to time series analysis was the 
establishment of a mathematical model describing the 
observed system. Depending on the appropriation of 
the problem a linear or nonlinear model will be 
developed. This model can be useful to generate data at 
different times to map it with plain text to generate 
cipher text. The linear data flow problem is presented 
below. 

The Initialization Vector (IV) considered in the 
problem is when t = 0, T (I) = Y (I) = 300. Where I = 1, 

2, ..., M. 
Dividing the problem area into M number of points, 

and for simplicity by assuming data of the ¯rst and Mth 

grid points are considered to be known and constant. 
For the grid points 2, M¡1, the coefficients can be 
represented by considering the conservation equation:  

α/∂.x(TI+1
n+1

-TI
n+1

)+α/∂x(TI
n+1

-TI-1
n+1

)=(∂x)/∂t(TI
n+1

–I
n
) (14) 

Where TI represents data value for the considered grid 
point for the preceding delt, TI+1

n+1
 and TI

n+1   
represents data values for the preceding and 
succeeding grid points for the current delt.  

Considering α which is a key for the given model, 
the coefficients are obtained for each state (grid point) 
in terms of A (I) refers to data value of the 
corresponding grid point, C (I) and B (I) refers to data 
values of preceding and succeeding grid points for the 
current delt, D (I) refers to data value of the considered 
grid point in the preceding delt: 

A(I) = 1 + 2 α delt/(delx)**2                    (15) 

B(I) = -α delt/(delx)**2                       (16) 

C(I) = -α delt/(delx)**2                       (17) 

D(I) = TI 
n                                  (18) 

Where α is the key considered which is a constant 
value. The model generated is a linear model. 
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4. Implementation of the Proposed 

Algorithm 

The Elliptic Curve is y2  
mod  487 = (x

3 
− 5x + 25) mod 

487 [13]. The base point G is selected as (0, 5). Base 
point implies that it has the smallest x, y co-ordinates 
which satisfy the EC. Pm is another affine point, which 
is picked out of a series of affine points evaluated for 
the given EC. We could have retained G itself for Pm. 
However for the purpose of individual identity, we 
choose Pm to be different from G. Let Pm = (1,316). 
The choice of Pm is itself an exercise involving 
meticulous application of the ECC process on the 
given EC, the secret integer k, and the private key nB 

of the recipient B. We have at our disposal a series of 
random number generators. But that would be 
digressing from the main path of thought. Hence we 
shall assume that k = 25, and nB = 277. Plaintext is 
“S”, whose ASCII value is 83. Therefore, 

PB = nBG = 277 (0, 5) = (260, 48) 

P0m = 83 (1, 316) = (475, 199) 

kPB = 225 (260, 48) = (212, 151) 

P0m + kPB = (475, 199) + (212, 151) = (51, 58) 

kG = 225 (0, 5) = (99, 253). 

Encrypted version of the message is: ((99, 253), (51, 
58)), where x1 = 99, y1 = 253, x2 = 51, and y2 = 58. 
By considering an input of 99, 253 to the mathematical 
model [7], as data input, the secret integer k as key, a 
time stamp of 6 and a nonce of 25, a set of 25 values 
are calculated: 27 33 34 17 30 16 26 8 4 20 22 12 24 
12 6 21 18 10 23 22 30 15 1 18 0, the middle of 25 
values ie value will replace 99, a quarter value data 
series replace 253.  The output for (99, 253) = (24, 26). 

A similar procedure will be repeated for (51, 58). 
The sequence generated is: 15 8 4 20 17 26 13 2 20 28 
34 0 18 28 14 25 10 6 21 20 10 23 23 29 0, the output 
for (51, 58) = (18, 13), the cipher text that is to be 
transmitted for S is (24, 26), (18, 13). 

S equivalent ASCII is 83, Cipher text through ECC 
is (99 253), (51 58). Final cipher text through the 
discussed model (24 26), (18 13), a equivalent ASCII 
is 65, Cipher text through ECC is (99 253), (116 280). 
Final cipher text through the discussed model (24 26), 
(15 07), V equivalent ASCII is 86, Cipher text through 
ECC is (99 253), (427 287). Final cipher text through 
the discussed model (24 26), (1 1), E equivalent ASCII 
is 69, Cipher text through ECC is (99 253), (135 341). 
Final cipher text through the discussed model (24 26), 
(16 20). 

• Decryption Process: The given cipher text is 
considered. Known the private key, time stamp, 
delx and delt values, the inverse process is used 
which maps the generated sequence with the cipher 
text values. The procedure is repeated till the 
difference is of the order of 10-4. Once the output 
values are generated, they will be considered as 
input to ECC algorithm to generate Plain text. 

5. Conclusions 

ECC itself is a very secure algorithm for encryption. 
However, not satisfied with it the algorithm is 
appended with time stamped mathematical model 
which contains not only private key of ECC algorithm 
but also a variable nonce value and a dynamic time 
stamp which makes entire encrypted version turns into 
an ensemble of confusing integers, thereby 
discouraging a potential cryptanalyst from attempting a 
brute force attack.  

The advantage with this model is it is free from 
linear and differential cryptanalysis. Also it is 
supported with variable nonce value, which acts as 
acknowledgement between participating parties. It is 
also supported with dynamic time stamp, which 
increases the strength of the algorithm. Thus the given 
model supports the important properties like 
authentication, security and confidentiality at less 
computing resources when compared with algorithm 
like RSA. A comparative study of the proposed model 
with standard algorithms like ECC and RSA in terms 
of computational overhead, security strength, data 
overhead, complexity and security analysis is 
discussed in Table 1. 
 

Table 1. A comparative study. 

Algorithm 

Computational 

Overhead per 

Block of Data 

Security 

Strength 

Data 

Overhead 

per Block 

of Data 

Complexity 

by Its 

Strength 

Security 

Analysis 

RSA 

More as the 
specified key 
length is 1024 
bits 

Equal Equal Exponential 

Relatively 
free from 
known & 
chosen 
attacks 

ECC 

Relatively very 
less as specified 
key length is 
160 bits. 

Equal Equal Exponential 

Relatively 
free from 
known & 
sen 
attacks 

Proposed 

Model 

More 500 
instructions for 
a 8 bit sub key 
used in addition 
to ECC. 

More Equal Exponential 

Relatively 
free from 
known & 
chosen 
attacks 

 
6. Future Work  

By using a non linear private key, the strength of the 
proposed model can be increased still further. The 
model can also be studied for increased performance 
against unavoidable factors like noise.  
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